City of Buenaventura Toxicity and Chemical Evaluation March 04 Wet Weather Sampling Event Santa Clara River Estuary

Prepared by

AMEC Earth & Environmental Bioassay Laboratory 5550 Morehouse Drive, Suite B San Diego, California 92121 (858) 458-9044

INTRODUCTION

Toxicity tests and chemical analyses were conducted on estuarine sediment and ambient water samples collected from the Santa Clara River Estuary located in the City of San Buenaventura, CA. This second sampling effort for the project was characterized as a "wet weather" event; the sand berm was breached and the estuary was open to tidal flushing. Dr. Howard Bailey, Mr. Chris Stransky, and Mr. John Rudolph of AMEC Earth & Environmental (AMEC) coordinated the sediment collection effort, toxicity testing, and chemical testing programs. Sediment toxicity testing was performed using marine species: the amphipod Eohaustorius estuarius and the bivalve Mytilus galloprovincialis (formerly Mytilus edulis). Estuarine ambient water toxicity was evaluated using the freshwater alga Selenastrum capricornutum, the water flea, Ceriodaphnia dubia, and the fathead minnow, Pimephales promelas. Ambient water toxicity to marine organisms was tested using giant kelp, Macrocystis pyrifera, the opossum shrimp, Americamysis bahia (formerly Mysidopsis bahia), and the pacific topsmelt, Atherinops affinis. Bioassays were conducted between 17 and 25 March 2004 at the AMEC Bioassay Laboratory located in San Diego, CA. A single sediment sample was retested on 8 May 2004. Chemical analyses were performed by Calscience Environmental Laboratories (CEL) located in Garden Grove, CA.

METHODS AND MATERIALS

SAMPLE COLLECTION AND TRANSPORT

Sediment Samples

Sediment samples were collected on 16 March 2004 from eleven locations identified as Sites A-1, A-2, A-3, B-1, B-2, B-3, B-4, C-1, C-2, C-3, and D-1. Sample collection time, water depth, sediment grab penetration depth, GPS coordinates, tidal information, and detailed physical descriptions of each sample were recorded in a field logbook (Appendix G).

All equipment used for sediment collection was cleaned thoroughly with Alconox soap and rinsed with site water. Collections were performed using a 10 cm² stainless steel Van Veen grab. Several grab samples were collected at each field location to in order to obtain sufficient sediment for testing. Sample materials were placed in polypropylene

bags, labeled, and tightly sealed. All samples were packed in ice chests containing wet ice and transported to AMEC.

Upon arrival at AMEC, coolers were opened and their contents verified. Sediment grabs from each site were then placed in a clean stainless steel bucket, homogenized, and sub-sampled for chemical, grain size, and toxicity analyses. Subsamples for chemical analysis were placed in labeled, certified-clean glass jars. Toxicity testing sample materials were placed in polypropylene bags, labeled, and tightly sealed. Subsamples for grain size analysis were placed in labeled zip-lock bags. Samples for toxicity and chemical analyses were then placed in a 4°C cold room until toxicity test initiation or transport to CEL. Samples for grain size analysis were stored at room temperature.

Ambient Water Samples

Ambient water samples were collected from four of the eleven sediment-sampling locations (A-2, B-1, B-3, and C-3). Sites for water collection were selected based on location within the estuary and water depth (i.e. centrally located sites with enough water to provide an adequate sample volume for testing). Sample collection time, GPS coordinates, water depth, temperature, dissolved oxygen (DO), salinity, and pH were recorded in a field logbook (Appendix G).

All equipment used for water collection was cleaned thoroughly with Alconox soap and rinsed with site water. Collections were performed using 5-L high-density-polyethylene (HDPE) containers. Several grab samples were collected at each field location to in order to obtain sufficient volume for testing. Water samples from each site were then composited in clean 20-L lined buckets and tightly sealed. AMEC personnel transported all samples to the laboratory. Upon arrival in the laboratory, water quality parameters of temperature, DO, conductivity, salinity, pH, total residual chlorine, alkalinity, and hardness were measured and recorded in a logbook. Samples were then placed in a 4°C cold room until toxicity test initiation on the following day.

ORGANISM PROCUREMENT AND HANDLING

Marine Sediment Exposures

Amphipod

Echaustorius estuarius were obtained from Mr. Gary Buhler of Northwest Aquatic Laboratories in Newport, OR. The organisms were transported to AMEC in coolers containing sieved site sediment and air-saturated seawater. Upon arrival at AMEC, water quality parameters of temperature, pH, DO, and salinity were measured and recorded in a logbook. Amphipod condition was also noted. The amphipods were then acclimated to test temperature and salinity, and observed each day prior to test initiation for any indications of stress (e.g. abnormal swimming or burrowing behavior) or significant mortality (>10%).

Bivalve

Carlsbad Aquafarms in Carlsbad, CA supplied the bay mussel *Mytilus galloprovincialis*. The mussels were transported to AMEC in ice chests via same-day courier service. In the laboratory, the organism receipt date and arrival condition were recorded in a logbook. The mussels then were acclimated to test temperature and salinity, and observed each day prior to test initiation for any indications of significant mortality (>10%).

Ambient Water Exposures

Freshwater Species

Fathead Minnow

Fish larvae were purchased from Aquatic Biosystems of Fort Collins, CO. The organisms were placed in plastic bags containing oxygenated culture water, packed in insulted containers, and transported to AMEC via overnight delivery service. Upon arrival at AMEC, temperature, pH, DO, and conductivity were measured and recorded in a logbook. Fish larvae condition was also noted. The larvae were then acclimated to test dilution water and temperature, and observed prior to test initiation for any indications of

stress (e.g. abnormal swimming behavior) or significant mortality (>10%). Fish larvae were fed *Artemia* nauplii to satiation during holding.

Water Flea

Cultures of *C. dubia* are maintained for use in testing at AMEC. One week prior to test initiation, neonate (<24 hours old) water fleas were isolated from brood stock from the previous week and placed in individual holding cups containing 8:2 water and food. Neonate selection for continuing culture is based on overall health and reproductive performance of the individuals in the current culture. The number of water fleas isolated was equal to the number of neonates required to initiate testing. Cups were held in a polypropylene holder and the entire holder was placed in a temperature-controlled room maintained at 25°C. Isolated females were transferred to cups containing fresh water and food each day, and on the morning of test initiation. Neonates produced on the day of test initiation were selected for testing if produced by individuals producing at least 3 broods of 8 or more neonates over the course of the previous week.

<u>Algae</u>

A continuous culture of *S. capricornutum* is maintained for use in testing at AMEC. A new culture is started each week and allowed to grow under a cool-white fluorescent light source providing continuous illumination above the culture. The culture used to inoculate the effluent and reference toxicant test for this study was seven days old and in log-phase growth at the time of test initiation.

Marine Species

Bivalve

The same brood stock of *M. galloprovincialis* was used to initiate both ambient water tests and sediment tests.

Pacific Topsmelt

Fish larvae were purchased from Aquatic Biosystems of Fort Collins, CO. The organisms were placed in plastic bags containing oxygenated culture water, packed in insulted containers, and transported to AMEC via overnight delivery service. Upon arrival at AMEC, water quality measurements of temperature, pH, DO, and salinity were

recorded in a logbook. Fish larvae condition was also noted. The larvae were then acclimated to test salinity and temperature, and observed prior to test initiation for any indications of stress (e.g. abnormal swimming behavior) or significant mortality (>10%). Fish larvae were fed *Artemia* nauplii to satiation during holding.

Opossum Shrimp

Shrimp larvae were purchased from Aquatic Biosystems of Fort Collins, CO. The organisms were placed in plastic bags containing oxygenated culture water, packed in insulted containers, and transported to AMEC via overnight delivery service. Upon arrival at AMEC, water quality parameters of temperature, pH, DO, and salinity were measured and recorded in a logbook. Shrimp larvae condition was also noted. The larvae were then acclimated to test salinity and temperature, and observed prior to test initiation for any indications of stress (e.g. abnormal swimming behavior) or significant mortality (>10%). Shrimp larvae were fed *Artemia* nauplii to satiation during holding.

Giant Kelp

Giant kelp zoospores are obtained from the reproductive blades (sporophylls) of adult plants. AMEC personnel collected kelp sporophylls from multiple plants offshore of La Jolla Cove in La Jolla, CA the day prior to test initiation. The blades were transported to AMEC in a clean cooler with blue ice. Once in the lab, sporophylls were cleaned, rinsed with 0.20-µm filtered seawater, blotted dry, arranged individually in a single layer on paper towels, and allowed to desiccate for one hour. The blades were rinsed again and placed in a 2-L glass beaker containing 1 L of clean filtered seawater. The beaker was then placed in a temperature-controlled environmental chamber at 15°C. One hour later, the blades were removed and the resulting solution of released zoospores allowed to settle. After approximately 30 minutes, the motile zoospores were siphoned from the top layer of seawater into a flask and observed under a compound microscope at 100x to verify their viability. Spore density was determined by direct count of the spore solution with an Improved Nuebauer hemacytometer, and an algal stock solution was prepared to yield an initial cell density of approximately 225,000 cells per ml in each test chamber.

BIOASSAY PROTOCOLS

Marine Sediment Exposures

Amphipod 10-Day Survival

Marine amphipod bioassays using *Eohaustorius estuarius* were conducted in accordance with "Standard Guide for Conducting 10-day Static Toxicity Tests with Marine and Estuarine Amphipods," ASTM Designation: E 1367-92 (1993). Animals were exposed to test sediments for ten days to determine the effects of site sediment on amphipod survival. Prior to testing, sediments were sieved through a 500- μ m Nitex screen to remove native organisms and shell debris. Test chambers consisted of 1-L glass jars with a 2-cm layer of sieved sediment and 900 ml of overlying 20 μ m lab-filtered seawater at a salinity of 30 ppt. The tests were performed at a temperature of 15 \pm 1°C under continuous light. Aeration was provided continuously to each test chamber through a glass pipette at a rate of approximately two bubbles per second. The experimental design consisted of five laboratory replicate test chambers per site. In addition, a sixth replicate was initiated for each site as a surrogate daily water quality measurements. Twenty amphipods were carefully placed in each test chamber at test initiation. Two negative controls consisting of 1) a water-only exposure with no sediment added, and 2) sediment from the amphipod collection location were tested concurrently.

Temperature, DO, pH, and salinity were monitored daily in the surrogate test chamber for each sediment sample. Subsamples of overlying water were collected from surrogate test chambers for initial and final total ammonia analysis. Additionally, subsamples of sediment porewater were collected prior to test initiation and analyzed for total ammonia. Porewater was collected by centrifuging the whole sediment at 3500 rpm for a period of fifteen minutes.

A concurrent reference toxicant test (positive control) using cadmium (II) chloride (CdCl₂) was conducted in conjunction with the sediment test. Reference toxicant testing is a QA/QC procedure used to evaluate the quality and sensitivity of the test organisms.

48-Hour Bivalve Embryo Survival and Development

Bivalve embryo development assays were conducted in accordance with the document "Recommended Guidelines for Conducting Laboratory Bioassays on Puget Sound Sediments," Puget Sound Estuary Program (PSEP), July (1995) and "Standard Guide for Conducting Static Acute Toxicity Tests Starting with Embryos of Four Species of Saltwater Bivalve Molluscs," ASTM Designation: E 724-89 (1993). Embryos of the bivalve M. galloprovincialis were exposed to whole test sediments for 48 hours to determine the effect of site sediment exposure on survival and development. Tests were conducted in 1-L glass jars with 18 g of sediment and 900 ml of overlying 20-µm labfiltered seawater at a salinity of 30 ppt. The tests were performed at a temperature of 15 ± 1°C under a 16:8 hour light:dark regime. Two concurrently tested negative controls consisted of 1) clean rinsed beach sand with filtered seawater, and 2) a water-only exposure with no sediment added. The experimental design consisted of five laboratory replicate test chambers per site. In addition, a sixth replicate was initiated for each site as a surrogate to perform daily water quality measurements. Fertilized eggs were added to each test chamber at a density of 20,000 eggs/ml. At test termination, overlying water was carefully poured into a clean beaker. The solution was thoroughly and gently homogenized and a 10-ml subsample was collected and preserved with 1 ml of seawater-buffered Formalin prior to scoring.

Temperature, DO, pH, and salinity were monitored daily in the surrogate test chamber for each site. Subsamples of overlying water from each site were collected for total ammonia analysis both at test initiation and termination. Additionally, subsamples of sediment porewater were collected prior to test initiation and analyzed for total ammonia. Porewater was collected by centrifuging the whole sediment at 3500 rpm for a period of fifteen minutes.

A concurrent reference toxicant test (positive control) using copper (II) chloride (CuCl₂) was conducted in conjunction with the sediment test.

Ambient Water Exposures

All freshwater bioassay procedures used for this study follow, with some modification, "Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition (EPA/821/R-02/013)," (US EPA 2002a). Marine bioassays conducted using *Americamysis bahia*, follow "Short-Term Methods for

Estimating the Chronic Toxicity of Effluents and Receiving Waters to Marine and Estuarine Organisms, Third Edition (EPA/821/R-02/014)," (US EPA 2002b). Finally, marine bioassays conducted using *Mytilus galloprovincialis*, *Atherinpos affinis*, and *Macrocystis pyrifera* follow "Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms (EPA 600/R-95/136)," (US EPA 1995). The giant kelp bioassay additionally utilizes "Procedures for Conducting Toxicity Tests Developed by the Marine Bioassay Project," (California EPA 1996).

Freshwater Species

Fathead Minnow 7-Day Survival and Growth

This test estimates chronic toxicity by evaluating survival and growth of larval fathead minnows over time. Larval fish (one day old at test initiation) were exposed to the samples for a period of seven days. A sample concentration of 100 percent was tested along with a negative control. Because samples were estuarine, an additional control of equal salinity to the sample was also tested to ensure observed mortality was not due to salinity rather than other toxic constituents.

Test solutions were prepared using graduated cylinders and pipettes. Measurements of pH, DO, temperature, and conductivity were measured and recorded for each test concentration and control. Four replicate test chambers were prepared for each test concentration and control. Replicates consisted of 400-ml plastic cups containing 250 ml of test solution. Test solutions were acclimated to 25°C in a temperature-controlled environmental chamber prior to initiation.

Ten fish larvae were arbitrarily added to each test chamber. A second technician verified counts and condition of all test organisms prior to addition of the larvae to test chambers and when test initiation was complete. A 16:8 hour light:dark illumination cycle was provided for the duration of the test. Test chambers were covered with a clear plexiglass sheet to prevent test solution contamination.

Test solutions were renewed once per day, and organisms were fed three times per day. Temperature, pH, DO, and conductivity were measured daily in both freshly prepared test solution, and test solution collected from the test chambers for each concentration and control. Survival status was recorded for each test chamber once per day. At test

termination, final observations were made and test animals were prepared for weight determination.

Fish weights were determined by placing fish from each test chamber in individual tared aluminum pans and drying them in an oven at 60°C for 24 hours. After drying, fish were weighed on a Mettler 240AE balance to the nearest 0.01 mg.

A concurrent CuCl₂ reference toxicant test (positive control) was also conducted as a measure of consistent organism sensitivity, as well as continuing laboratory proficiency with the method.

Water Flea 7-Day Survival and Reproduction

This test estimates chronic toxicity by evaluating survival and reproduction of individual water fleas over time. Water fleas (<24 hours old at test initiation) were exposed to the samples for a period of seven days. A sample concentration of 100 percent was tested along with a negative control. Because samples were estuarine, an additional control of equal salinity to the sample was also tested to ensure observed mortality was not due to salinity rather than other toxic constituents.

Test solutions were prepared using graduated cylinders and pipettes. A diet of yeast, cerophyll, trout chow (YCT) and *Selenastrum* suspension was added to each test sample and control prior to distribution to test chambers. Measurements of pH, DO, temperature, and conductivity were measured and recorded for each test concentration and control. Ten replicate test chambers were prepared for each sample and control. Replicates consisted of 30-ml soufflé cups containing 15 ml of test solution. Test solutions were acclimated to 25°C in a temperature-controlled environmental chamber prior to initiation.

Test solutions were renewed, and organisms were fed once per day. Temperature, pH, DO, and conductivity were measured daily in both freshly prepared test solution, and test solution collected from the test chambers for each concentration and control. Survival status and reproductive output were recorded for each organism once per day. At test termination, final observations were made, water quality measurements taken, and test solution and organisms discarded.

A concurrent CuCl₂ reference toxicant test (positive control) was also conducted.

96-Hour Algal Growth Inhibition

This test estimates chronic toxicity by measuring algal population response to effluent exposure in terms of changes in cell density over time. Algal cells (seven days old and in log-phase growth at test initiation) were exposed to the samples for a period of 96 hours. A sample concentration of 100 percent was tested along with a negative control. Because samples were estuarine, an additional control of equal salinity to the sample was also tested to ensure observed mortality was not due to salinity rather than other toxic constituents.

Test solutions were prepared using graduated cylinders and pipettes. Nutrients to promote algal growth were added to effluent and dilution water at a ratio of 1 ml/L. Measurements of pH, DO, temperature, and conductivity were measured and recorded for each test concentration and control. Alkalinity and hardness were measured and recorded for each control and sample prior to test initiation. Five replicate test chambers were prepared for each test concentration and control, one of which was used only as a surrogate for measuring pH and temperature during the exposure period. An additional flask containing sample not inoculated with algae was also tested as a blank to ensure that there was no growth of native algae, or other interference in measuring fluorescence at test termination. Test chambers consisted of 125-ml Erlenmeyer flasks containing 50 ml of test solution. Test solutions were acclimated to 25°C in a temperature-controlled environmental chamber prior to inoculation.

Each test chamber was aseptically inoculated with an algal stock solution prepared to yield an initial cell density of approximately 10,000 cells per ml in each test chamber. A cool-white fluorescent light source provided continuous illumination above the test chambers. Each chamber was covered with Parafilm to prevent test solution contamination.

Each test chamber was manually swirled three times per day (morning, mid-day, and evening), and rotated to a new location under the light source twice per day (morning and evening) for the duration of the test period. Temperature and pH were measured once per day in the surrogate test chamber for each concentration and control. At test termination, cell density in each test chamber was determined using a Turner Model TD-700 Fluorometer. Fluorescence was automatically converted to cell density based on an internal calibration curve that is updated monthly.

A concurrent CuCl₂ reference toxicant test (positive control) was also conducted.

Marine Species

Bivalve Embryo Development

Bivalve embryos were exposed to ambient site water for a period of 48 hours to evaluate effects on embryo development. Sample concentrations 6.25, 12.5, 25, 50, and 66 – 75 percent (based on individual sample salinity) were tested along with a negative control. Due to the low salinities of the samples, hypersaline brine was added to each sample to raise the salinity to 30 ppt. The volume of hypersaline brine required to adjust the salinity determined the highest testable concentration for each sample. An additional control composed of hypersaline brine and deionized water was also tested to ensure observed toxic effect was not due to the addition of brine rather than other toxic constituents.

Test solutions were prepared using graduated cylinders and pipettes. Measurements of pH, DO, temperature, and salinity were measured and recorded for each test concentration and control. Five replicate test chambers were prepared for each test concentration and control. Replicates consisted of 30-ml shell vials containing 10 ml of test solution. Test solutions were acclimated to 15°C in temperature-controlled environmental chambers prior to initiation.

Fertilized eggs were added to each test chamber to produce a density of 20 eggs/ml. A 16:8 hour light:dark illumination cycle was provided for the duration of the test. Test chambers were covered with a clear plexiglass sheet to prevent test solution contamination.

Temperature, pH, DO, and salinity were measured daily in surrogate test chambers for each concentration and control. At test termination, larvae in each test chamber were preserved with 1-ml of seawater-buffered Formalin prior to evaluation. The total number of bivalve embryos in each test chamber was counted under a compound microscope at 400x magnification. The embryos were classified as normal or abnormal. Normally developed embryos have a distinct D-shape with complete formation of the shell.

A concurrent reference toxicant test (positive control) using CuCl₂ was conducted in conjunction with the ambient water tests.

Pacific Topsmelt and Opossum Shrimp 7-Day Survival and Growth

This test estimates chronic toxicity by evaluating survival and growth of larval pacific topsmelt or opossum shrimp over time. Organisms were exposed to the samples for a period of seven days. Sample concentrations 6.25, 12.5, 25, 50, and 100 percent were tested along with a negative control. Due to the low salinities of the samples, Forty Fathoms[™] sea salt was added to each sample to raise the salinity to 30 ppt. An additional control composed of Forty Fathoms[™] sea salt and deionized water was also tested to ensure observed mortality was not due to the addition of artificial salt rather than other toxic constituents.

Test solutions were prepared using graduated cylinders and pipettes. Measurements of pH, DO, temperature, and salinity were measured and recorded for each test concentration and control. Five (pacific topsmelt) or eight (opossum shrimp) replicate test chambers were prepared for each test concentration and control. Replicates for the topsmelt test consisted of 1-L plastic cups containing 500 ml of test solution. Replicates for the shrimp test consisted of 400-ml plastic cups containing 250 ml of test solution. Test solutions were acclimated to 20 and 25°C in temperature-controlled environmental chambers prior to initiation, for the topsmelt and shrimp tests respectively.

Five organisms were arbitrarily added to each test chamber. A second technician verified counts and condition of all test organisms prior to addition of the larvae to test chambers and when test initiation was complete. A 16:8 hour light:dark illumination cycle was provided for the duration of the test. Test chambers were covered with a clear plexiglass sheet to prevent test solution contamination.

Test solutions were renewed once per day, and organisms were fed two times per day. Temperature, pH, DO, and salinity were measured daily in both freshly prepared test solution, and test solution collected from the test chambers for each concentration and control. Survival status was recorded for each test chamber once per day. At test termination, final observations were made and test animals were prepared for weight determination.

Dry weights were determined by placing organisms from each test chamber in individual tared aluminum pans and drying them in an oven at 60°C for 24 hours. After drying, pans were weighed on a Mettler 240AE balance to the nearest 0.01 mg.

A concurrent CuCl₂ reference toxicant test (positive control) was conducted with the pacific topsmelt test. A reference toxicant test was not run concurrent to the opossum shrimp bioassay, but was performed on 29 April 2004 with shrimp larvae from the same supplier.

48-Hour Giant Kelp Germination and Growth

This test estimates chronic toxicity by evaluating germination rate and growth of individual zoospores over a 48-hour period. Sample concentrations 6.25, 12.5, 25, 50, and 58 – 68 percent (based on individual sample salinity) were tested along with a negative control. Due to the low salinities of the samples, hypersaline brine was added to each sample to raise the salinity to 32 ppt. The volume of hypersaline brine required to adjust the salinity determined the highest testable concentration for each sample. An additional control composed of hypersaline brine and deionized water was also tested to ensure observed toxic effect was not due to the addition of brine rather than other toxic constituents.

Test solutions were prepared using graduated cylinders and pipettes. Measurements of pH, DO, temperature, and salinity were measured and recorded for each test concentration and control. Five replicate test chambers were prepared for each test concentration and control. Replicates consisted of 50-ml glass petri dishes containing 30 ml of test solution. Test solutions were acclimated to 15°C in temperature-controlled environmental chambers prior to initiation.

Approximately 225,000 kelp spores were added to each test chamber. A 16:8 hour light:dark illumination cycle was provided for the duration of the test. At test termination, kelp spore germination was scored under a compound microscope at 400x magnification. Ten germinated kelp spores were then arbitrarily selected and measured to the nearest µm. Test solutions from each replicate were pooled by concentration, and water quality parameters of pH, DO, and salinity were measured and recorded. All test solutions were discarded.

STATISTICAL ANALYSES

Sediment Bioassays

Echaustorius responses were analyzed using a non-parametric Analysis of Variance (ANOVA) (Kruskal-Wallis). Homogeneity of variance was checked using the F-test for equal variance and normality of data was checked using the Kolmogorov-Smirnov test. To evaluate differences between the control sediment and each sample location, one-tail Student's t-tests were performed. Proportion values were not transformed prior to analysis due to a normal distribution of the data.

Mytilus galloprovincialis responses were evaluated using the Kruskal-Wallis test (23 March 2004) or a one-way ANOVA (8 May 2004 B-1 retest). To evaluate differences between the control sediment and each sample location, one-way Student's t-tests were performed on untransformed proportion data. Welch's Correction was applied when a significant difference in variance was observed.

Relationships between grain size and sediment trace metals (Cu, Ni, Se, and Zn) to amphipod and bivalve responses were evaluated using Pearson correlations.

Analyses were performed using GraphPad Prism Version 4.00 statistical software.

Ambient Water and Reference Toxicant Bioassays

Analysis of ambient water and reference toxicant data was conducted using $ToxCalc^{(B)}$ Comprehensive Toxicity Data Analysis and Database Software, Version 5.0. Statistical differences from the control and No Observed Effect Concentrations (NOEC) were determined for each test using Dunnett's, Wilcoxon Rank Sum, Steel's Many-One Rank, or Fisher's Exact t Multiple Comparisons Tests. Median Lethal Concentration (LC_{50}) or Median Effect Concentration (LC_{50}) values were determined for reference toxicant bioassays using Maximum Likelihood Probit, Trimmed Spearman-Karber, or Linear Interpolation Analysis. The choice of statistical method used was dependent upon specific assumptions met by the data.

CHEMICAL ANALYSES

Analysis of sediment total organic carbon (TOC), copper, nickel, zinc, and selenium was

performed by CEL (Appendix F).

RESULTS AND DISCUSSION

Detailed data summaries are contained in Appendix A. Bioassay water quality and ammonia data are located in Appendix B. Reference toxicant data are located in Appendix C and statistical analyses and raw data are found in Appendix D. Grain size, analytical chemistry data reports, field collection data logs, and chain-of-custody information can be found in Appendices E, F, G and H, respectively.

SEDIMENT TOXICITY TEST RESULTS

Amphipod 10-Day Survival

All water quality measurements recorded during the 10-day amphipod exposure with *Eohaustorius estuarius* were within the range defined as acceptable by the test protocol (Appendix B-1). Mean survival among the water only and sediment controls was 98 and 97 percent, respectively, exceeding the recommended EPA acceptability criterion of 90 percent in seawater-only controls. Mean survival among the samples ranged from 76 to 95 percent. One-way ANOVA found a significant difference among the sites (p = 0.001). Pair-wise comparisons using one-tailed Student's t-tests indicated that Sites A-1, B-3, C-2 and C-3 exhibited a statistically significant reduction in survival when compared to the control (Appendix D-1). Although statistically significant, mean survival in these four samples was relatively high, ranging between 76 and 85 percent.

Correlations to Sediment Characteristics

There were no statistically significant relationships between the observed responses and percent fines, TOC or metals concentrations (Appendix D-3). Conversely, percent gravel was inversely related to survival, suggesting that a predominance of coarse grain size adversely affected survival.

Reference Toxicant Test

A concurrent reference toxicant test using CdCl₂ was conducted in order to assess the health and sensitivity of the test organisms. Mean control survival in the reference toxicant was 85 percent (Appendix C). The LC₅₀ was determined to be 5.86 mg/L CdCl₂

(as cadmium) using the Maximum Likelihood-Probit method. This value falls within of \pm two standard deviations of laboratory control chart limits (Appendix C).

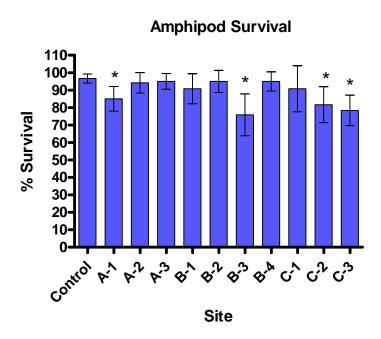


Figure 1. Summary of sediment toxicity test results for amphipod 10-day survival. Santa Clara River Estuary samples collected 17 October 2003. Mean (± 1 SD) values are displayed. * = Significant decrease relative to the control (one-tailed t-test, p< 0.05, n=5).

Ammonia

Total ammonia levels in interstitial porewater ranged from 0.1 to 15.4 mg/L among all test sediments. Ammonia in overlying water ranged from 0.5 to 3.1 mg/L and 0.4 to 5.7 mg/L for day zero and day ten, respectively (Appendix B-1). Levels of total ammonia were well below those (30-60 mg/L) reported to be toxic to this species (Kohn et al. 1994).

Bivalve Embryo Survival and Development

All water quality measurements during the 48-hour bivalve bioassays were within acceptable ranges outlined in the test protocol (Appendix B-2). Normal development (normality) was calculated for all replicates by dividing the number of normal larvae counted in a given replicate by the total number of surviving larvae in that replicate. Normality in the water only and laboratory sediment control was 71 and 68 percent, respectively. Mean normal development in the test samples ranged from 51 to 98 percent among the samples. Student t-tests identified no statistically significant reductions in normal development of bivalve larvae when compared to the control at an alpha level of 0.05 (Appendix D-3).

Survival was derived from the total number of larvae (normal and abnormal) recovered in a 10-ml sub-sample of overlying water from each test chamber. Percent survival was then calculated based on the mean total number of embryos recovered in the test chambers divided by the mean total number of embryos recovered in the sediment control. Mean survival relative to the sediment control following exposure to the test sediment ranged from 79 to 119 percent. Student t-tests detected two sites (Sites A-1 and B-1), which showed a statistically significant reduction in survival when compared with the control.

A combined normality/survival endpoint (effective survival) was also calculated for all replicates. This measurement was derived by dividing the number of normal embryos counted by the mean total number of embryos recovered in the sediment control. This endpoint is useful in that it considers abnormal, yet surviving larvae, as unviable and therefore only takes into account normal larvae, which can be expected to develop into viable adults. The effective survival for the laboratory sediment control was 68 percent. This value is slightly below the recommended acceptability criterion of 70 percent (ASTM 1991, PSEP 1995). The effective survival ranged from 51 to 98 percent among all sediment samples. Student t-tests identified no statistically significant reductions in effective survival when compared to the control. The lowest recovery (51 percent) was associated with the sample from B-1, located near the discharge point.

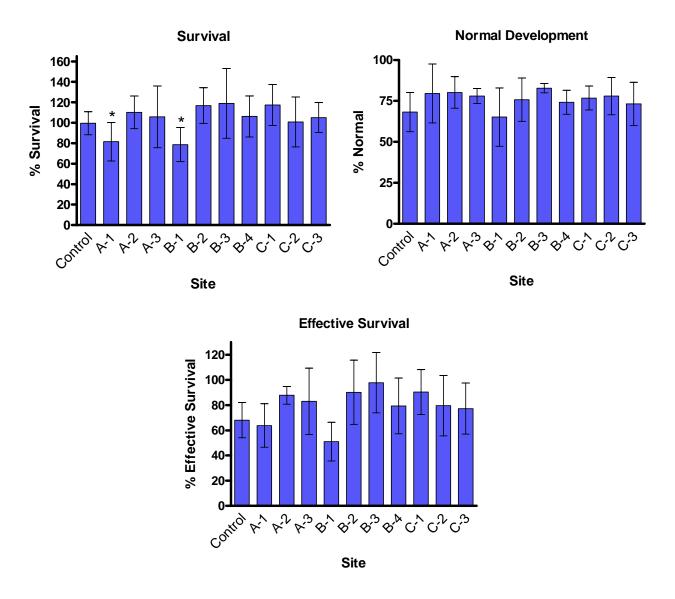


Figure 2. Summary of sediment toxicity test results for bivalve embryo development. Santa Clara River Estuary samples collected 16 March 2004. Mean (± 1 SD) values are displayed. * = Significant decrease relative to the control (one-tailed t-test, p \le 0.05, n=5). Tests initiated 23 March 2004.

As an added QA/QC measure, sample B-1 was re-tested on 08 May 2004 due to control responses just slightly below the recommended acceptability criterion. The retest result was consistent with the first set of data. Mean effective survival in the seawater-only and sediment controls was 81 and 88 percent, respectively, exceeding the 70 percent acceptability criterion (Figure 3). Mean effective survival was 61 percent in the B-1 sample. The difference was statistically significantly reduced from the sediment control (one-tailed t-test, p = 0.005, n=5).

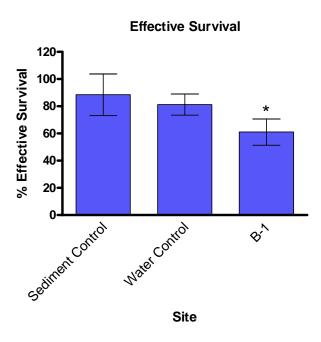


Figure 3. Summary of sediment toxicity test Site B-1 retest results for bivalve embryo development. Santa Clara River Estuary samples collected 16 March 2004. Mean (± 1 SD) values are displayed. * = Significant decrease relative to the control (one-tailed t-test, p \le 0.05, n=5). Test initiated 08 May 2004.

It should be noted that effective survival is calculated in the ASTM and PSEP test protocols by dividing the total number of normal recovered embryos in each test chamber by time zero counts, determined through counts in surrogate test chambers terminated immediately after initiation. Time zero counts were not properly collected for this test series, therefore, total recovery of embryos in the sediment control was used for this calculation. This comparison may actually be more meaningful because unviable fertilized embryos will be lost in the sediment prior to ending the 48-hour test. This loss

of embryos in the sediment matrix usually makes the derivation of survival in test sediment from that in a water-only control conservative.

Correlations to Sediment Characteristics

There were no apparent relationships between the observed responses and TOC, percent fines, percent gravel or concentrations of the selected metals; r^2 values associated with all of these relationships were < 0.10 (Appendix D-3).

Reference Toxicant Test

A reference toxicant test using $CuCl_2$ was conducted concurrently in order to assess the health and changes in response of test organisms. Mean normal development in the controls was 89 percent. The EC_{50} value was determined to be 23.01 μ g/L $CuCl_2$ (as copper) by the Trimmed Spearman-Karber method. This value falls outside of internal control chart limits of ± 2 standard deviations (4 to 19 μ g/L, Appendix C), but was deemed reportable, as there was a clear dose response to the reference toxicant. These reference toxicant results indicate that the organisms used for this study may have been slightly less sensitive than those normally tested in our laboratory.

Ammonia

Overlying water samples were collected at the beginning and end of the test period for ammonia measurements. Total ammonia levels in overlying water ranged from <0.1 to 1.6 mg/L (Day 0) and 0.2 to 1.1(Day 2) among all test sediments (Appendix B-2). All total ammonia levels were below a concentration (4.0 mg/L) reported to effect bivalve embryos (Tang, 1997).

SEDIMENT TRACE METALS AND TOC

Sediment metals concentrations and TOC are summarized for the different sites in Appendix Table F-1. Selenium concentrations were below the detection limit of 0.5 mg/Kg at all sites. Copper concentrations were relatively low at all sites, generally between 2.69 and 4.1 mg/Kg. Nickel concentrations ranged between 3.8 and 6.4 mg/Kg, with no particular trend across sites. Zinc concentrations were also relatively uniform across sites, and ranged between 11.5 and 16.2 mg/Kg. Sediment metal concentrations were all well below their respective ERL sediment quality guidelines (Long et al. 1995). TOC concentrations ranged between 1400 and 8100 mg/Kg, with no indication of any

trends across sites.

The relationship between sediment copper levels, copper effects-range low (ERL) values, and bivalve embryo development is graphically shown in Figure 4.

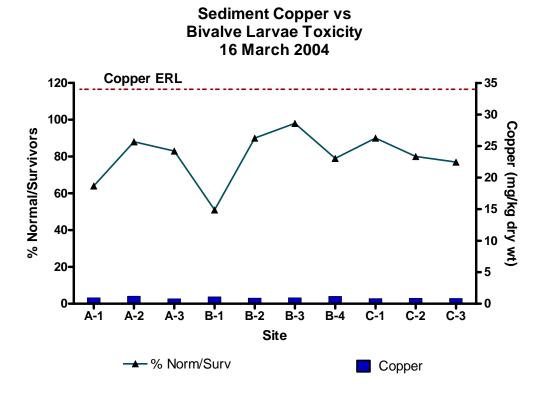
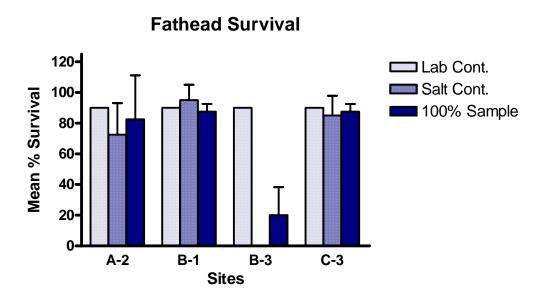


Figure 4. Relationship between sediment copper levels, copper effects-range low (ERL) values, and bivalve embryo development. Santa Clara River Estuary dry weather monitoring event, 16 March 2004.

SEDIMENT GRAIN SIZE

The distribution of sediment grain sizes is summarized in Appendix Table E-1. Virtually all of the sites contained relatively coarse-grained sediments, predominantly composed of sand or a mixture of gravel and sand. Percent fines ranged between 1.0 and 7.8 percent.

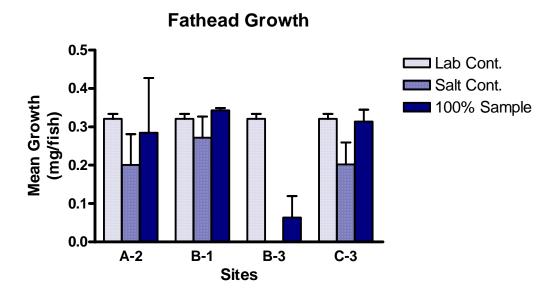

AMBIENT WATER - FRESHWATER SPECIES

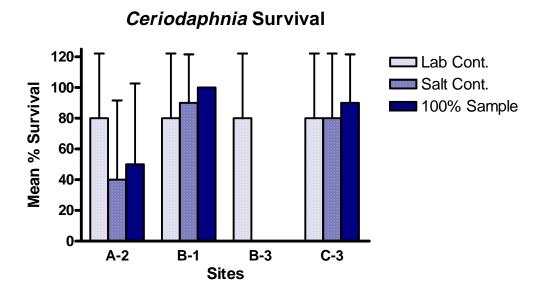
Performing toxicity tests with freshwater organisms on samples from the estuary was complicated by the fact that the salinity of the samples varied between sites and could pose variable levels of stress on the test organisms. Consequently, each sample was tested with a concurrent salinity control. To separate salinity effects from other constituents present in the sample, statistical comparisons were made between the test concentration and the appropriate salinity controls.

Reference toxicant tests for all three freshwater species met test acceptability criteria, and fell within two standard deviations of laboratory control chart means (Appendix C).

Fathead Minnow 7-Day Survival and Growth

Survival of fathead minnow larvae exceeded 80 percent in samples from Sites A-2, B-1 and C-3. Conversely, only 20 percent survival was observed in sample B-3; since this site exhibited a salinity of 14.4 ppt and no larvae survived in the corresponding salinity control sample, reduced survival in this sample was attributed to elevated salinity (Appendix Table A-6). Growth results were similar to that observed for survival; no adverse effects were observed; in fact, average dry weights of larvae exposed to the samples exceeded those of their corresponding salinity controls. Overall, these results suggested that there were no adverse effects in samples beyond what could be attributed to the salinities of the samples, and that the response was limited to one sample in which the salinity reached 14.4 ppt. Conversely, the salinities of the remaining samples ranged between 1.4 and 3.1 ppt. These data are summarized in Figure 5.




Figure 5. Summary of toxicity test results for fathead minnow 7-day survival and growth. Mean ($\pm 1SD$) values in 100 percent sample are displayed. No statistically significant decreases were observed compared to concurrent salinity controls (t-test, p \leq 0.05, n=4).

Water Flea 7-Day Survival and Reproduction

Survival of *C. dubia* exposed to samples from the estuary was also influenced primarily by salinity. Survival in the laboratory control was 80 percent, compared with a range of 0 to 100 percent across the sampling sites. Two of the sites, A-2 and B-3, exhibited survivals of 50 and 0 percent, respectively (Appendix Table A-8). However, these values were similar to their corresponding salinity controls and, therefore, these responses were attributed to salinity. Similarly, reproductive output appeared to be strongly influenced by the salinity of the samples, with no apparent evidence for any additional effects. These data are summarized in Figure 6.

96-Hour Algal Growth Inhibition

The results of the *Selenastrum* (green algae) tests are more difficult to interpret. Clearly, the elevated salinity associated with the sample from site B-3 was likely responsible for the reduced cell numbers observed in this sample. However, cell numbers in the other three samples were all significantly less than their corresponding salinity controls, which may imply that other constituents present in the samples were responsible for the reduced growth. Interestingly, field blanks (site water not inoculated with *Selenastrum*, but with nutrients) incubated concurrently with the exposure flasks also exhibited elevated chlorophyll concentrations as measured by fluorescence (Appendix Table A-10). These data are summarized in Figure 7. Thus, it is possible that algae already present in the samples sequestered the added nutrients and prevented the *Selenastrum* from reaching their optimum cell density. Alternatively, organic material present in the samples may also have bound some of the micronutrients added to the flasks and reduced the amount available for growth by the introduced *Selenastrum*.

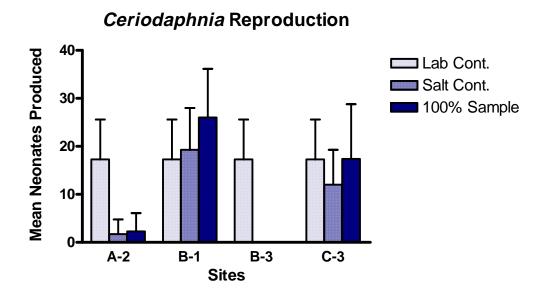


Figure 6. Summary of toxicity test results for Water Flea 7-day survival and reproduction. Mean ($\pm 1SD$) values in 100 percent sample are displayed. No statistically significant decreases were observed compared to concurrent salinity controls (t-test, p \le 0.05, n=10).

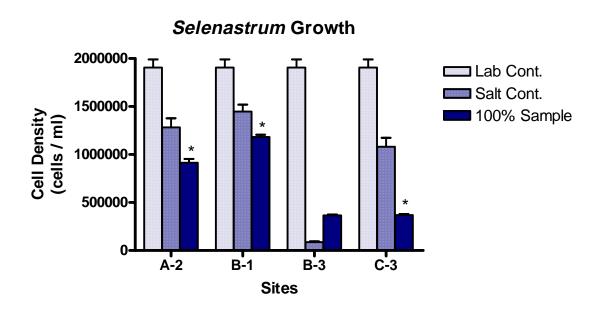


Figure 7. Summary of toxicity test results for algal growth inhibition. Mean ($\pm 1SD$) values in 100 percent sample are displayed. * = Significant decrease relative to the salinity control (t-test, p ≤ 0.05 , n=4).

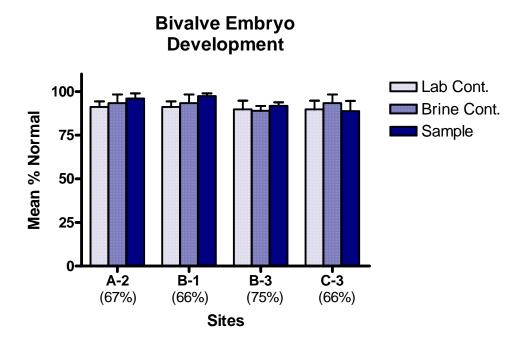
AMBIENT WATER - MARINE SPECIES

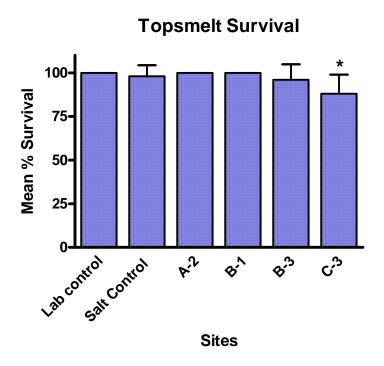
Marine toxicity tests included bivalve larvae (*Mytilus galloprovincialis*), pacific topsmelt, opossum shrimp, and giant kelp. Due to the necessity of increasing the salinity of the samples with hypersaline brine in tests with *Mytilus* and giant kelp, modest dilutions of the samples occurred. Consequently, the highest concentrations tested with bivalve larvae were 66 (C-3 and B-1), 67 (A-2) and 75 percent (B-3). Similarly, the highest concentrations tested with giant kelp were 60 (A-3), 58 (B-1), 68 (B-3) and 59 (C-3) percent. The samples were tested up to full strength with the addition of artificial sea salts for pacific topsmelt and opossum shrimp tests.

Reference toxicant tests for all four marine species met test acceptability criteria, and fell within two standard deviations of laboratory control chart means (Appendix C).

Bivalve Embryo Development

No adverse effects were observed with bivalve larvae, even at the highest concentrations tested (Appendix Table A-12). These data are shown in Figure 8.




Figure 8. Summary of toxicity test results for bivalve 48-hour embryo development using *Mytilus galloprovincialis*. Mean ($\pm 1SD$) values in the highest testable concentration are displayed. Highest testable concentrations are displayed in parentheses below each site. No statistically significant decreases were observed compared to concurrent brine controls (t-test, p \leq 0.05, n=5).

Pacific Topsmelt 7-Day Survival and Growth

Survival of topsmelt ranged between 88 and 100 percent, depending upon the sample tested (Appendix Table A-14). Although the reduction in survival was relatively small, it was statistically significant in the sample collected at C-3. Growth was significantly reduced in the highest concentrations of all samples tested when compared with the salt control. The level of reduction ranged from approximately 18 to 37 percent of the dry weight observed in the controls. The greatest reduction was associated with the sample collected furthest upstream (C-3). These data are summarized in Figure 9.

Opossum Shrimp 7-Day Survival and Growth

Survival of mysids averaged between 95 and 100 percent across all four samples, indicating that exposure to the samples did not increase mortality. No adverse effects were observed with the growth endpoint, as well (Appendix Table A-16). These data are summarized in Figure 10.

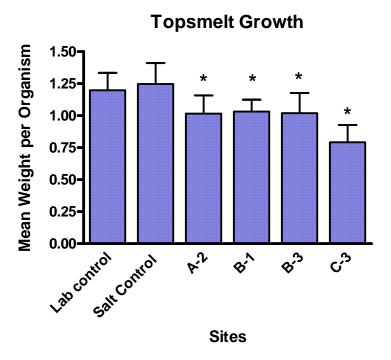
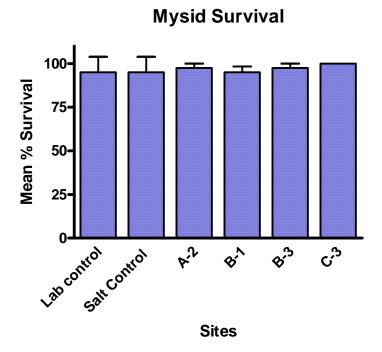



Figure 9. Summary of toxicity test results for pacific topsmelt 7-day survival and growth. Mean (± 1 SD) values in 100 percent sample are displayed. * = Significant decrease relative to the salt control (t-test, p \le 0.05, n=5).

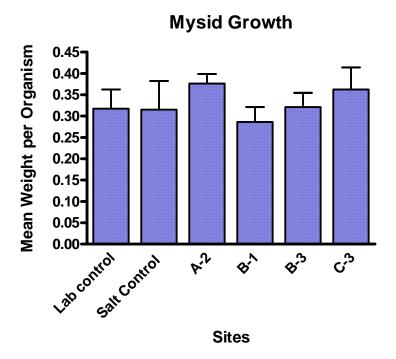
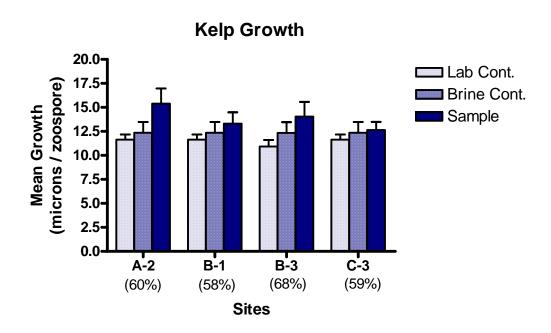



Figure 10. Summary of toxicity test results for mysid 7-day survival and growth. Mean $(\pm 1SD)$ values in 100 percent sample are displayed. No statistically significant decreases were observed compared to concurrent salt controls (t-test, p \le 0.05, n=8).

48-Hour Giant Kelp Germination and Growth

No adverse effects on the germination of giant kelp spores were observed. By way of comparison, percent germination averaged between 78 and 90 percent in the highest concentrations of all the samples tested, compared with a range of 83 to 89 percent in the brine controls and 76 to 82 percent in the laboratory controls. Growth averaged higher in each of the test samples than in the controls (Appendix Table A-18). These data are presented in Figure 11.

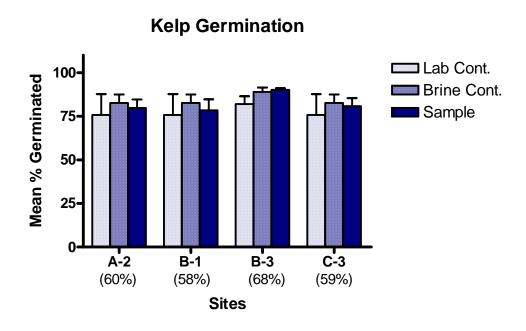


Figure 11. Summary of toxicity test results for kelp spore germination and growth. Mean $(\pm 1SD)$ values in the highest testable concentration are displayed. Highest testable concentrations are displayed in parentheses under each site. No statistically significant decreases were observed compared to concurrent brine controls (t-test, p \le 0.05, n=5).

AMBIENT WATER TRACE METAL RESULTS

Copper concentrations in these samples were low, ranging between 1.9 and 4.5 μ g/L. At these concentrations, copper would not be expected to result in any adverse effects based on values reported in "Water Quality Standards; Establishment of Numeric Criteria for Priority Toxic Pollutants for the State of California," (U.S. EPA 2000). Moreover, concentrations of nickel, selenium, and zinc were relatively low, and all below their respective water quality guidelines. This suggests that these contaminants were unlikely to be associated with toxicity (Tables 1 and 2).

Table 1. Summary of Total and Dissolved Trace Metal Concentrations Measured in Santa Clara River Estuary Samples Collected 16 March 2004.

		Concentration (μg/L)				
Sample	Form	Copper	Nickel	Selenium	Zinc	
Field Blank	Total	0.19	0.26	0.13	1.89	
A-2	Total	4.49	4.18	1.73	22.3	
	Dissolved	3.10	3.26	2.10	17.7	
B-1	Total	3.75	3.26	0.61	22.5	
	Dissolved	2.93	1.31	0.57	22.0	
B-3	Total	3.00	5.04	4.54	3.98	
	Dissolved	2.19	4.11	3.82	3.19	
B-4	Total	1.95	6.26	2.51	2.43	
	Dissolved	1.83	6.12	2.58	2.39	

Table 2. EPA Water Quality Criteria for the Protection of Aquatic Life ^a

	Concentration (μg/L)				
Sample	Copper	Nickel	Selenium	Zinc	
EPA Marine Acute CMC	4.8	74	290	90	
EPA Marine Chronic CCC	3.1	8.2	71	81	
EPA Freshwater Acute CMC ^b	13	470	13-186 °	120	
EPA Freshwater Chronic CCC ^b	9.0	52	5 total	120	

^a Values expressed as a dissolved fractioin excluding the EPA freshwater CCC value for selenium

b Values are hardness dependant and based in this table on a hardness of 100mg/L CaCO₃

^c Freshwater CMC depends on ratio of selenite to selenate, CMC - Criterion Maximum Concentration CCC - Criterion Continuous Concentration

LITERATURE CITED

- American Society for Testing and Materials (ASTM), 1993. Conducting 10-day static sediment toxicity tests with marine and estuarine amphipods. ASTM Designation E 1367-92.
- American Society for Testing and Materials (ASTM), 1993. Standard guide for conducting static acute toxicity tests starting with embryos of four species of saltwater bivalve molluscs, ASTM Designation: E 724-89.
- California Environmental Protection Agency (EPA). 1996. Procedures for Conducting Toxicity Tests Developed by the Marine Bioassay Project. State Water Resources Control Board Sacramento, CA. 96-1WQ, January 1996.
- GraphPad Software Inc. 1994-2000. GraphPad Prism, Version 4.00
- Kohn, N.P., J.Q. Word, D.K. Niyogi, L.T. Ross, T. Dillon, and D.W. Moore. 1994. Acute toxicity of ammonia to four species of marine amphipod. Marine Env. Res. 38: 1-15.
- Puget Sound Estuary Program (PSEP). 1995. Recommended Guidelines for Conducting Laboratory Bioassays on Puget Sound Sediments. Interim Final. U.S. Environmental Protection Agency Region 10, Office of Puget Sound, Seattle, WA, July 1995.
- Tang, A., J.G. Kalocai, S. Santos, B. Jamil, J. Stewart. 1997. Sensitivity of blue mussel and purple sea urchin larvae to ammonia. Poster, Society of Environmental Toxicology and Chemistry, 18th Annual Meeting, San Francisco, CA.
- Tidepool Scientific Software, 1992-1994. ToxCalc Comprehensive Toxicity Data Analysis and Database Software, Version 5.0.
- U.S. EPA. 1994. Methods for Assessing the Toxicity of Sediment-associated Contaminants to Estuarine and Marine Amphipods. U.S EPA Office of Research and Development, Washington DC. EPA 600/R-94/025, June 1994.
- U.S. EPA. 1995. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms. U.S EPA Office of Research and Development, Washington DC. (EPA 600/R-95/136), July 1995.
- U.S. EPA. 2000. Water Quality Standards; Establishment of Numeric Criteria for Priority Toxic Pollutants for the State of California. Federal Register Volume 65 No. 97, May 2000.
- U.S. EPA. 2002a. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition. U.S EPA Office of Research and Development, Washington DC. (EPA/821/R-02/013), October 2002.

U.S. EPA. 2002b. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Marine and Estuarine Organisms, Third Edition. U.S EPA Office of Research and Development, Washington DC. (EPA/821/R-02/014), October 2002.

APPENDIX A
TOXICITY TEST SUMMARIES

E. ESTUARIUS

Appendix Table A-1. 10-Day Amphipod Toxicity Test Summary of Means (Whole Sediment)

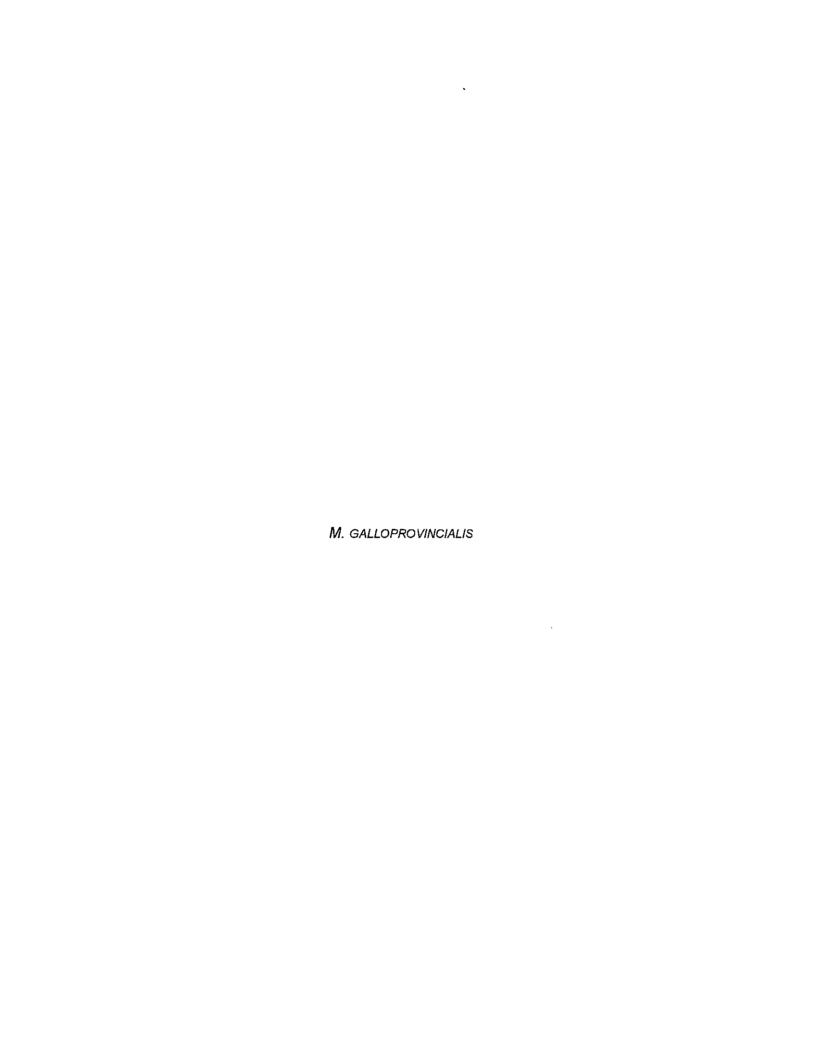
City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 24 March 2004

Test Species: Eohaustorius estuarius

Site	Mean Percent Survival ± 1 SD
Sediment Control	97 ± 2.3
A-1	85 ± 7.1
A-2	94 ± 5.8
A-3	95 ± 4.5
B-1	91 ± 0.09
B-2	95 ± 8.6
B-3	76 ± 12
B-4	95 ± 5.5
C-1	91 ± 13
C-2	82 ± 10
C-3	78 ± 8.8

BOLD - Indicates a statistically significant decrease compared to the sediment control (p \leq 0.05)


Appendix Table A-2. 10-Day Amphipod Toxicity Test Results (Whole Sediment)

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 24 March 2004

Test Species: Eohaustorius estuarius

Site	Replicate	Randon No.	No. Alive	Percent Survivai	Mean Percent Survival		Site	Replicate	Randon No.	No. Alive	Percent Survival	Mean Percent Survival
	Α	19	19	95		-		Α	21	17	85	
	В	54	20	100				В	5 1	18	90	
CONTROL -	С	49	20	100	98		B-2	С	3	20	100	95
Water Only	D	8	19	95	30		D-Z	D	33	19	95	
•	E	7	20	100				E	48	20	100	
	Surrogate		20	100		_		Surrogate		20	100	
	A	57	20	100		_		A	31	15	75	
	В	30	19	95				В	11	13	65	
CONTROL -	С	12	19	95	97		B-3	С	14	14	70	76
Sediment	D	26	20	100	37		5-0	D	40	19	95	, -
	E	25	19	95				E	41	13	65	
	Surrogate	-	19	95		_		Surrogate		17	85	
-	Α	38	17	85		_		A	43	17	85	
	В	59	15	75				В	37	19	95	
A-1	С	22	19	95	85		B-4	С	55	20	100	95
A-1	D	20	17	85	03		54	D	35	19	95	
	E	42	18	90				E	4	20	100	
	Surrogate	-	16	80		_		Surrogate		19	95	
	Α	44	20	100		_		A	17	20	100	
	В	46	19	95				В	32	18	90	
A-2	С	16	20	100	94		C-1	С	6	19	95	91
A-2	D	15	17	85	37		U -1	D	9	13	65	
	E	45	18	90				E	34	19	95	
	Surrogate		19	95		_		Surrogate		20	100	
	Α	18	18	90		_		Α	28	18	90	
	В	1	19	95				В	27	17	85	
A-3	С	29	20	100	95		C-2	С	13	14	70	82
A-3	D	36	19	95	35		U-1	D	52	16	80	
	E	39	20	100				E	2	19	95	
	Surrogate	_	18	90		_		Surrogate		14	70	
·	Α	10	20	100		_		A	50	16	80	
	В	56	19	95				В	53	17	85	
B-1	С	58	20	100	01		C-3	С	47	15	75	78
D-1	D	5	17	85	91	91	0~	D	23	13	65	76
	E	60	16	80				E	24	15	75	
	Surrogate		17	85		_		Surrogate		18	90	

Appendix Table A-3. 48-Hour Bivalve Embryo Development Test Summary of Means (Whole Sediment)

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 23 March 2004

	Me	an Percent Survival ± 1	SD
Site	Survival	Normality	Effective Survival
Sediment Control	99.6 ± 11	68.4 ± 12	68.0 ± 14
A-1	81.4 ± 19	79.8 ± 18	63.8 ± 17
A-2	110 ± 16	80.3 ± 10	87.8 ± 7.0
A-3	106 ± 30	78.2 ± 5.0	83.0 ± 26
B-1	78.6 ± 17	65.1 ± 18	51.0 ± 15
B-2	117 ± 18	75.8 ± 14	90.2 ± 25
B-3	119 ± 34	82.8 ± 3.0	97.8 ± 24
B-4	106 ± 20	73.9 ± 7.0	79.4 ± 22
C-1	117 ± 20	76.9 ± 7.0	90.4 ± 18
C-2	101 ± 24	78.1 ± 11	79.6 ± 24
C-3	105 ± 15	73.2 ± 13	77.2 ± 20

BOLD - Indicates a statistically significant decrease compared to the sediment control (p \leq 0.05)

Appendix Table A-3 (Cont.). 48-Hour Bivalve Embryo Development Test Summary of Means (Whole Sediment)

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 8 May 2004 - Site B-1 Retest

Site	Mo Survival	ean Percent Survival ± : Normality	SD Effective Survival
Sediment Control	100 ± 18	88 ± 2.6	88 ± 15
B-1	76 ± 10	81 ± 8.9	61 ± 10

BOLD - Indicates a statistically significant decrease compared to the sediment control (p \leq 0.05)

Appendix Table A-4. 48-Hour Bivalve Embryo Development Test Results (Whole Sediment)

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 23 March 2004
Test Species: *Mytilus galloprovincialis*

Site	Rep.	Random No.	Initial No.	Total No.	No. Normal	Percent Normal	Mean Percent Normal	Percent Normal Std Dev	Percent Survival	Mean Percent Survival	Percent Survival Std Dev	Percent Effective Survival ^a	Mean Percent Effective Survival	Percent Effective Survival Std Dev
	A	19	60	93	56	60			155			93		
	В	54	60	75	49	65			125			82	100	40
CONTROL -	С	49	60	100	73	73	71	8	167	151	16	122	108	19
Water Only	D	8	60	89	70	79			148			117		
	E	7	60	96	75	78			160			125		
	Α	57	60	66	33	50	<u>_</u>	-	110			55		
	В	30	60	50	33	66			83			55		4.4
CONTROL -	С	12	60	66	51	77	68	12	110	100	11	85	68	14
Sediment	D	26	60	59	48	81			98			80		
	E	25	60	58	39	67			97			65		
	A	38	60	49	45	92			82			75		
	В	59	60	60	29	48			100		40	48	64	17
A-1	С	22	60	53	46	87	80	18	88	81	19	77 12	64	17
	D	20	60	30	25	83			50			42		
	Ε	42	60	52	46	88			87					
	A	44	60	66	52	79			110			87		
	В	46	60	56	46	82			93	440	40	77	88	7
A-2	С	16	60	68	52	76	80	10	113	110	16	87	80	,
	D	15	60	81	56	69			135			93		
	E	45	60	60	57	95			100			95		_
	Α	18	60	86	70	81			143			117		
	В	1	60	43	35	81		_	72	400		58	83	26
A-3	С	29	60	55	43	78	78	5	92	106	30	72	63	20
	D	36	60	79	63	80			132			105		
	E	39	60	5 <u>4</u>	38	70			90			63		

a - Effective Survival is defined as the number of normal larvae divided by the total number recovered in the sediment control.

Appendix Table A-4 (Cont.). 48-Hour Bivalve Embryo Development Test Results (Whole Sediment)

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 23 March 2004 Test Species: Mytilus galloprovincialis

Site	Rep.	Random No.	Initial No.	Total No.	No. Normal	Percent Normal	Mean Percent Normal	Percent Normal Std Dev	Percent Survival	Mean Percent Survival	Percent Survival Std Dev	Percent Effective Survival ^a	Mean Percent Effective Survival	Percent Effective Survival Std Dev
	Α	10	60	45	34	76			75			57		
	В	56	60	44	24	55			73			40		45
B-1	С	58	60	65	39	60	65	18	108	79	17	65	51	15
	D	5	60	42	38	90			70			63		
	E	60	60	40	18	45			67			30		
	A	21	60	81	70	86			135			117		
	В	51	60	59	31	53			98			52	00	25
B-2	С	3	60	62	48	77	76	14	103	117	17	80	90	25
	D	33	60	81	64	79			135			107		
	E	48	60	68	57	84			113			95	_	
	A	31	60	103	81	79			172			135		
	В	11	60	66	55	83			110		•	92	00	24
B-3	С	14	60	60	51	85	83	3	100	119	34	85	98	24
	D	40	60	50	43	86			83			72		
	E	41	60	78	63	81			130		<u> </u>	105		
	Α	43	60	64	46	72			107			77		
	В	37	60	66	52	7 9		_	110	400	20	87	79	22
B-4	С	55	60	51	32	63	74	7	85_	106	20	53	79	2,2
	D	35	60	82	67	82			137			112		
	E	4	60	55	_41	75			92			68		
	Ā	17	60	87	67	77			145			112		
	В	32	60	77	55	71		_	128	447	20	92	90	18
C-1	С	6	60	61	44	72	77	7	102	117	20	73	90	10
	D	9	60	57	43	75			95			72		
	E	34	60	70	62	89			117			103 97		
	Α	28	60	74	58	78			123					
	В	27	60	63	51	81		44	105	101	24	85	80	24
C-2	С	13	60	75	62	83	78	11	125	101	24	103	55	
	D	52	60	44	26	59			73			43		
	E	2	60	47	42	89			78			70 95		
	A	50	60	69	57	83			115					
	В	53	60	58	30	52	70	13	97	105	15	50 78	77	20
C-3	С	47	60	68	47	69	73	13	113	105	15	76 65	• •	
	D	23	60	50	39	78			83			98		
	E Committee	24	60	70	59	84			117			90		

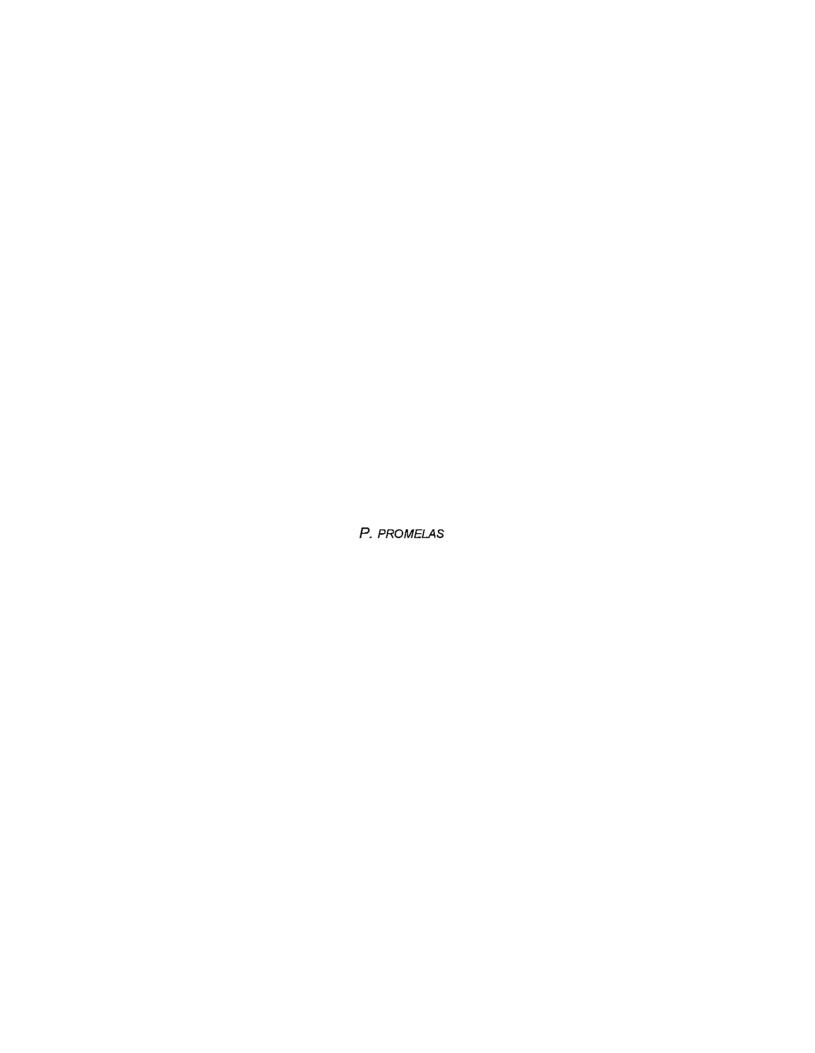
a - Effective Survival is defined as the number of normal larvae divided by the total number recovered in the sediment control.

Appendix Table A-4 (Cont.). 48-Hour Bivalve Embryo Development Test Results (Whole Sediment)

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 8 April 2004 - Site B-1 Retest


Test Species: Mytilus galloprovincialis


SET A

												*	
Rep.	Random No.	Initial No.	Total No.	No. Normal	Percent Normal	Mean Percent Normal	Percent Normal Std Dev	Percent Survival	Mean Percent Survival	Percent Survival Std Dev	Percent Effective Survival ^a	Mean Percent Effective Survival	Percent Effective Survival Std Dev
A	13	112	100	82	82			89			73		
			118	100	85			105					_
	_		98	83	85	86	4	88	94	7		81	8
_	_		109	100	92			97			89		
F	_			91	89			91			81		
				80	86			83			71		
	1		109	100	92			97			89		
_	15			93	89	88	2	93	100	18	83	88	15
_	7				87			98			86		
E	12				86			130			113		
					90			83	<u>.</u>		75		
								88			65		
	_				89	81	9	65	76	10	5 8	61	10
					70			71			49		
_								71			58		
	Rep. A B C D E A B C D E	B 8 C 2 D 5 E 3 A 6 B 1 C 15 D 7 E 12 A 14 B 10 C 4	A 13 112 B 8 112 C 2 112 D 5 112 E 3 112 A 6 112 B 1 112 C 15 112 D 7 112 E 12 112 A 14 112 B 10 112 C 4 112 D 9 112	A 13 112 100 B 8 112 118 C 2 112 98 D 5 112 109 E 3 112 102 A 6 112 93 B 1 112 109 C 15 112 104 D 7 112 110 E 12 112 146 A 14 112 93 B 10 112 99 C 4 112 73 D 9 112 79	A 13 112 100 82 B 8 112 118 100 C 2 112 98 83 D 5 112 109 100 E 3 112 102 91 A 6 112 93 80 B 1 112 109 100 C 15 112 109 100 C 15 112 109 100 C 15 112 104 93 D 7 112 110 96 E 12 112 146 126 A 14 112 93 84 B 10 112 99 73 C 4 112 73 65 D 9 112 79 55	A 13 112 100 82 82 B 8 112 118 100 85 C 2 112 98 83 85 D 5 112 109 100 92 E 3 112 102 91 89 A 6 112 93 80 86 B 1 112 109 100 92 C 15 112 104 93 89 D 7 112 110 96 87 E 12 112 146 126 86 A 14 112 93 84 90 B 10 112 99 73 74 C 4 112 73 65 89 D 9 112 79 55 70	Rep. Random No. Initial No. Total No. No. Normal Percent Normal Mean Percent Normal A 13 112 100 82 82 B 8 112 118 100 85 C 2 112 98 83 85 86 D 5 112 109 100 92 89 86 E 3 112 102 91 89 86 B 1 112 109 100 92 88 B 1 112 109 100 92 88 C 15 112 104 93 89 88 D 7 112 110 96 87 88 E 12 112 146 126 86 A 14 112 93 84 90 B 10 112 99 73 74 <td>Rep. Random No. Initial No. In</td> <td>Rep. Random No. Initial No. Total No. No. Normal Normal Percent Normal Normal Percent Normal Std Dev Percent Survival A 13 112 100 82 82 89 B 8 112 118 100 85 86 4 88 C 2 112 98 83 85 86 4 88 D 5 112 109 100 92 97 91 E 3 112 102 91 89 91 91 A 6 112 93 80 86 8 2 93 B 1 112 109 100 92 97 97 98 98 2 93 98 98 2 93 98 98 98 98 2 93 98 98 98 98 98 98 98 98 98 98 9</td> <td>Rep. Random No. Initial No. Initial No. Initial No. No. Normal Rep. Random No. Initial No. Initial No. No. Normal Normal Recent Normal Normal Std Dev Survival Survival Survival Survival Survival Survival Survival Recent Normal Std Dev Survival Survival Survival Recent Normal Std Dev Survival Survival Recent Survival Recent Normal Std Dev Survival Survival Recent S</td> <td>Rep. Random No. Initial No. In</td> <td> Rep. Random No. Initial No. Initial No. Initial No. Initial No. Initial No. Initial No. No. Normal Percent Normal Percent Normal Normal Normal Std Dev Survival Survival Std Dev Std Dev Survival Std Dev Std Dev Std Dev Survival Std Dev Std</td> <td> Rep. Random No. Initial No. Total No. No. Normal Percent Survival Std Dev Strivial Std Dev Std Dev </td>	Rep. Random No. Initial No. In	Rep. Random No. Initial No. Total No. No. Normal Normal Percent Normal Normal Percent Normal Std Dev Percent Survival A 13 112 100 82 82 89 B 8 112 118 100 85 86 4 88 C 2 112 98 83 85 86 4 88 D 5 112 109 100 92 97 91 E 3 112 102 91 89 91 91 A 6 112 93 80 86 8 2 93 B 1 112 109 100 92 97 97 98 98 2 93 98 98 2 93 98 98 98 98 2 93 98 98 98 98 98 98 98 98 98 98 9	Rep. Random No. Initial No. Initial No. Initial No. No. Normal Rep. Random No. Initial No. Initial No. No. Normal Normal Recent Normal Normal Std Dev Survival Survival Survival Survival Survival Survival Survival Recent Normal Std Dev Survival Survival Survival Recent Normal Std Dev Survival Survival Recent Survival Recent Normal Std Dev Survival Survival Recent S	Rep. Random No. Initial No. In	Rep. Random No. Initial No. Initial No. Initial No. Initial No. Initial No. Initial No. No. Normal Percent Normal Percent Normal Normal Normal Std Dev Survival Survival Std Dev Std Dev Survival Std Dev Std Dev Std Dev Survival Std Dev Std	Rep. Random No. Initial No. Total No. No. Normal Percent Survival Std Dev Strivial Std Dev Std Dev

a - Effective Survival is defined as the number of normal larvae divided by the total number recovered in the sediment control.

Appendix Table A-5. Larval Fish 7-Day Survival and Growth Test Summary of Means

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 17 March 2004

Test Species: Pimephales promelas

G	-	Mean Percent	Survival ± 1 SD	
Concentration (%)	A-2	B-1	B-3	C-3
Lab Control	90 ± 0	90 ± 0	90 ± 0	90 ± 0
Salinity Control	73 ± 21	95 ± 10	0 ± 0	85 ± 13
100	83 ± 29	88 ± 5.0	20 ± 18	88 ± 5.0

Concentration (9/1)	Mean Growth (mg) ± 1 SD							
Concentration (%)	A-2	B-1	B-3	C-3				
Lab Control	0.32 ± 0.01	0.32 ± 0.01	0.32 ± 0.01	0.32 ± 0.01				
Salinity Control	0.20 ± 0.08	0.27 ± 0.06	0 ± 0	0.20 ± 0.06				
100	0.29 ± 0.14	0.34 ± 0.01	0.06 ± 0.06	0.31 ± 0.03				

BOLD - Indicates a statistically significant decrease compared to the salinity control (p ≤ 0.05)

Appendix Table A-6. Larval Fish 7-Day Survival and Growth Test Results City of Buenaventura

Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 17 March 2004
Test Species: *Pimephales promelas*

Sample	Replicate	No. Alive	Percent Survival	Mean Percent Survival	Totai Welght (mg)	Weight per Fish (mg)	Mean Weight per Fish (mg)	
	Α	9	90		3.38	0.34		
Lab Control	В	9	90	90	3.24	0.32	0.32	
Lab Control	С	9	90	90	3.12	0.31	0.32	
	D	9	90		3.11	0.31		
<u>. </u>	Α	4	40		0.76	0.08		
A-2	В.	10	100	83	3.14	0.31	0.29	
A-2	С	10	100	03	3.75	0.38	0.29	
	D	9	90		3.75	0.38		
	Α	9	90		3.48	0.35		
B-1	В	9	90	88	3.43	0.34	0.04	
D-1	С	8	80	00	3.47	0.35	0.34	
	D	9	90		3.35	0.34		
	Α	4	40		1.20	0.12		
B-3	В	3	30	20	0.99	0.10	0.00	
D-3	С	1	10	20	0.35	0.04	0.06	
	D	0	0		0.00	0,00		
	Α	8	80		2.94	0.29		
C-3	В	9	90	00	2.91	0.29	0.04	
U-3	С	9	90	88	3.12	0.31	0.31	
	D	9	90		3.58	0.36		
-	Α	6	60		1.50	0.15		
0-11-14-0-4-184-0	В	9	90	70	2.66	0.27	0.20	
Salinity Control ^a A-2	С	5	50	73	1.14	0.11		
	D	9	90		2.72	0.27		
	A	10	100		3.20	0.32		
0-11-16-0-4-18-0-4	В	10	100	05	2.86	0.29	0.07	
Salinity Control ^a B-1	С	10	100	95	2.89	0.29	0.27	
	D	8	80		1.93	0.19		
	Α	0	0			-		
	В	0	0	_	_	_		
Salinity Control ^a B-3	C	0	0	0	_	_	_	
	D	0	0		_	_		
	A	7	70		1.33	0.13	 	
	В	8	80		2.14	0.21		
Salinity Control ^a C-3	c	9	90	85	1.90	0.19	0.20	
	D	10	100		2.71	0.13		

^aSalinity controls initiated on 18 March 2004

Appendix Table A-7. Water Flea 7-Day Survival and Reproduction Test Summary of Means

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 17 March 2004

Test Species: Ceriodaphnia dubia

0 (4.4) (0()		Mean Percent	Survival ± 1 SD	
Concentration (%)	A-2	B-1	B-3	C-3
Lab Control	80 ± 42	80 ± 42	80 ± 42	80 ± 42
Salinity Control	40 ± 52	90 ± 32	0 ± 0	80 ± 42
100	50 ± 53	100 ± 0	0 ± 0	90 ± 32

C		Mean Number of Neonates Produced ± 1 SD						
Concentration (%)	A-2	B-1	B-3	C-3				
Lab Control	17.3 ± 8.29	17.3 ± 8.29	17.3 ± 8.29	17.3 ± 8.29				
Salinity Control	1.7 ± 3.09	19.3 ± 8.69	0 ± 0	12 ± 7.29				
100	2.3 ± 3.77	26 ± 10.14	0 ± 0	17.4 ± 11.39				

BOLD - Indicates a statistically significant decrease compared to the salinity control (p \leq 0.05)

Appendix A-8. Water Flea 7-Day Survival and Reproduction Test Results City of Buenaventura

Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 17 March 2004 Test Species: Ceriodaphnia dubia

Survival

Sample	Mean Percent Survival
Lab Control	80
A-2	50
B-1	100
B-3	0
C-3	90
Salinity Control A-2	40
Salinity Control B-1	90
Salinity Control B-3	0
Salinity Control C-3	80

Reproduction (Number of Neonates Produced)

Replicate	Lab Control	A-2	B-1	B-3	C-3	Salinity Control A-2	Salinity Control B-1	Salinity Control B-3	Salinity Control C-3
1	11	0	18	0	0	0	25	0	3
2	0	0	23	0	25	3	27	0	7
3	26	0	24	0	14	0	4	0	11
4	10	0	24	0	22	0	13	0	19
5	16	9	51	0	40	5	24	0	20
6	24	0	29	0	21	0	29	0	17
7	22	6	25	0	14	0	22	0	0
8	26	0	31	0	17	0	20	0	15
9	19	0	13	0	2	0	23	0	8
10	19	8	22	0	19	9	6	0	20
Mean	17	2	26	0	17	2	19	0	12

S. CAPRICORNUTUM

Appendix Table A-9. 96-Hour Algal Growth Inhibition Test Summary of Means

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 17 March 2004

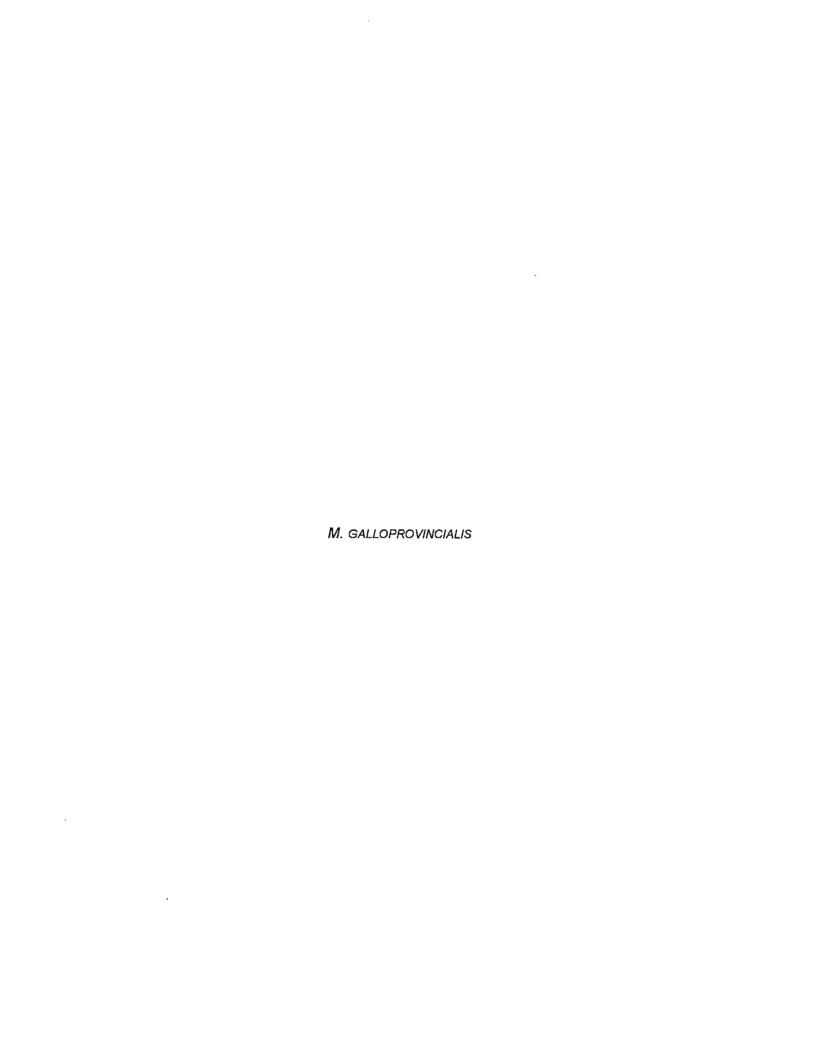
Test Species: Selenastrum capricornutum

G 1-4' (9/3)		Mean Cell Density (10^6 cells/ml) ± 1 SD	
Concentration (%)	A-2	B-1	B-3	C-3
Lab Control	1.91 ± 0.24	1.91 ± 0.24	1.91 ± 0.24	1.91 ± 0.24
Salinity Control	1.28 ± 0.19	1.45 ± 0.14	0.09 ± 0.02	1.08 ± 0.19
100	0.91 ± 0.08	1.18 ± 0.05	0.37 ± 0.02	0.37 ± 0.02

BOLD - Indicates a statistically significant decrease compared to the salinity control (p ≤ 0.05)

Appendix Table A-10. 96-Hour Algal Growth Inhibition Test Results City of Buenaventura

Santa Clara River Estuary Wet Weather Sampling Event


Test Initiation Date: 17 March 2004

Test Species: Selenastrum capricornutum

Sample	Mean Cell Density (10^6 cell/ml)		
Lab Control	1.95		
A-2	0.91		
B-1	1.18		
B-3	0.37		
C-3	0.37		
Salinity Control A-2	1.28		
Salinity Control B-1	1. 4 5		
Salinity Control B-3	0.09		
Salinity Control C-3	1.08		
Blank A-2 ^a	0.73		
Blank B-1 ^a	0.73		
Blank B-3 ^a	0.38		
Blank C-3 ^a	0.21		

^a - Blanks consist of site water with no algae inoculation.

Appendix Table A-11. 48-Hour Bivalve Embryo Development Test Summary of Means

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 19 March 2004

Test Species: Mytilus galloprovincialis

Company (0/)	-	Mean Percent	Normal ± 1 SD	
Concentration (%)	A-2	B-1	B-3	C-3
Lab Control ^a	92 ± 4.0	92 ± 4.0	92 ± 4.0	92 ± 4.0
Brine Control	93 ± 4.9	93 ± 4.9	89 ± 2.7	93 ± 4.9
6.25	94 ± 3.4	97 ± 1.1	89 ± 5.1	88 ± 1.9
12.5	95 ± 3.4	95 ± 2.7	93 ± 1.8	91 ± 4.2
25	96 ± 4.2	93 ± 2.3	94 ± 2.7	93 ± 4.9
50	96 ± 4.0	94 ± 4.3	92 ± 5.3	94 ± 2.2
High⁵	96 ± 2.9 (67)	97 ± 1.5 (66)	92 ± 2.0 (75)	89 ± 5.9 (66)

BOLD - Indicates a statistically significant decrease compared to the brine control (p ≤ 0.05)

^a - lab controls pooled across sites for statistical comparisons.

^b - Highest concentration noted in parenthesis

Appendix Table A-12. Site A-2 48-Hour Bivalve Embryo Development Test Results City of Buenaventura

Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 19 March 2004

Concentration	Replicate Percent Normal		Mean Percent Normal
	Α	92	
	В	95	
Lab Control	С	89	91
	D	93	
	E	87	
	Α	86	
	В	91	
Brine Control	С	98	93
	D	97	
	E	95	
	Α	92	
	В	96	
6.25%	С	89	94
	D	96	
	E	97	
	Ä	92	
	В	99	
12.5%	С	91	95
	D	97	
	E	96	
	Α	100	
	В	99	
25%	С	93	96
	D	96	
	E	90	
	Α	90	
	В	94	
50%	С	99	96
	D	98	
	E	97	
	Α	98	
	В	96	
67%	С	97	96
	D	98	
	E	91	

Appendix Table A-12 (Cont.). Site B-1 48-Hour Bivalve Embryo Development Test Results City of Buenaventura

Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 19 March 2004

Concentration	Replicate	Percent Normal	Mean Percent Normal
	Α	96	
	В	96	
Lab Control	С	93	95
	D	95	
	E	95	= .
	Α	86	
	8	95	
Brine Control	С	97	93
	D	98	
	E	91	
	Α	98	
	В	97	
6.25%	С	96	97
	D	95	
	E	97	
	Α	93	
	В	91	
12.5%	С	98	95
	D	95	
	E	96	
.	Α	90	
	В	94	
25%	С	92	93
	D	92	
	Е	96	
	Α	98	
	В	91	
50%	С	99	94
	D	94	
	E	89	
	Α	98	
	В	97	
66%	С	99	97
	D	95	
	Ε	98	

Appendix Table A-12 (Cont.). Site B-3 48-Hour Bivalve Embryo Development Test Results City of Buenaventura

Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 19 March 2004

Concentration	Replicate	Replicate Percent Normal	
	Α	94	
	В	86	
Lab Control	С	93	90
	D	93	
	E	83	
	Α	85	<u>-</u>
	В	92	
Brine Control	С	89	89
	D	91	
	E	88	
	Α	83	
	В	97	
6.25%	С	91	89
	D	88	•
	E	88	
	Α	92	
	В	93	
12.5%	С	90	93
	D	95	
	E	93	
	Α	93	
	В	97	
25%	С	97	94
	D	91	
	E	93	
	Α	97	
	В	86	
50%	С	97	92
	D	92	
	E	87	
	Α	90	
	В	92	
75%	С	90	92
	D	95	
	E	92	

Appendix Table A-12 (Cont.). Site C-3 48-Hour Bivalve Embryo Development Test Results City of Buenaventura

Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 19 March 2004

Concentration	Replicate	Percent Normal	Mean Percent Normal
	Α	96	
	В	96	
Lab Control	С	86	93
	D	90	
	E	96	
	Α	95	
	В	98	
Brine Control	С	86	93
	D	91	
	Ε	97	
	Α	89	
	В	90	
6.25%	С	87	88
	D	87	
	<u>E</u> _	85	
	A	98	
	В	92	
12.5%	С	87	91
	D	91	
	E.	89	
	Α	99	
	В	92	
25%	С	87	93
	D	89	
	E	96	
•	A	90	
	В	95	
50%	С	95	94
	D	93	
	E	95	
	A	87	
	В	96	
66%	С	90	89
	D	91	
	E	80	

Appendix Table A-13. Marine Larval Fish 7-Day Survival and Growth Test Summary of Means

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 17 March 2004

Test Species: Atherinops affinis

		Mean Percent	Survival ± 1 SD	
Concentration (%)	A-2	B-1	B-3	C-3
. Lab Control ^a	100 ± 0	100 ± 0	100 ± 0	100 ± 0
Salt Control ^a	98 ± 6.3	98 ± 6.3	98 ± 6.3	98 ± 6.3
100	100 ± 0	100 ± 0	96 ± 8.9	88 ± 11.0

0 (11 (0))		Mean Growtl	n (mg) ± 1 SD	
Concentration (%)	A-2	B-1	B-3	C-3
Lab Control ^a	1.20 ± 0.14	1.20 ± 0.14	1.20 ± 0.14	1.20 ± 0.14
Salt Control ^a	1.25 ± 0.16	1.25 ± 0.16	1.25 ± 0.16	1.25 ± 0.16
100	1.02 ± 0.14	1.03 ± 0.09	1.02 ± 0.16	0.79 ± 0.14

BOLD - Indicates a statistically significant decrease compared to the salt control (p \leq 0.05)

^a - Lab and salt controls pooled across sites for statistical comparisons.

Appendix Table A-14. Site A-2 Marine Larval Fish 7-Day Survival and Growth Test Results City of Buenaventura

Santa Clara River Estuary Wet Weather Sampling Event

Concentration	Replicate	No. Alive	Percent Survival	Mean Percent Survival	Total Weight (mg)	Weight per Fish (mg)	Mean Weight per Fish (mg)
	Α	5	100		5.19	1.04	
	В	5	100		5.38	1.08	
Lab Control	С	5	100	100	6.05	1.21	1.20
	D	5	100		6.73	1.35	
	E	5	100		6.57	1.31	
	Ā	5	100		6.62	1.32	
	В	5	100		6.82	1.36	
Salt Control	С	5	100	100	5.89	1.18	1.30
	D	5	100		6.07	1.21	
	E	5	100		7.17	1.43	
	Α	4	80		6.39	1.28	
	В	5	100		5.44	1.09	
6.25%	С	5	100	92	6.28	1.26	1.15
	D	5	100		5.34	1.07	
	E	4	80		5.28	1.06	
	Α	5	100		6.22	1.24	•
	В	5	100		5.71	1.14	
12.5%	С	5	100	100	6.13	1.23	1.21
	D	5	100		6.54	1.31	
	E	5	100		5.71	1.14	
	Α	5	100		5.98	1.20	
	В	5	100		5.13	1.03	
25%	С	5	100	100	5.96	1.19	1.22
	D	5	100		6.52	1.30	
	E	5	100		6.89	1.38	
	A	4	80		5.12	1.02	
	В	5	100		4.96	0.99	
50%	С	5	100	96	4.85	0.97	1.08
	D	5	100		6.07	1.21	
	E	5	100		6.12	1.22	
	Α	5	100		5,41	1.08	
	В	5	100		4.22	0.84	
100%	C	5	100	100	5.11	1.02	1.02
	D	5	100		4.64	0.93	
	Ē	5	100		6.06	1.21	

Appendix Table A-14 (Cont.). Site B-1 Marine Larval Fish 7-Day Survival and Growth Test Results City of Buenaventura

Santa Clara River Estuary Wet Weather Sampling Event

Concentration	Replicate	No. Alive	Percent Survival	Mean Percent Survīval	Total Weight (mg)	Weight per Fish (mg)	Mean Weight per Fish (mg)
	Α	5	100		5.19	1.04	
	В	5	100		5.38	1.08	
Lab Control	С	5	100	100	6.05	1.21	1.20
	D	5	100		6.73	1.35	
	E	5	100		6.57	1.31	
	Α	5	100	-	6.62	1.32	
	В	5	100		6.82	1.36	
Salt Control	С	5	100	100	5.89	1.18	1.30
	D	5	100		6.07	1.21	
	E	5	100		7.17	1.43	
•	Α	5	100		5.33	1.07	
	В	5	100		5.95	1.19	
6.25%	С	5	100	88	4.37	0.87	1.03
	D	4	80		5.16	1.03	
	E	3	60		4.96	0.99	
	A	5	100	100	5.04	1.01	
	В	5	100		4.37	0.87	1.00
12.5%	С	5	100		3.95	0.79	
	D	5	100		6.67	1.33	
	Ε	5	100		5.05	1.01	
	A	5	100	88	5.40	1.08	1.00
	В	4	80		4.74	0.95	
25%	С	4	80		4.76	0.95	
	D	5	100		5.38	1.08	
	E	4	80		4.74	0.95	
50%	Α	5	100	92	6.29	1.26	1.11
	В	5	100		5.16	1.03	
	Ċ	5	100		6.07	1.21	
	D	4	80		5.06	1.01	
	Ē	4	80		5.20	1.04	
 		5	100		5.59	1.12	
	В	5	100		5.01	1.00	
100%	c	5	100	100	4.78	0.96	1.03
	D	5	100		4.70	0.94	1.00
	E	5	100		5.72	1.14	

Appendix Table A-14 (Cont.). Site B-3 Marine Larval Fish 7-Day Survival and Growth Test Results City of Buenaventura

Santa Clara River Estuary Wet Weather Sampling Event

Concentration	Replicate	No. Alive	Percent Survival	Mean Percent Survival	Total Welght (mg)	Weight per Fish (mg)	Mean Welght per Fish (mg)
	Α	5	100		5.19	1.04	
	В	5	100		5.38	1.08	
Lab Control	С	5	100	100	6.05	1.21	1.20
	D	5	100		6.73	1.35	
	E	5	100		6.57	1.31	
•	Α	4	80		5.60	1.12	
	В	5	100		7.70	1.54	
Salt Control	С	5	100	96	6.04	1.21	1.20
	D	5	100		5.17	1.03	
	E	5	100		5. 3 7	1.07	
	A	5	100		5.07	1.01	
	В	5	100		4.89	0.98	
6.25%	С	4	80	92	5.92	1.18	1.08
	D	4	80		4.82	0.96	
	E	5	100		6.23	1.25	
•	Α	5	100	100	5.79	1.16	
	В	5	100		5,51	1.10	1.12
12.5%	С	5	100		5.77	1.15	
	D	5	100		5.34	1.07	
	E	5	100		5.62	1.12	
	Α	4	80	96	4.02	0.80	0.96
	В	5	100		4.66	0.93	
25%	С	5	100		4.63	0.93	
	D	5	100		4.83	0.97	
	E	5	100		5.84	1.17	
· · · · · · · · · · · · · · · · · · ·	A	4	80		5.09	1.02	
50%	В	5	100		4.60	0.92	
	Ċ	5	100	96	5.66	1,13	1.01
	D	5	100		4.94	0.99	
	Ē	5	100		4.87	0.97	
	A	4	80	• • •	5.14	1.03	
	В	5	100		4.95	0.99	
100%	Ċ	5	100	96	5.10	1.02	1.02
	Ď	5	100	-	4.07	0.81	
	Ē	5	100		6.24	1.25	

Appendix Table A-14 (Cont.). Site C-3 Marine Larval Fish 7-Day Survival and Growth Test Results City of Buenaventura

Santa Clara River Estuary Wet Weather Sampling Event

Concentration	Replicate	No. Alive	Percent Survival	Mean Percent Survival	Total Welght (mg)	Weight per Fish (mg)	Mean Weight per Fish (mg)
	Α	5	100		5,19	1.04	
	В	5	100		5.38	1.08	
Lab Control	С	5	100	100	6.05	1.21	1.20
	D	5	100		6.73	1.35	
	E	5	100		6.57	1.31	
	Α	4	80		5.60	1.12	
	В	5	100		7.70	1.54	
Salt Control	С	5	100	96	6.04	1.21	1.20
	D	5	100		5.17	1.03	
	E	5	100		5.37	1.07	
	Α	4	80		5.12	1.02	
	В	5	100		6.07	1.21	1.12
6.25%	С	5	100	92	7.04	1.41	
	D	4	80		4.85	0.97	
	E	5	100		4.84	0.97	
	Α	4	80		3.78	0.76	
	В	5	100		5.90	1.18	
12.5%	С	5	100	96	5.04	1.01	1.02
	D	5	100		5.04	1.01	
	E	5	100		5.62	1.12	
	Α	5	100		4.61	0.92	
	В	5	100		4.46	0.89	
25%	С	4	80	92	3.58	0.72	0.89
	D	5	100		4.89	0.98	
	E	4	80		4.83	0.97	
50%	A	5	100		5.14	1.03	
	В	4	80		4.07	0.81	
	C	4	80	92	4.36	0.87	0.94
	D	5	100		5.30	1.06	
	E	5	100		4.52	0.90	
100%	A	4	80		4.31	0.86	
	В	5	100		2.79	0.56	
	Ċ	5	100	88	4.51	0.90	0.79
	D	4	80		4.01	0.80	
	Ē	4	80		4.19	0.84	

Appendix Table A-15. Opossum Shrimp 7-Day Survival and Growth Test Summary of Means

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 17 March 2004

Test Species: Americamysis bahia

Concentration (%)	A-2	Mean Percent B-1	Survival ± 1 SD B-3	C-3
Lab Control ^a	95 ± 8.9	95 ± 8.9	95 ± 8.9	95 ± 8.9
Salt Control ^a	95 ± 8.9	95 ± 8.9	95 ± 8.9	95 ± 8.9
100	98 ± 7.1	95 ± 9.3	98 ± 7.1	100 ± 0

Concentration (%)	A -2	Mean Growtl B-1	1 (mg) ± 1 SD B-3	c-3
Lab Control ^a	0.32 ± 0.05	0.32 ± 0.05	0.32 ± 0.05	0.32 ± 0.05
Salt Control ^a	0.32 ± 0.07	0.32 ± 0.07	0.32 ± 0.07	0.32 ± 0.07
100	0.38 ± 0.02	0.29 ± 0.04	0.32 ± 0.03	0.36 ± 0.05

BOLD - Indicates a statistically significant decrease compared to the salt control (p \leq 0.05)

^a - Lab and salt controls pooled across sites for statistical comparisons.

Appendix Table A-16. Site A-2 Opossum Shrimp 7-Day Survival and Growth Test Results City of Buenaventura

Santa Clara River Estuary Wet Weather Sampling Event

Concentration	Replicate	No. Alive	Percent Survival	Mean Percent Survival	Total Weight (mg)	Weight per Mysid (mg)	Mean Weight per Mysid (mg)
	Α	4	80		1.25	0.25	
	В	5	100		0.39		
	C	5	100		2.03	0.41	
	D	5	100		1.75	0,35	004
Lab Control	Ē	5	100	98	1.74	0.35	0.34
	F	5	100		1.53	0.31	
	G	5	100		1.71	0.34	
	H	5	100		1.60	0.32	
	A	4	80		1.35	0.27	
	В	5	100		1.65	0.33	
	C	5	100		1.69	0.34	
0.40.6.4	D	5	100		1.91	0.38	0.00
Salt Control	E	5	100	98	1.72	0.34	0.36
	F	5	100		2.11	0.42	
	G	5	100		2.08	0.42	
	H	5	100		2.02	0.40	
	A	4	80		1.50	0.30	
	В	4	80		1.54	0.31	
	Ċ	5	100		1.65	0.33	
	D	5	100		1.67	0.33	
6.25%	E	5	100	93	1.50	0.30	0.32
	F	5	100		1.72	0.34	
	G	5	100		1.70	0.34	
	Н	4	80		1.44	0.29	
			100		1.69	0.34	
	A	5		95		0.28	
	В	4	80		1.40		
	C	5	100		1.68	0.34	
12.5%	D	4	80		1.40	0.28	0.33
	E	5	100		1.75	0.35	
	F	5	100		1.51	0.30	
	G	5	100		1.74	0.35	
	H	5	100		1.97	0.39	
	A	5	100		2.25	0.45	
	В	5	100		1,80	0.36	
	C	5	100		2.31	0.46	
25%	D	5	100	98	1.81	0.36	0.40
	E	5	100		2.14	0.43	
	F	5	100		2.08	0.42	
	G	5	100		1.73	0.35	
	Н	4	80		1.86	0.37	
	A	5	100		2.13	0.43	
	В	5	100		1.99	0.40	
	С	5	100		1.78	0.36	
50%	D	5	100	100	1.72	0.34	0.38
	E	5	100	100	1.66	0.33	V.50
	F	5	100		1.87	0.37	
	G	5 5	100		1.89	0.38	
	Н		100		2.03	0.41	
	Α	5	100		1.90	0,38	
	В	5	100		1.93	0.39	
	С	5	100		1.87	0.37	
100%	D	5	100	no.	1.80	0.36	0.30
100%	Ε	5	100	98	1.96	0.39	0.38
	F	5	100		1.93	0.39	
	G	5	100		2.01	0.40	
	Н	4	80		1.64	0.33	

Appendix Table A-16 (Cont.). Site B-1 Opossum Shrimp 7-Day Survival and Growth Test Results City of Buenaventura

Santa Clara River Estuary Wet Weather Sampling Event

Concentration	Replicate	No. Alive	Percent Survival	Mean Percent Survival	Total Weight (mg)	Weight per Mysid (mg)	Mean Weight pe Mysid (mg)	
	Α	4	80		1.25	0.25		
	В	5	100		1.95	0.39		
	С	5	100		2.03	0.41		
Lab Control	D	5	100	98	1.75	0.35	0.34	
Lab Control	E	5	100	30	1.74	0.35	0.04	
	F	5	100		1.53	0.31		
	G	5	100		1.71	0.34		
	H	5	100		1.60	0.32		
	A	4	80		1.35	0.27		
	В	5	100		1.65	0.33		
	c	5	100		1.69	0.34		
	D	5	100		1.91	0.38		
Salt Control		5	100	98	1.72	0.34	0.36	
	Ę				2.11	0.42		
	F	5	100					
	G	5	100		2.08	0.42		
	н	5	100		2.02	0.40		
	Α	5	100		1.41	0.28		
	В	5	100		1.72	0.34		
	С	4	80		0.24	0.05		
6.25%	D	5	100	95	1.44	0.29	0.28	
0.23 /6	E	5	100	00	1.49	0.30		
	F	4	80		1.69	0.34		
	G	5	100		1.49	0.30		
	н	5	100		1.65	0.33		
	Α.	4	80		1.32	0.26		
	В	5	100	95	1.46	0.29		
	Ċ	5	100		1.59	0.32		
	D	4	80		1.36	0.27		
12.5%	E	5	100		3.47	0.69	0.35	
	F	5	100		1.65	0.33		
					1.44	0.29		
	G	5	100		1.60	0.32		
	Н	5	100				-	
	Α	5	100		1.75	0.35	0.31	
	В	5	100		1.81	0.36		
	С	5	100		1.75	0.35		
25%	D	5	100	95	1.37	0.27		
20 /0	E	4	80	00	1.45	0.29		
	F	4	80		1.32	0.26		
	G	5	100		1.43	0.29		
	н	5	100		1.64	0.33		
	Α	4	80		1.71	0.34		
	В	5	100		1.53	0.31		
	Ċ	5	100		1.62	0.32		
	D	5	100		1.57	0.31		
50%	_			95			0.32	
	E -	4	80 400		1.36 1.66	0.27 0.33		
	F	5 5	100					
	G	5	100		1.57	0.31		
	Н .	5	100		1.63	0.33		
	Α	4	80		1.16	0.23		
	В	5	100		1.56	0.31		
	С	5	100		1.40	0.28		
100%	D	5	100	95	1.41	0.28	0.29	
10076	E	4	80	33	1.25	0.25	0.23	
	F	5	100		1.44	0.29		
	G	5	100		1.57	0.31		

Appendix Table A-16 (Cont.). Site B-3 Opossum Shrimp 7-Day Survival and Growth Test Results City of Buenaventura

Santa Clara River Estuary Wet Weather Sampling Event

Concentration	Replicate	No. Alive	Percent Survival	Mean Percent Survival	Total Weight (mg)	Welght per Mysld (mg)	Mean Weight pei Mysid (mg)
-	A	4	80		1.47	0.29	
	8	4	80		1.29 0.26		
	С	5	100		1.42	0.28	
Lab Control	D	5	100	93	1.64	0.33	0.30
Lab Control	E	4	80	33	1.37	0.27	0.50
	F	5	100		1.72	0.34	
	G	5	100		1.44	0.29	
	Н	5	100		1.51	0.30	
	Α	4	80		1.21	0.24	
	В	4	80		1.15	0.23	
	c	5	100		1.21	0.24	
	Ď	5	100		1.48	0.30	
Salt Control	E	5	100	93	1.65	0.33	0.27
	F	5	100		1.61	0.32	
		5			1.29	0.26	
	G		100		1.12	0.22	
	H	4	80				
	A	5	100		1.51	0.30	
	В	5	100		1.44	0.29	
	С	5	100		1.54	0.31	
6.25%	D	5	100	100	2.19	0.44	0.31
V.2075	E	5	100		1.62	0.32	
	F	5	100		1.47	0.29	
	G	5	100		1.37	0.27	
	Н	5	100		1.43	0.29	
	A	5	100		1.39	0.28	
	В	5	100		1.10	0.22	
	Ç	4	80	95	1.30	0.26	
	D	5	100		1.29	0.26	
12.5%	Ē	5	100		1.30	0.26	0.26
	F	5	100		1.39	0.28	
	Ġ	4	80		1.14	0.23	
	н	5	100		1.48	0.30	
						0.29	
	A	5	100		1.46		
	В	5	100		1.49	0.30	
	C	5	100		1.34	0.27	0.28
25%	D	4	80	95	1.36	0.27	
,-	E	5	100		1.48	0.30	
	F	5	100		1.48	0.30	
	G	5	100		1.30	0.26	
	Н	4	80		1.38	0.28	
•	Α	5	100		1.50	0.30	
	В	5	100		1.45	0.29	
	C	5	100		1.49	0.30	
Ecc'	D	4	80		1.57	0.31	2.25
50%	E	5	100	98	1.51	0.30	0.33
	F	5	100		1.97	0.39	
	G	5 5	100		1.79	0.36	
	H	5 5	100		1.79	0.37	
	A	5	100		1.56	0.31	
	В	5	100		1.29	0.26	
	С	5	100		1.71	0.34	
100%	D	5	100	98	1.73	0.35	0.32
/ 0	E	5	100		1.54	0.31	
	F	4	80		1.55	0.31	
	G	5	100		1.85	0.37	
					1.62	0.32	

Appendix Table A-16 (Cont.). Site C-3 Opossum Shrimp 7-Day Survival and Growth Test Results City of Buenaventura

Santa Clara River Estuary Wet Weather Sampling Event

Concentration	Replicate	No. Alive	Percent Survival	Mean Percent Survival	Total Welght (mg)	Weight per Mysld (mg)	Mean Weight per Mysld (mg)
	Α	4	80		1,47	0.29	
	В	4	80		1.29	0.26	
	С	5	100		1.42	0.28	
Lab Control	D	5	100	93	1.64	0,33	0.30
442 000.	E	4	80		1.37	0.27	
	F	5	100		1.72	0.34	
	G	5	100		1.44	0.29	
	<u>н</u>	5	100		1,51	0,30	
	Α	4	80		1.21	0.24	
	В	4	80		1.15	0.23	
	С	5	100		1.21	0.24	
Salt Control	D	5	100	93	1.48	0.30	0.27
	E	5	100		1.65	0.33	-1
	F	5	100		1.61	0,32	
	G	5	100		1.29	0.26	
	Н	4	80		1.12	0.22	
	Α	5	100		1.53	0.31	
	₿	5	100		1.77	0.35	
	С	5	100		1.80	0.36	
6.25%	D	5	100	100	1.60	0.32	0.34
0.23 /6	É	5	100	100	1.79	0.36	0.34
	F	5	100		1.47	0.29	
	G	5	100		1,92	0.38	
	н	5	100		1.68	0.34	
	Α	5	100		1.70	0.34	
	В	5	100	95	1.53	0.31	
	С	5	100		1.57	0.31	
12.5%	D	5	100		1.30	0.26	0.31
12.3%	E	4	80		1.51	0.30	0.31
	F	5	100		1.63	0.33	
	G	4	80		1.53	0.31	
	Н	5	100		1.78	0.36	
	Α	3	60		1.07	0.21	
	В	5	100		1.52	0.30	
	С	5	100		1.60	0.32	
0.007	D	5	100		1,33	0.27	
25%	Ē	4	80	93	1.43	0,29	0.30
	F	5	100		1.58	0.32	
	G	5	100		1.54	0.31	
	H	5	100		1.81	0.36	
	A	4	80		1.32	0.26	
	В	5	100		1.69	0.34	
	C		100		1.91	0.38	
	D	5 5					
50%	E	5	100	98	1.73	0.35	0.34
			100		1.78	0.36	
	F	5	100		1.73	0.35	
	G	5	100		1.68	0.34	
	Н .	5	100		1.92	0.38	
	A	5	100		1.50	0.30	
	В	5	100		1.69	0.34	
	С	5	100		1.67	0.33	
100%	D	5	100	100	1.70	0.34	0.36
/9	E	5	100	100	1.70	0.34	0.00
	F	5	100		1.87	0.37	
	G	5	100		2.23	0.45	
	Н	5	100		2.15	0.43	

M. PYRIFERA

Appendix Table A-17. 48-Hour Kelp Spore Germination and Growth Test Summary of Means

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 17 March 2004

Test Species: Macrocystis pyrifera

Mean Percent Germination ± 1 SD Concentration (%) A-2 B-1 B-3 C-3							
Lab Control	76 ± 12	76 ± 12	82 ± 4.5	76 ± 12			
Brine Control	83 ± 4.9	83 ± 4.9	89 ± 2.5	83 ± 4.9			
High ^a	80 ± 4.9 (60)	78 ± 6.3 (58)	90 ± 0.8 (68)	81 ± 4.6 (59)			

Concentration (%)	A-2	Mean Growti B-1	n (μm) ± 1 SD B-3	6-3
Lab Control	11.7 ± 2.00	11.7 ± 2.00	10.9 ± 2.78	11.7 ± 2.00
Brine Control	12.4 ± 1.13	12.4 ± 1.13	12.3 ± 2.84	12.4 ± 1.13
High ^a	15.4 ± 3.09 (60)	13.3 ± 3.29 (58)	14.0 ± 3.34 (68)	12.7 ± 3.05 (59)

BOLD - Indicates a statistically significant decrease compared to the brine control (p ≤ 0.05)

^a - Highest concentration noted in parenthesis

Appendix Table A-18. Site A-2 48-Hour Kelp Spore Germination and Growth Test Results City of Buenaventura

Santa Clara River Estuary Wet Weather Sampling Event

Concentration	Germinated		Mean Percent Germinated	Mean Spore Length (μπ)
	A B	66 71		
Lab Control	C	93	76	11.65
Lab Control	D	83	10	, ,,
	Ē	66		
	Ā	76		
	B	81		
Brine Control	č	81	83	12.35
	D	88		
	Ē	87		
	Α	86		<u> </u>
	В	79		
6.25%	С	86	81	12.80
	D	76		
	E	78		
	A	83		
	В	70		
12.5%	С	80	78	13.70
	D	76		
	E	80		
	Α	82		
	В	89		44.00
25%	С	87	84	14.90
	D	84		
	E	77		
	Α	82		
	В	81	60	14.95
50%	C	84	82	14.90
	D	81		
	E	81		
	A	77		
001/	В	75 24	80	15.40
60%	C	84	ου	10.40
	D	77		
	E	86		

Appendix Table A-18 (Cont.). Site B-1 48-Hour Kelp Spore Germination and Growth Test Results City of Buenaventura

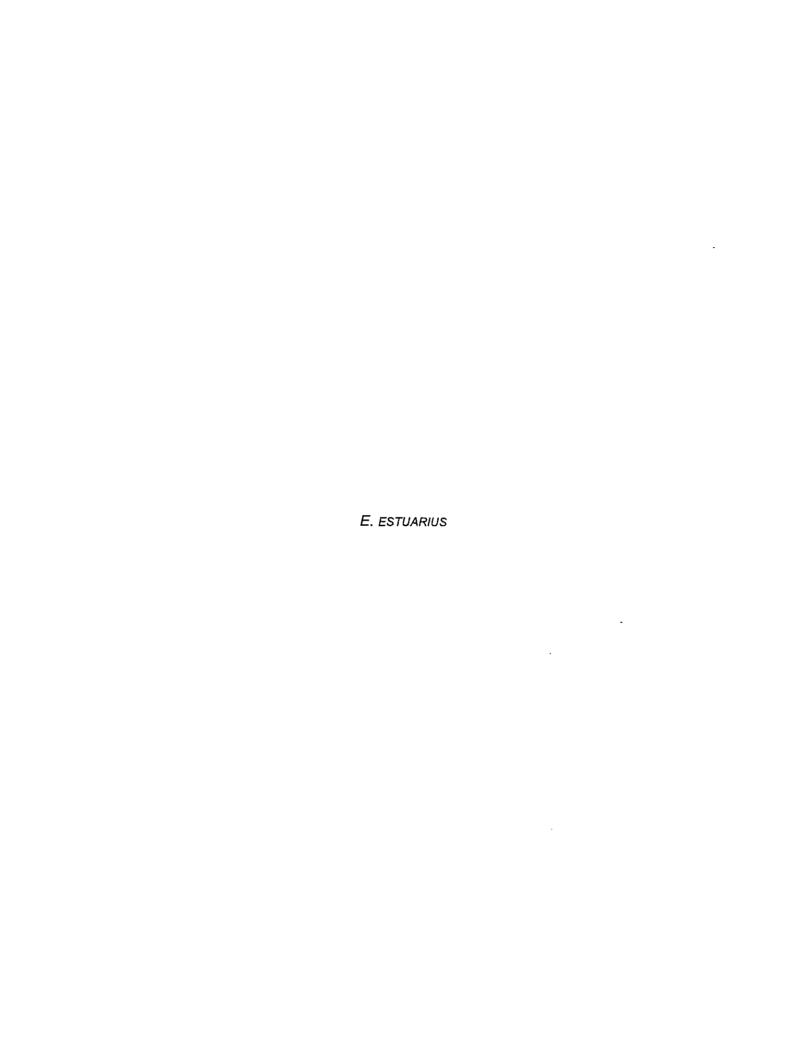
Santa Clara River Estuary Wet Weather Sampling Event

Concentration	Replicate	Percent Germinated	Mean Percent Germinated	Mean Spore Length (μm)
	Α	66		
	В	71		
Lab Control	С	93	76	11.65
	D	83		
	E	66		
	Α	76		<u> </u>
	В	81		
Brine Control	С	81	83	12.35
	D	88		
	E	87		
·	Α	68	•	
	В	76		
6.25%	С	71	72	9.95
	D	70		
	E	74		
	Α	80		
	В	70		
12.5%	С	74	76	12.90
	Ď	76		
	Ē	82		
	A	67		
	В	72		
25%	Ċ	74	72	11.85
	Ď	74		
	Ē	74		
	A	72	· ·	
	В	74		
50%	ċ	75	77	13.70
"	Ď	84		
	Ē	79		
	Ā	85		
	В	76		
58%	Ç	83	78	13.30
,,	D	79	• •	
	Ë	69		

Appendix Table A-18 (Cont.). Site B-3 48-Hour Kelp Spore Germination and Growth Test Results City of Buenaventura

Santa Clara River Estuary Wet Weather Sampling Event

A 84 B 76 C 88 82 10.92 D 82 E 80 A 85 B 91 Brine Control C 89 89 89 12.34 D 89 E 91 A 86 B 85 C 92 88 13.62 D 88 E 91 A 80 B 91 A 80 B 85 C 92 88 13.62 D 88 E 91 A 80 B 91 C 92 B 91 A 80 B 91 C 92 A 80 B 91 C 92 C 92 B 91 A 80 B 91 C 92	Concentration	Replicate	Germinated		Mean Spore Length (μm)
Lab Control		A			
D 82 E 80		В			40.00
E 80 A 85 B 91 Brine Control C 89 89 89 12.34 D 89 E 91 A 86 B 85 6.25% C 92 88 13.62 D 88 E 91 A 80 B 91 12.5% C 89 86 13.82 D 84 E 87 A 90 B 88 E 91 25% C 94 90 14.21 D 85 E 93 A 89 B 90 C 91 90 13.60 B 90 B 9	Lab Control			82	10.92
Brine Control C B B B B B B B B B B B B		D			
Brine Control C B 91 B 91 B 89 E 91 A 86 B 85 C 92 88 E 91 A 80 B 91 A 80 B 91 12.5% C 89 80 13.62 B 12.5% C 89 80 13.82 A 80 B 91 12.5% C 89 86 13.82 A 90 B 88 25% C 94 90 14.21 D 85 E 93 A 89 B 90 14.21 D 88 B 90 13.60 D 88 E 91 90 14.03					
Brine Control C B9 B9 E 91 A 86 B 85 B 85 C 92 B 89 13.62 D 88 E 91 A 80 B 91 A 80 B 91 A 80 B 91 12.5% C 89 86 13.82 D 84 E 87 A 90 B 88 88 88 90 14.21 D 85 E 93 A 89 50% C 91 90 13.60 B 88 E 91 90 14.03					
D 89 E 91 A 86 B 85 C 92 88 13.62 D 88 E 91 A 80 B 91 A 80 B 91 12.5% C 89 86 13.82 D 84 E 87 A 90 B 88 E 93 A 90 B 88 50% C 94 90 14.21 D 85 E 93 A 89 B 90 B 90		В			
E 91 A 86 B 85 C 92 88 13.62 D 88 E 91 A 80 B 91 A 80 B 91 A 80 B 91 C 89 86 13.82 D 84 E 87 A 90 B 88 E 93 A 89 F 90 F 91 F 92 A 90 F 90 F 91 F 90 F 91 F 90 F 91 F 90 F 91 F 90	Brine Control	С		89	12.34
A 86 B 85 C 92 88 13.62 D 88 E 91 A 80 B 91 A 80 B 91 12.5% C 89 86 13.82 D 84 E 87 A 90 B 88 E 93 A 90 B 88 E 93 A 89 B 90 B 90 B 90 B 88 E 92 A 90 B 88 E 92 A 90 B 90 B 88 E 92 A 90 B		D			
6.25% C 92 88 13.62 D 88 E 91 A 80 B 91 12.5% C 89 86 13.82 D 84 E 87 A 90 B 88 E 93 25% C 94 90 14.21 D 85 E 93 A 89 B 90 50% C 91 90 13.60 D 88 E 92 A 90 B 91 B 91 B 90 B 91 B 90 B 91					
6.25% C 92 88 13.62 D 88 E 91 A 80 B 91 12.5% C 89 86 13.82 D 84 E 87 A 90 B 88 E 93 25% C 94 90 14.21 D 85 E 93 A 89 B 90 50% C 91 90 13.60 B 88 E 92 A 90 B 88 B 90 D 88 E 92 A 90 B 90 B 91		Α	86		
D 88 E 91 A 80 B 91 12.5% C 89 86 13.82 D 84 E 67 A 90 B 88 B 88 C 94 90 14.21 D 85 E 93 A 89 B 90 B 90		В	85		
D 88 E 91 A 80 B 91 12.5% C 89 86 13.82 D 84 E 87 A 90 B 88 B 88 C 94 90 14.21 D 85 E 93 A 89 B 90 C 91 90 13.60 D 88 E 92 A 90 B 90 14.21	6.25%	С	92	88	13.62
E 91 A 80 B 91 12.5% C 89 86 13.82 D 84 E 87 A 90 B 88 B 90 C 94 90 14.21 D 85 E 93 A 89 B 90 50% C 91 90 13.60 D 88 E 92 A 90 B 90 G 91 B 91 G 90 B 91 G 90 B 91 G 90 B 91 G 90			88		
12.5% C 89 86 13.82 D 84 E 87 A 90 B 88 25% C 94 90 14.21 D 85 E 93 A 89 B 90 50% C 91 90 13.60 D 88 E 92 A 90 B 91 68% C 90 90 90 14.03			91		
12.5% C 89 86 13.82 D 84 E 87 A 90 B 88 25% C 94 90 14.21 D 85 E 93 A 89 B 90 50% C 91 90 13.60 D 88 E 92 A 90 B 91 68% C 90 90 90 14.03		Α .	80		
12.5% C 89 86 13.82 D 84 E 87 A 90 B 88 25% C 94 90 14.21 D 85 E 93 A 89 B 90 50% C 91 90 13.60 D 88 E 92 A 90 B 91 68% C 90 90 90 14.03			91		
D 84 E 87 A 90 B 88 C 94 90 14.21 D 85 E 93 A 89 B 90 50% C 91 90 13.60 D 88 E 92 A 90 B 91 G 90 B 91	12.5%		89	86	13.82
E 87 A 90 B 88 C 94 90 14.21 D 85 E 93 A 89 B 90 50% C 91 90 13.60 D 88 E 92 A 90 B 91 68% C 90 90 90 14.03					
A 90 B 88 B 88 C 94 90 14.21 D 85 E 93 A 89 B 90 50% C 91 90 13.60 D 88 E 92 A 90 B 91 G 92 A 90 B 91 G 90 B 91 G 90 B 91					
25% C 94 90 14.21 D 85 E 93 A 89 B 90 50% C 91 90 13.60 D 88 E 92 A 90 B 91 68% C 90 90 14.03 D 91			90	•	
25% C 94 90 14.21 D 85 E 93 A 89 B 90 50% C 91 90 13.60 D 88 E 92 A 90 B 91 68% C 90 90 14.03					
D 85 E 93 A 89 B 90 C 91 90 13.60 D 88 E 92 A 90 B 91 68% C 90 90 14.03	25%			90	14.21
E 93 A 89 B 90 C 91 90 13.60 D 88 E 92 A 90 B 91 B 91 68% C 90 90 90 14.03 D 91					
A 89 B 90 C 91 90 13.60 D 88 E 92 A 90 B 91 B 91 C 90 90 14.03 D 91					
50% C 91 90 13.60 D 88 E 92 A 90 B 91 68% C 90 90 14.03 D 91					
50% C 91 90 13.60 D 88 E 92 A 90 B 91 68% C 90 90 14.03 D 91					
D 88 E 92 A 90 B 91 C 90 90 14.03 D 91	50%			90	13.60
E 92 A 90 B 91 C 90 90 14.03 D 91					
A 90 B 91 68% C 90 90 14.03 D 91					
B 91 68% C 90 90 14.03 D 91					
68% C 90 90 14.03 D 91					
D 91	68%			90	14.03
	00 /8				• • • • •
E 80		E	89		


Appendix Table A-18 (Cont.). Site C-3 48-Hour Kelp Spore Germination and Growth Test Results City of Buenaventura

Santa Clara River Estuary Wet Weather Sampling Event

Concentration	Replicate	Percent Germinated	Mean Percent Germinated	Mean Spore Length (µm)
	A	66		
	В	71		
Lab Control	С	93	76	11.65
	D	. 83		
	E	66		<u>.</u>
	Α	76		
_	В	81		40.05
Brine Control	C	81	83	12.35
	D	88		
	E	87		
	A	85		
	В	77		
6.25%	С	72	79	12.65
	D	79		
	E	80		
	Α	69		
	В	76		
12.5%	С	81	74	11,25
	D	78		
	E	67		
	Α	74		
	В	78		
25%	С	85	80	12.20
	D	85		
	E	78		
	Α	81		
	В	77		
50%	С	63	74	12.80
	D	77		
	E	72		
	Ā	87		
	В	81		
59%	Ċ	75	81	12.65
	D	78		
	E	83		

APPENDIX B
TOXICITY TEST WATER QUALITY DATA

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Inititation Date: 24 March 2004

			Control 1			
Day	Dissolved Oxygen (mg/L)		Salinity (Ppt)	Temperature (°C)		la (mg/L) Porewater
0	8.1	8.07	29	14.7	<0.1	0.6
1	8.1	8.12	29	14.9		
2	8.2	8.18	29	14.9		
3	8.4	8.24	29	14.9		
4	8.2	8.20	29	14.8		
5	8.7	7.98	29	15.2		- -
6	8.3	7.98	29	15.0		
7	8.5	8.11	29	15.0		
8	8.3	8.12	29	14.9	10	
9	8.1	8.13	29	15.0	= P	
10	8.0	8.08	29	15.0	0.2	

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Inititation Date: 24 March 2004

			Control 2			
Day	Dissolved Oxygen (mg/L)	pH (units)	Salinity (ppt)	Temperature	Total N Overlying Water	la (mg/L)
0	7.9	8.02	30	14.6	0.5	3.4
1	7.9	8.02	30	15.0		
2	8.1	8.13	30	14.9		
3	8.2	8.25	30	14.8		
4	8.2	8.19	30	14.8		
5	8.6	8.01	30	15.0		
6	8.1	8.00	30	15.0		
7	8.2	8.10	30	15.2		
8	8.2	8.09	30	14.9		
9	8.1	8.10	30	14.9		
10	7.8	8.14	30	15.0	1.6	

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Inititation Date: 24 March 2004

			A-1			
Day	Dissolved Oxygen (mg/L)	pH pH (units)	Salinity (pot)	Temperature (°C)		is (mg/L) Porewater
0	7.9	8.08	29	14.6	0.6	0.9
1	7.9	8.06	29	15.1		
2	8.0	8.14	29	15.0		
3	8.3	8.26	29	14.9		
4	8.2	8.22	29	14.8		
5	8.6	8.08	29	15.0		~ -
6	8.2	8.09	29	15.0		
7	8.3	8.15	29	15.1		
8	8.1	8.17	29	15.0		
9	8.0	8.17	29	15.0	# F	
10	7.8	8.24	29	15.1	1.5	

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Inititation Date: 24 March 2004

			A-2			
Day	Dissolved Oxygen (mg/L)	bH w	Salinity (ppt)	SHEHERRUMER DER GERMANNE STERREICH GERMANN	Total N Overlying Water	is (mg/L) Porewater
0	8.0	8.03	29	14.6	0.7	1.2
1	7.9	8.02	29	15.1	- -	
2	8.0	8.13	29	15.0		
3	8.2	8.26	29	14.9		
4	8.2	8.23	29	14.9		
5	8.7	8.10	29	15.3	- -	
6	8.2	8.13	29	15.2		
7	8.3	8.14	29	15.2		
8	8.1	8.16	29	15.1		
9	8.0	8.19	29	15.0		
10	7.9	8.28	29	15.1	0.4	

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Inititation Date: 24 March 2004

			A-3		-	
Day	Dissolved Oxygen (mg/L)		Salinity (ppt)		Total N Overlying Water	la (mg/L) Porewater
0	8.1	8.02	30	14.6	0.4	4.0
1	7.9	8.09	30	15.0		
2	8.0	8.16	30	15.0		
3	8.3	8.26	30	14.9		
4	8.0	8.24	30	14.9		
5	8.6	8.12	30	15.3		
6	8.1	8.14	30	15.3		
7	8.4	8.16	30	15.3		
8	8.1	8.17	30	15.1		- ~
9	8.0	8.20	30	15.0		
10	7.8	8.31	30	15.1	1.5	

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Inititation Date: 24 March 2004

			B-1			
Day	Dissolved Oxygen (mg/L)	pH #(units)		Temperature (°C)	Total Na Overlying Water	la(mg/L)
0	8.1	7.99	29	14.5	1.3	1.3
1	8.0	8.06	28	15.2		
2	8.0	8.16	28	15.0		
3	8.3	8.28	28	15.0		
4	8.2	8.27	28	14.9		
5	8.1	8.17	28	15.3		
6	8.2	8.20	28	15.2		
7	8.5	8.20	28	15.2		
8	8.2	8.22	28	15.1		
9	8.0	8.23	28	15.1		
10	7.9	8.31	28	15.1	0.2	

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Inititation Date: 24 March 2004

			B-2			
EDay-	Dissolved Oxygen (mg/L)	öH (units)	Salinity (ppt)	Temperature (°G)	Total Ni Overlying Water	la(mg/L)
0	8.1	8.08	30	14.5	0.4	<0.1
1	8.1	8.09	30	15.3		
2	8.0	8.16	30	15.1		
3	8.3	8.24	30	15.0		
4	8.3	8.23	30	15.0		
5	8.1	8.04	30	15.3		
6	8.2	8.13	30	15.3		
7	8.3	8.12	30	15.3		
8	8.2	8.12	30	15.1		
9	8.0	8.16	30	15.2		
10	7.8	8.27	30	15.2	0.9	

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Inititation Date: 24 March 2004

	-		B-3			
Day	Dissolved Oxygen	assumer in the contract of the	Salinity (ppt)			la (mg/L)
	(mg/L)				Overlying Water	Porewater
0	8.2	8.07	29	14.5	0.7	1.6
1	8.0	8.11	29	15.2		
2	8.0	8.18	29	15.0		
3	8.3	8.28	29	15.0		
4	8.3	8.29	29	15.0		
5	8.1	8.17	29	15.3		
6	8.2	8.18	29	15.3		
7	8.3	8.20	29	15.3		
8	8.2	8,21	29	15.1		
9	8.0	8.27	29	15.2		
10	8.0	8.35	29	15.2	0.6	

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Inititation Date: 24 March 2004

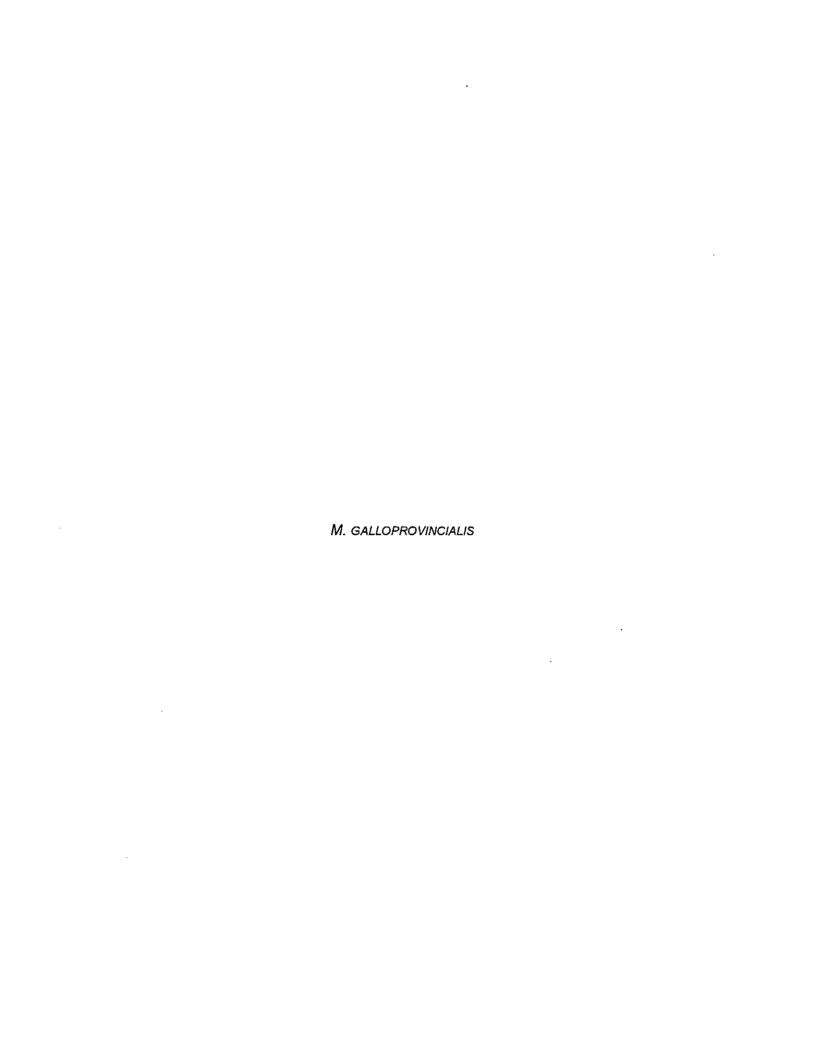
			B-4			
	Dissolved 7		Salinity	RIGHT AND LESS CONTRACTOR DE C	Total Nr	la((mg/L))
Day	Oxygen (mg/L)	(units)	(ppt)	(C)	Overlying Water	Porewater
0	8.0	7.97	29	14.5	0.1	<0.1
 1	8.0	8.01	29	15.2		
2	8.0	8.12	29	15.1	- -	
3	8.3	8.25	29	15.0		
4	8,2	8.27	29	15.0	- -	
5	8.1	8.15	29	15.3		
6	8.0	8.21	29	15.3		
7	8.4	8.10	29	15.3		
8	8.2	8.22	29	15.1		
9	8.0	8.26	29	15.2		
10	7.9	8.35	29	15.2	0.7	

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Inititation Date: 24 March 2004

			C-1			
	Dissolved		Salinity	Temperature	. ποίαl γι	ls (mg/L)
Day	Oxygen (mg/L)		(ppt)		Overlying Water	Porewater
О	8.1	8.05	30	14.6	0.6	0.9
1	8.1	8.06	30	15.2		
2	8.0	8.11	30	15.1		- -
3	8.4	8.23	30	15.0		
4	8.2	8.24	30	15.0		
5	8.1	8.08	30	15.4		
6	8.1	8.12	30	15.3		
7	8.4	8.04	30	15.3		
8	8.2	8.10	30	15.2		
9	8.0	8.16	30	15.2		
10	7.8	8.27	30	15. <u>3</u>	0.6	

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event


Test Inititation Date: 24 March 2004

			C-2			
Day	Dissolved Oxygen	pH (units)	Salinity (pol)	Temperature (°C)		l _s (mg/ <u>L)</u> Porewater
	(ng/L)				Overlying Water	的政治 医抗性性性现象 大學 电极大线 对
0	8.1	8.02	28	14.6	0.7	2.3
1	8.1	8.06	28	15.2		
2	8.0	8.16	28	15.1		
3	8.4	8.29	28	15.0		
4	8.3	8.33	29	15.0		
5	8.1	8.20	28	15.4		
6	8.2	8.24	28	15.3	- -	
7	8.4	8.18	28	15.3	~-	
8	8.2	8.22	28	15.2		
9	8.0	8.25	28	15.2		
10	7.9	8.34	28	15.2	0.6	

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Inititation Date: 24 March 2004

			C-3			_
Day	Dissolved :	PH	Salinity	Temperature		il ₃ (me/L)
	Oxygen (mg/L)	(units)	(990)	(6)	Overlying Water	Porewater
0	7.9	8.02	28	14.6	0.1	0.5
1 1	8.0	8.06	28	15.3		
2	8,0	8.16	28	15.0		
3	8.3	8.28	28	15.0		
4	8.2	8.31	28	15.0		
5	8.0	8.16	28	15.4		
6	8.0	8.19	28	15.3		~ -
7	8.3	8.15	28	15.4		
8	8.3	8.24	28	15.2		
9	8.0	8.27	28	15.2		
10	8.0	8.37	28	15.3	1.6	<u></u>

Appendix Table B-2. 48-Hour Bivalve Embryo Development Test Water Quality Results (Whole Sediment)

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 23 March 2004
Test Species: Mytilus galloprovincialis

Site	Dissolv	ed Oxyger	n (mg/L))		pH (units)		S	alinity (pp	6)	Ter	nperature	(°C)	NH₃(mg/L)
	0	24	48	0	24	48	0	24	48	Ô	24	48	0	48
Control - Water Only	8.5	8.2	8.3	7.93	8.02	7.50	30	30	30	14.8	15.0	15.0	0.2	< 0.1
Control - Sediment	8.0	7.3	7.1	7.92	7.93	7.81	30	30	30	14.7	14.7	15.0	< 0.1	0.5
A-1	7.3	7.1	7.0	7.93	7.94	7.87	30	30	30	14.6	14.7	15.0	< 0.1	0.2
A-2	7.8	7.6	7.9	7.96	7.90	7.89	30	30	30	14.6	14.7	15.0	0.4	0.1
A-3	7.3	7.1	7.1	7.95	7.92	7.86	30	30	30	14.6	14.7	15.0	0.6	< 0.1
B-1	7.9	7.5	7.0	7.97	7.93	7.78	30	30	30	14.6	14.7	15.0	< 0.1	0.2
B-2	8.2	7.8	6.9	7.99	7.98	7.78	30	30	30	14.6	14.6	14.9	< 0.1	< 0.1
B-3	8.0	7.5	6.7	7.98	7.96	7.77	30	30	30	14.6	14.6	15.0	< 0.1	1.9
B-4	7.8	7.3	6.6	7.96	7.94	7.77	30	30	30	14.6	14.6	15.0	< 0.1	1.3
C-1	8.3	7.8	7.0	8.00	7.97	7.81	30	30	30	14.6	14.6	15.0	< 0.1	NC
C-2	8.3	7.7	7.1	8.00	7.97	7.81	30	30	30	14.6	14.6	15.0	< 0.1	< 0.1
C-3	8.3	7.9	7.8	7.99	7.99	7.87	30	30	30	14.7	14.6	14.9	< 0.1	0.1

NC: Not available for analysis, no sample collected.

Appendix Table B-2 (Cont.). 48-Hour Bivalve Embryo Development Test Water Quality Results (Whole Sediment)

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 8 May 2004 - Site B-1 Retest

Test Species: Mytilus galloprovincialis

Site	Dissolv 0	ed Oxyger 24		70	pH (units) 24	48	S	alinity (pp	ot) 48	Ten O	operature 24	(°C) 48	N ∂ ₃(i o	mg/L). - 48 !!
Control - Water Only	7.4	8.9	8.1	7.44	7.71	7.72	30	30	30	15.0	14.7	14.7	NC	NC
Control - Sediment	7.5	8.7	8.2	7.44	7.71	7.70	30	30	30	15.0	14.5	14.7	NC	NC
B-1	7.4	8.6	7.7	7.44	7.74	7.72	30	30	30	15.0	14.5	14.7	NC	NC

NC: Not available for analysis, no sample collected.

P. PROMELAS

AMEC Earth & Environmental Bloassay Laboratory. 5550 Morehouse Dr., Ste. B. San Diego, CA 92121.

Client: <u>City of Buenaventura</u>	Test Species: P. promelas
Sample ID: SCRE (A&B-1, B-3, C3)	Test Date: 3 17104
Test No: 0403-110,111,112,113	Start/End Times: 1257) / j400
Concentration Lab Courtrol	Concentration B-3 (00%
Day 0 1 2 3 4 5 6 7	Day 0 1 2 3 4 5 6 7
pH 813 8.28 8.23 8.28 8.22 8.20 7.92	ph 8.41 8.30 8.33 8.39 8.32 8.30 8.32
DO (mg/l) 7.5 7.6 7.5 8.3 B.Z 7.5 GSW	DO (mg/L) 10.9 7.7 8.8 9.2 8.9 9.5 9.2
Cond. (junhos-cm) 204 205 201 205 204 207 207 Temp (°C) 25.3 24.2 26.0 25.0 24.2 25.0 24.7	Cond. (μmhos-cm) (4-770 20 00 20,000 26106 19940 19930 19930 19930 Tomp (°C) 24-4 258 24.4 25.9 24.9 24.9 24.1
Final	Final
DO (mg/L) \$8.92 7.67 8.07 8.04 7.82 7.74 7.89 DO (mg/L) \$8.57.5 5.3 6.3 5.6 6.3 78.58 6.2	DO (mg/L) 8.35 8.20 8.16 8.20 8.27 8.21 DO (mg/L) 0.1 6.2 5-7 6.3 6.7 6.2
DO (mg/L) SN 5-36,5 5.3 6.3 5.6 6.3 7858 6.2 Temp (°C) 24,9 24,1 24,1 24,7 24,0 25.0	DO (mg/L) 7.1 6.1 6.2 5-7 6.3 6.7 6.2 Temp (°C) 24.6 25.0 24.0 24.6 24.8 240 25.0
Concentration A-1 (00'/.	Concentration C-2-1001/
Day 0 1 2 3 4 5 / 6 7	Day 0 1 2 3 4 5 6 7
рн 7.80 7.42 7.84 8.03 7.84 7.14 797	ph 7.99 7.79 7.78 8.00 8.20 7.94 8.07
DO (mg/L) 9.1 8.5 8.6 8.8 8.9 9.5 8.7	DO (mg/L) 10.0 8.3 9.7 9.1 9.2 9.7 9.5
Cond. (junhos-cm) 5250 5340 5390 5330 5380 5370	Cond. (µmhos-cm) 3000 8000 3070 3070 3140 3050 3060
Temp (°C) 246 24.7 24.4 250 24.7 34.0 28.7	Temp (°C) 24.3 25.7 24.4 25.8 24.6 24.3 24.7
PH 8.13 8.06 8.05 8.16 7.96 8.06 7.99	pH 8.17 8.10 8.00 8.05 8.13 8.10
DO (mg/L) 6.8 6.2 6.7 5.9 6.7 6.4 6.1	DO (mg/L) 7.1 (6.2 6.0 4.0 5.1 36, 4.6
Temp (°C) 24.8 25.0 24.1 24.8 24.7 24.2 25.0	Temp (°C) 24.5 25.0 24.2 24.3 24.8 4.1 24.9
Concentration B-1 100%.	Concentration
Day 0 1 2 3 4 5 6 7	Day 0 1 2 3 4 5 6 7
pH 7.707.64 7.70 7.89 7.72 7.71 798	pH (nitial
DO (mg/L) 85 8.3 9.4 89 8.6 9.2 96	DO (mg/L)
Cond. (junho: cm) 25 (O 2520 2530 2560 2 580 2520	Cond. (µmhos-cm)
Temp (°C) 24.4 35.1 24.3 25.0 24.9 34.0 25.7	Tomp (*C)
PH 8.20 8.12 8.14 8.16 8.12 7.92 8.08	pH
DO (mg/L) C.G 5.7 6.4 5.6 6.3 4.9 5.4 Temp (°C) 24.7 25.0 24.1 24.7 24.2 25.0	DO (mg/L)
Temp (°C) 24.7 25.0 24.1 24.7 24.7 24.2 25.0	Temp (*C)
•	0 1 2 3 4 5 6 7
Animal Source/Date Received: ABS 317104	Analysts: Initial: AW 3D MC MC RY AH AW
Animal Age at initiation: 248 hours	Final: SH WE SH AH AH AW MC
i i	
Comments:	
QC Clinck: 4/13/04	Final Roview: 424 04

Client:

City of Buenaventura

Sample ID:

0463-110,111.112,113 Test No:

Test Species: O. promelas

Start/End Times: 141

Concentration	SC	_A-a)- -	5.1 PP-				
Day	0	1 1	2	.3	4	5	6	7
				in the second				
рН	7.89	796	8.41	7.92	11,24	8.03	493	
DO (mg/L)	84	8.9	8.9	8:9	9.4	9.1	10.1	1
Cond. (µmhos-cm)	559b	5600	5640	5610	5610	5600	5540	5540
Temp (°C)	24.4	24.2	25.0	24.7	340	24-6	256	
				F	nal		רו ע או	
рН		7.94	10.8	19.95	7.77	7 63	7.59	7.80
DO (mg/L)		7.1	6.9	6.0	6.8	6 28	(0.0)	6-9
Temp (°C)	1	24.2	24.0	24 9	24.8	24.0	24.9	24.7

Concentration	SC	B-1	1.4 06	OF-				
Day	0	1	2	3	4	5	6	7
pН	88	8.(1	817	8 00	792	7.80	8.09	1
DO (mg/L)	7.9	8.60	8.8	8.1	9.5	9.4	10.2	1
Cond. (µmhos-cm)	2700	2700	2760	2710	2-700	25(0)	2690	
Temp (°C)	るろう	24.1	25.0	24.6	24.3	74.7	25.0	
				The second secon	nal			
pH		8.07	8.05	7.92	1.91	7.70	7.86	7.97
DO.(mg/L)		7.2	6.5	5.2	6.7	6.0	5.5	6-4
Temp (°C)		24.2	24. \	25.1	25.0	24.0	25.0	74.7

Concentration	Sc	B-3	14.4 P	pt				
Day	0	1	2	3	4	5	6	7
			7.8	ın.	tal			
pН	1.76	7.75				Ι		
DO (mg/L)	7.7 N	19 12					 	1
Cond. (µmhos-cm)	19,910	20000		A			 	-
Temp (°C)	24.6	24.3			₩ €		 	
				Fi	nal	\$		<u> </u>
pН		7.88	7.98	- 114 <u>- 44 - 25</u> - 24	l		-	
DO (mg/L)	1	7.3	6-7 SH					
Temp (°C)	1	24,2	244				 	
· · · · · · · · · · · · · · · · · · ·	Property of the second	4 11	1.2.01				<u>.l</u>	<u> </u>

Concentration	Sc	U-3	1.7 PPT		·	· · · · ·		
Day	0	1	2	3	4	5	6	7
					27.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2			_
На	8,52	8115	8.18	8.00	7 93	808	18.02	T
DO (mg/L)	8.1	8.2	8.8	8.4	9.6	9,3	10.60	⊣
Cond. (µmhos-cm)	3410	34100	3440	3410	3410	34-20	3410	
Temp (°C)	25.1	24.2	260	24.7	24.1	24.1	25.0	1
				Fi	nal			
pH		8.14	7.97	7.82	17.87	7.68	778	1778
DO (mg/L))، 🏲	6.6	5.3	68	6.7	560	60
Temp (°C)		24.3	24-1	25.0	25.0	24.0	25.0	24.7

Analysts:

6 AH AW Ma MC RIG mc Initial; AH mc SH AH mc Final:

Comments:

Animal Source/Date Received:

Animal Age at Initiation:

QC Check:

Final Review: 00 5 24 04

C. DUBIA

Client:	City of Buenaventura	Test Species: C. dubia	
Sample ID:	SCRE (A-2, B-1, B-3, (-3)	Test Date: 3/17/04	
Test No:	0403-114, 115, 116, 117	Start/End Times: 1400 / 1310	
1	·		
Concentration	Lab Control	Concentration B-3 1001/.	
Day	0 1 2 3 4 5 6 7	Day 0 1 2 3 4 5 6 7	.222.2
Zv., hyn. e new?	Initia	Initial Initial	****
pH	75 7.4 8.3 7.5 8.2 7.5 13	pH 3.42 8.30 DO (mg/L) 104 7.7	2000 2000
DO (mg/l.) Cond. (jimhos-cm)		DO (mg/L) 104 7.7 011 dead Cond. (μmhos-cm) 4300 2500	
Temp (°C)	25.9 ay 25.0 26.0 24.2 25.6 247	Temp (*C) 25.1 25.8	
	mc Final	Final	230
pH	7.19 8.09 7.470 8.22 800 7.91 8.06	PH 5.37 DO (mg/L) 7.37	
DO (mg/L)	7.4, 9.1 5380 8.2 8.2 9.1 3.3 25.7 25.0 255 24.9 24.0 25.1 25.0	DO (mg/L) 7.4 (25.4)	
Temp (°C)	25.7 25.0 25.5 24.9 24.0 25.1 250	101110 0	—
	A A 1004	Concentration (-2 100%.	
Concentration	A-1- 1001.		,
Day	0 1 2 3 4 5 6 7	Injual	•
pH	788 762 803 7.84 7.34 7.74 7.99	PH 904 7.79 8.10 7.78 8.07 1.94 8.07	
DO (mg/L)	8.7 8.9 8.8 8.6 8.9 9.5 8.7	DO (mg/L) 3-5 8.3 9.1 9.7 9.2 9.7 9.5	
Cond. (µmhos-cm)		Cond. (µmhos-cm) 3078 8000 3070 3070 3140 3050 3060 Tomp (°C) 253 859 15:0 244 246 34.3 242	
Temp (°C)	25.3 24.7 25.0 244 24-7 24.0 25.2	Final	
рН	829 845 8863 8.408.38 8.34 84	pH 8,25 8.27 8.36 8.29 8.76 8.29 8.3	<u> </u>
DO (mg/L)	7.4 21 16282 8.1 80 1.5 23	DO (mg/L) 7.5 81 8.2 8.1 8.0 9.3 5.4 Temp (°C) 25.7 25.8 25.5 24.9 24.0 25.1 25.	드
Temp (*C)	25.4 25.0 25.5 24.9 24.0 25.1 250	Temp (°C) 25.7 25.0 25.5 24.6 24.0 25.1 25.	<u>. </u>
r 	·····		
Concentration	3-1 100%	Concentration	
Day	0 1 2 3 4 5 6 7	Day 0 1 2 3 4 5 6 7	
- 14	7.75 7.59 7.89 7.70 7.72 7.71 7.98	pH Hq	
DO (mg/l.)	7.75 7.59 7.89 7.70 7.72 7.71 7.98 8.5 8.3 8.9 94 8.6 9.8 8.6	DO (mg/L)	
Cond. (junhos-cm)	2500 2520 25100 2530 2520 2520 2520	Cond. (µmhos-cm)	
Temp (°C)	249 25.1 25.0 243 249 24.0 252	Tomp (*C)	2 8 2
pH	8.32 8.48 8.72 206 8.47 8.38 8.49	pH Hq	
DO (mg/L)	7.4 80 8.1 7.9 7.9 9.2 8.2	DO (mg/L)	
Temp (°C)	25.7 25.0 25.5 21.9 24.0 25.1 236	Temp (°C)	
	,	0 1 2 3 4 5 6 1	7
	1 - 1 - 1 - 1 - 1		
Animal Source/Date	Rocelvod: Internal/NA	Analysts: Initial: AW SD MC MC P4 AH AW	
	Rocelved: Internal/NA L24 hours	$ \mathcal{S}_{1} \mathcal{S}_{1}$	2
- Animal Age at Initia	tion: 227 Nours	Final:	ت
Comments:	Initial Readings from day 2 + 3 were switched	·	
QC Check:	110 4/13/04	Final Roview: 6/24/04	
de elizati			

Client:

Test Species: C. dubia

Sample ID:

Test Date:

Test No:

8403-114,115,116,117

Start/End Times: 1400

Concentration	SC	A-2	3.1	PPT				
Day	0	1	2	3	4	5	6	7
				Ini	tial			
На	1772	7.84	17.96	17)તા	7.92	7.74	8.03	
DO (mg/L)	8.2	33	8.9	8.9	8.9	9.4	9.1	7
Cond. (µmhos-cm)	560D	5590	5600	5646	5610	5610	5600	7
Temp (°C)	5 4.3	314	24.2	25.D	24-5	1246	246	7
				Fi	nai			
рН	<u> </u>	7,95	1309	310	8.08	8.08	792	18-0
DO (mg/L)	j	8.7	18.i	ક્તા	8.1	8.3	8.6	8.2
Temp (°C)		35.7	25.0	25.5	24.9	<i>⊒</i> 4.0	ZS.1	250
					,			
Concentration	SC 8	3-1 1.0	LOPT		-			· · · · · · · · · · · · · · · · · · ·

Concentration	SC 8	3-1 1.0	HOPT		-			
Day	0	1	2	3	4	5	6	7
				Ini	tial			
pН	7.80	00.8	8.11	817	3.00	7.93	7.80	
DO (mg/L)	2.3	17.9	8.6	8.8	8.7	9.5	9.4	7
Cond. (µmhos-cm)	9300 OS	5300	2700	2760	2710	2700	2510	
Temp (°C)	(36.)	65.7	24.1	25.0	24.5-	æ4.3	24.2	
				Fi	gal			
pH		8.৩১	200	80.8	8.11	806	8.00	8.35
DO.(mg/L)		8.9	7.9	4,0	8.2	8.2	8.3	7-9
Temp (°C)		25.4	750	25.5	249	24.0	25.1	250

Concentration	SC :	B-3 sw	+,4 ppt	-				
Day	0	1	~~	3	4	5	6	7
			W	- Ir	nitial			
pН	7.65	2.77.			T	1	1	
DO (mg/L)	6,4	きんろう			AIL			7
Cond. (µmhos-cm)	19930	19,900			Last			7
Temp (°C)	241	246						7
				F	inal			
PH	j	\gamma \cdot				1	1	
DO (mg/L)]	8.4						
Temp (°C)]	25 ,4			7			

Concentration	SC	C-3	1.700	+	·			
Day	0	1	2	3	4	5	6	7
				Ini	tial			
pН	7.87	18.02	8115	8.18	8.00	7,93	80.8	
DO (mg/L)	8.3	\mathcal{S}_{\cdot}	8.2	8.8	8.4	9.6	9.3	
Cond. (µmhos-cm)	3380	2410	3466	3440	34(10	3410	3420	7
Temp (°C)	25.5	25.1	24.2	25,0	24.7	24.1	24.1	
				Fi	nal			
pН		7.99	1805	8.07	8.09	8.05	8.02	8.6
DO (mg/L)		9.7	7.7	8.0	7.9	8.3	8.2	7.52
Temp (°C)		25 4'	25.0	25.5	24 9	24.0	75.1	250

Analysts:

Initial:

4 SD me me AH RG AW MC SD Ry An AW Final:

Comments:

Animal Source/Date Received:

NA-Internal

Animal Age at Initiation: しるりんら

UC 4/13/04 QC Check:

Final Review: 8 5/24/04

S. CAPRICORNUTUM

Water Quality Measurements Algal Growth Inhibition

Test Species: 5-Capricornutum

Client:

City of Buenaventura

Test Date: 3 17 04

Sample ID:

Santa Clara River Estrery

Start/End Times: 1735

Test No:

Analyst: 🙊

	Initial Readings				Final R	eadings
Concentration	D.O. (mg/L)	Conductivity (umhos-cm)	Alkalinity (mg/L)	Hardness (mg/L)	D.O. (mg/L)	Conductivity (umhos-cm)
Lab control	7.6	93.5	. 14	14	80	96.5
Salinity control A-2	7. 3	<i>55</i> 20	21	7 1000	8.3	5410
A-2 100	8.4	5280	164	71000	8.5	5140

		0 Hour	24 Hour	48 Hour	72 Hour	96 Hour
pH/Temperature (°C):	control	7,60/247	7.62 /26.1	6.86/25.9	8.66 25.3	8.41/256
pH/Temperature (°C):	SC A2	7.74/243	7,41 /26.L	7.13/26.0	8:33/24.0	9.08/25.6
pH/Temperature (°C):	100	7.92/24.5	840 1266	3.20 26.29	8.84 24.6	949/256
pH/Temperature (°C):		Í			•	
pH/Temperature (°C):						
pH/Temperature (°C):				1		
pH/Temperature (°C):					<u>-</u>	
proteinperature (°C):			L	<u> </u>	1	

Comments:	
Comments.	

@ exceeds required temp. max of 26°C - champer temp adjusted

Me 4/14/04

Final Review: 2/4/04

Water Quality Measurements Algal Growth Inhibition

Test Species: S. Capricorn wtom

Test Date: 3/104

Client:

City of Brenaventira

Start/End Times: 1735/1630

Sample ID:

Test No:

0403-119

Analyst: 💆

Initial Readings				Final Readings	
D.O. (mg/L)	Conductivity (umhos-cm)	Alkalinity (mg/L)	Hardness (mg/L)	D.O. (mg/L)	Conductivity (umhos-cm)
7.6	93.5	14	14	<u> ಶಿ.೦</u>	965
7.7	2760	15	0001	8.7	2680
8.7	2570	167	71000	9.3	2420
				2.	
	7.6 7.7	D.O. Conductivity (umhos-cm) 7.6 93.5 7.7 2760	(mg/L) (umhos-cm) (mg/L) 7.6 93.5 14 7.7 2760 15	D.O. (mg/L) Conductivity (umhos-cm) Alkalinity (mg/L) Hardness (mg/L) 7.6 93.5 14 14 7.7 2760 15 >1000	D.O. Conductivity Alkalinity Hardness D.O. (mg/L) (mg/L) (mg/L) (mg/L) 7.6 93.5 14 14 8.0 7.7 2760 15 >1000 8.7 8.7 2570 167 >1000 9.3

		0 Hour	24 Hour	48 Hour	72 Hour	<u>96 Hour</u>
pH/Temperature (°C):	control	7.60/24.2	762 264	6.84259	8.66/25.3	841/25.6
pH/Temperature (°C):	SC_	7.77/243	7,53 /26.6		7.75/247	8,92/25.6
pH/Temperature (°C):	100	7.87/24.3	8.48 /36.LJ	8.37/26.4	8.91/249	9.52/25.6
pH/Temperature (°C):						
pH/Temperature (°C):						<u> </u>
pH/Temperature (°C):						
pH/Temperature (°C):]	<u> </u>		<u> </u>

Com	mei	nte-
COIII	IIIEI	IID.

exceeds required temp max of 4°C - chamber temp adjusted

see 4/14/04

Final Review: 24 5/4/04

Water Quality Measurements Algal Growth Inhibition

Test Species: S. Capricornutum

Client:

Sample ID:

Test No:

Test Date: 3 17 104

Start/End Times: 1735 / 1630

Analyst:	aft.
----------	------

	Initial Readings			Final Readings		
Concentration	D.O. (mg/L)	Conductivity (umhos-cm)	Alkalinity (mg/L)	Hardness (mg/L)	D.O. (mg/L)	Conductivity (umhos-cm)
control	7.4	93.5	14	14	8.1	93.4
control B-3	7.7	19670	49	71000	7.5	19600
B-3 100	9.6	19940	240	71000	1.1	20200
	-					

		0 Hour	24 Hour	48 Hour	72 Hour	96 Hour
pH/Temperature (°C):	control	7.60/24.2	7.58/263	6 86 /25.9	7.83 /25.0	8.65/25.6
pH/Temperature (°C):	·	8.12 /24.7	7,69 /26.6	7.45/ 2630	7:79 243	8-15/ 256
pH/Temperature (°C):	100			8.45 26.3	8.71/24.9	856/25.6
•		2 Cy71C7		 		
pH/Temperature (°C):				 		
pH/Temperature (°C):				+	 	┼
pH/Temperature (°C):		ļ			 	
pH/Temperature (°C):					<u></u>	

~	~~	***	on	ts:

Dexcelled required temp may of U°C - champer temp adjusted

Lie 4/14/04 Final Review: 8/14/04

Water Quality Measurements Algal Growth Inhibition

Test Species: S. capricornutum

Client:

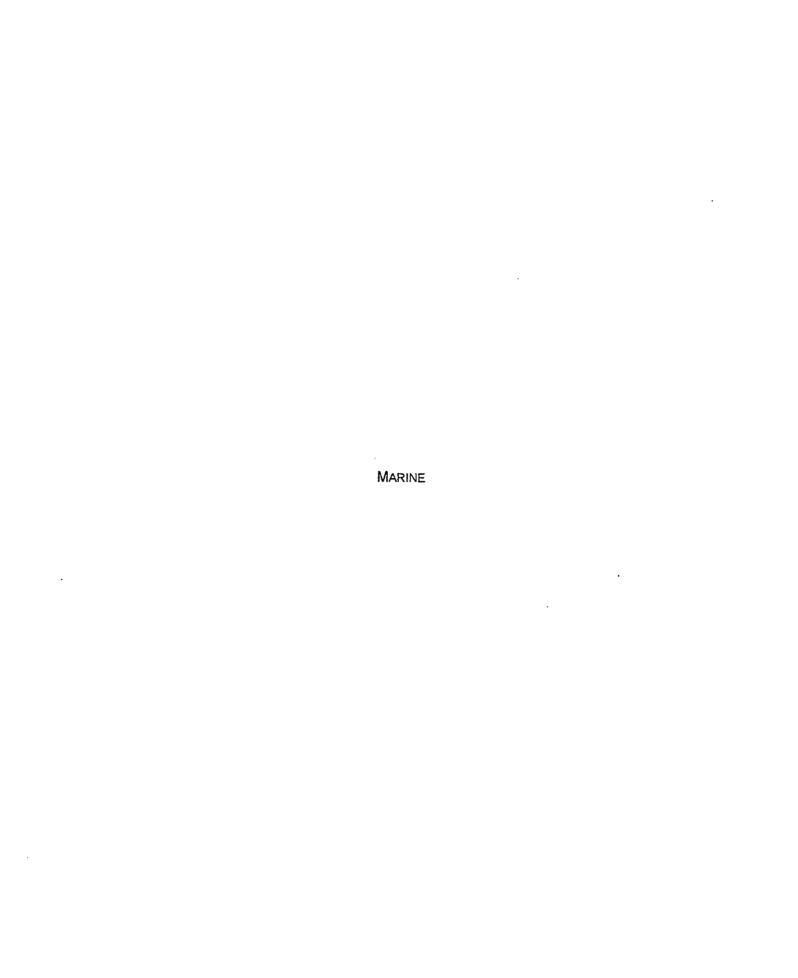
City of Brenaventura

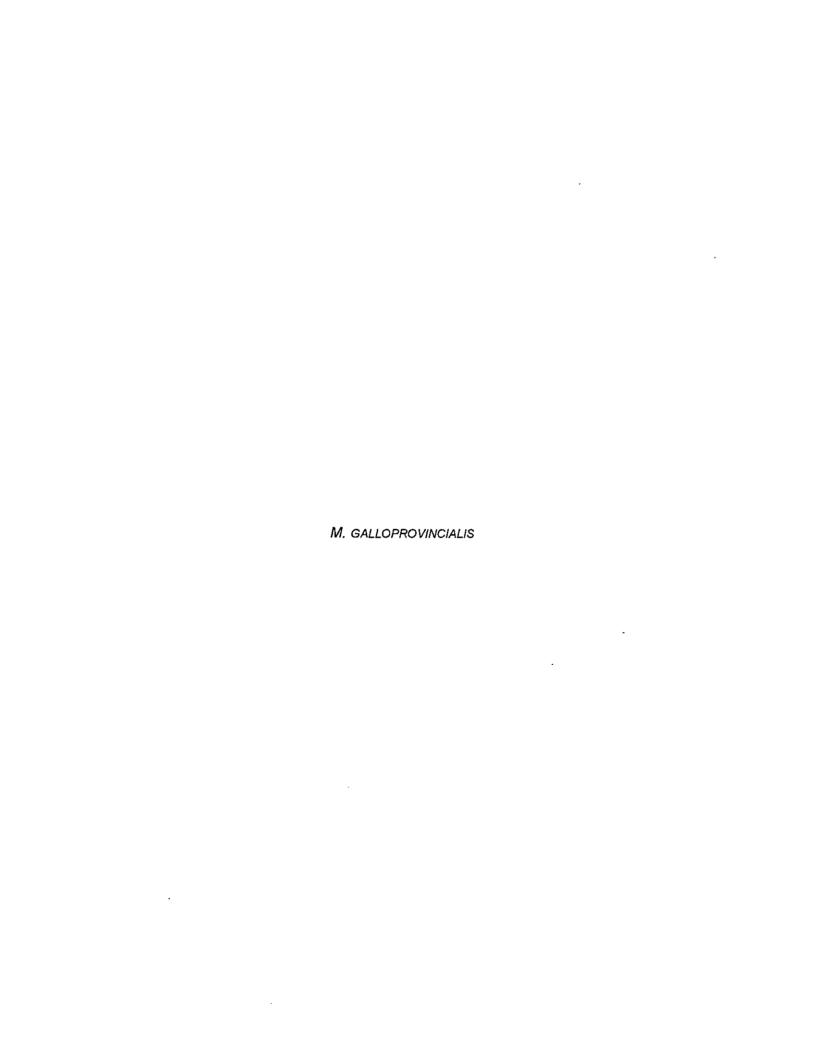
Sample ID:

Test No:

0403-101

Test Date: 3 17 04


Start/End Times: 1135/(63v


!	Initial Readings			Final Readings		
Concentration	D.O. (mg/L)	Conductivity (umhos-cm)	Alkalinity (mg/L)	Hardness (mg/L)	D.O. (mg/L)	Conductivity (umhos-cm)
Lab trol	7.4	93.5	14	14	8.1	93.4
Salinity control C-3	7.7	3260	15	> 1000	8.3	3320
C-3 100	9.4	3150	345	>1000	1.7	2770

		0 Hour	24 Hour	48 Hour	72 Hour	96 Hour
pH/Temperature (°C):	control	760/24.2	7.58 /26.3	6.86(25.9	783 250	865/256
pH/Temperature (°C):	sc	7.79/24.9	7.56 /ZGH	7.51/2629		8.921 25,6
pH/Temperature (°C):	100	8.08/24.7	8,25 / 26.4	8.6/263	8.41 24.6	8.48/25.6
pH/Temperature (°C):						
pH/Temperature (°C):		-	,		-	
•					-	
pH/Temperature (°C):						
pH/Temperature (°C):		<u> </u>	<u> </u>		<u> </u>	<u> </u>

Co	m	m	4	'n	c	

@ exceeds tomp max of usc - chamber temp as

AMEC Earth & Environmental Bioassay Laboratory 5550 Morehouse Dr. Suite B San Diego, CA 92121

Physical and Chemical Measurements of Test Solutions Salt Water Bioassays

Client:	City of Brenaventura A-2	Analyst:	JZ
Contact:	NA '	Test Start:	3/15/04
Test No.:	0403-106	Test End:	3/21/04
		Date Collected:	3/19/04

Sample ID or Conc. 76		DO (mg/L)			pH (pH units))		Salinity (ppt)	·····		Temp °C	
	0	24	48		24		0		48	0	24	48
LC	\$.2	9.1	8.2	8,06	8.14	95.02	30	29.5	29.63	14.8	15.0	14.9
RC	7.6	9.8	8.3	8.06	7.07	8.04	30	36./	30.2	14.8	14.8	14.7
6.25	8,2	9.0	8.0	8.04	8.05	8.07	30	≥4.9	30.1	14.8	14.7	14.7
12.5	8,7	9,1	8.1	8.02	8.05	9.07	7 0	30.2	30.2	14.8	14.7	14.9
25	8.1	۹,۱	3.0	7.97	8.00	8.10	30	304	30.1	14.8	14.6	150
50	8.1	9,1	7.9	7.92	8.11	8.12	30	30.0	30.1	14.8	14.6	14 9
67	8.1	9.1	80	7.88	8.14	3.19	30	30.1	30.1	14.8	14.6	14.9
												
											 	·
	L							1	<u> </u>			

Comments:				
		······································		
			- 1	
QA Check:	UC 4/2/04	· <u>'-</u>		

Brine Dilution Worksheet

Client:

City of Buenaventura

Analyst: JR

Sample ID:

Santa Clara River Estuary A2

(9 Test Date: 03/17/2004

Test No:

0403-106

Test Type: Bivalve Embryo Dev.

Salinity of Effluent Salinity of Brine

3.1 85 30

Target Salinity
Test Dilution Volume

30 150

Salinity Adjustment Factor:

TS - SE

TS = target salinity

SB - TS

SE = salinity of effluent

SB = salinity of brine

Salinity Adjustment Factor =

0.49

Concentration %	Effluent Volume (mL)	Salinity Adjustment	Brine Volume (mL)	Dilute to to: (mL)
Control	NA	NA _	NA	150
6.25	9.4	0.49	4.6	150
12.5	18.8	0.49	9.2	150
25	37.5	0.49	18.3	150
50	75	0.49	37	150
67	101	0.49	49	150

Di Volume

Brine Contro	ol 90	0.55	49	150	I

total brine 1

167.3

Brine Control Salinity Adjustment Factor

Brine Control Calculation:

TS - 0 SB - TS

DC: MC 4/28/04

AMEC Earth and Environmental, Inc. San Diego Bioassay Laboratory 5550 Morehouse Drive. Suite B San Diego, CA 92121 AMEC Earth & Environmental Bioassay Laboratory 5550 Morchouse Dr. Suite B San Diego, CA 92121

Physical and Chemical Measurements of Test Solutions Salt Water Bioassays

Client:	Brenquentura B-1	Analyst:	JR
Contact:	NA	Test Start:	3/15/04
Test No.:	0403 - 107	Test End:	3/21/04
		Date Collected:	3/19/04

		DO			pH			Salinity			Temp	
Sample ID		(mg/L)			(pH units))		(ppt)			°C `	
or Conc. 10	0	∷ 24 ⋯	· 48 · · ·	0	24	48	0		48	0	24	48
LC	8.2	9.1	8.2	8.06	8.14	8.02	30	29.5	29.8	148	15.0	14.9
BC	7.8	9.0	311	8.08	8.04	8.04	70	29.3	79.3	£ 14.8	84.7	14.8
6.25	8.1	9.0	<u> </u>	8,04	8.02	8.06	30	29,9	29.9	14.8	14.6	14.9
12,5	8.2	9,0	8.1	8.01	875	8.07	30	30.0	30.0	14.8	14.4	14.9
77	8,2	9.1	9.1	7,95	ಕ್ಕುಕ	ይ ዕገ	30	24.8	29.9	14.8	14.6	14.9
20	8.1	9,0	81	7.89	8.10	9.09	30	29,9	30.0	14.8	14.6	14.8
66	8.1	7.0	8.2	7.84	8.13	8.11	30	29.9	30.0	148	_14.6	14.9
				- <u></u> -								

Comments:	. share lab control with 4-2		
QA Check:	Me 4/21/04		

Brine Dilution Worksheet

Client:

City of Buenaventura

Analyst: JR

Sample ID:

Santa Clara River Estuary B1

Test Date: 03/27/2004

Test No:

0403-107

Test Type: Bivalve Embryo Dev.

Salinity of Effluent

1.4 85

Salinity of Brine Target Salinity

30 150

Salinity Adjustment Factor:

Test Dilution Volume

TS - SE

TS = target salinity

SB - TS

SE = salinity of effluent

SB = salinity of brine

Salinity Adjustment Factor =

0.52

Concentration %	Effluent Volume (mL)	Salinity Adjustment	Brine Volume (mL)	Dilute to to: (mL)
Control	NA	NA	NA	150
6.25	9.4	0.52	4.9	150
12.5	18.8	0.52	9.8	150
25	37.5	0.52	19.5	150
50	75	0.52	39	150
66	99	0.52	51	150

DI Volume

	Brine Control	94	0.55	51	150
--	---------------	----	------	----	-----

total brine 175.8

Brine Control Salinity Adjustment Factor

Brine Control Calculation:

TS - 0

6C:MC 4/28/04

SB - TS

AMEC Earth and Environmental, Inc. San Diego Bioassay Laboratory 5550 Morehouse Drive. Suite B San Diego, CA 92121 AMEC Earth & Environmental Bioassay Laboratory 5550 Morchouse Dr. Suite B San Diego, CA 92121

Physical and Chemical Measurements of Test Solutions Salt Water Bioassays

Client:	Brenzuentura B-3	Analyst:	VR
Contact:	NA	Test Start:	3/19/64
Test No.:	0403-108	Test End:	3/21/04
		Date Collected:	3/15/04

		DO		pl-I		Salinity				Temp		
Sample ID	<u> </u>	(mg/L)		(pH units)		(ppt)			°C			
or Conc.	0	24	48	0	24	48	Û	24	48	0	24	48
LC	8,5	9.1	8.0	8.08	8.06	8.03	30	29,8	29.9	14.8	14.7	14.9
BC	7.8	9,1	Bil	8.08	8.01	204	30	29.9	30.0	14.8	14.7	14.9
6,25	8.1	9.1	7.9	8.08	8.03	3.01	30	30%	30.3	14.8	- 14.6	14.9
12.5	8,2	9.0	7.9	8,10	308	8 04	30	29,4	24.5	14.8	14.5	15.1
<u> </u>	8,2	9.0	8.1	8.12	8,1/	8.14	30	30.3	30.3	14.8	14.5	15.1
وړ	8.1	9.0	8.0	8.17	8.19	8.17	30	29.7	29.9	14.8	14.5	15.1
66 75 JK	8,2	9,0	8.1	8.18	8,24	8.29	30	₹6,3	30.4	14.8	14.6	15.0
												13-
												-
										-		

Comments:			
			,
QA Check:	LLE 4/21/04	. 1	

Brine Dilution Worksheet

Client:

City of Buenaventura

Analyst: TR

Sample ID: Santa Clara River Estuary B3

Test Date: 03/47/2004

Test No:

0403-108

Test Type: Bivalve Embryo Dev.

Salinity of Effluent Salinity of Brine

12.1 85 30

Target Salinity Test Dilution Volume

150

Salinity Adjustment Factor:

TS - SE

TS = target salinity

SB-TS

SE = salinity of effluent

SB = salinity of brine

Salinity Adjustment Factor =

0.33

	Effluent Volume	Salinity	Brine Dilute to:		
Concentration %	(mL)	Adjustment	(mL)	(mL)	
Control	NA	NA	NA	150	
6.25	12:5 94	0.33	4.1	150	
12.5	18.8	0.33	6.1	150	
25	37.5	0.33	12.2	150	
50	75	0.33	24	150	
75	113	0.33	37	150	

DI Volume

Brine Control	68	0.55	37	150

total brine 120.4

Brine Control Salinity Adjustment Factor

Brine Control Calculation:

TS - 0

60.me 4/28/09

SB - TS

AMEC Earth and Environmental, Inc. San Diego Bioassay Laboratory 5550 Morehouse Drive. Suite B San Diego, CA 92121

AMEC Earth & Environmental Bioassay Laboratory 5550 Morehouse Dr. Suite B San Diego, CA 92121

Physical and Chemical Measurements of Test Solutions Salt Water Bioassays

Client:	Buenquentura C-3	Analyst:	JK
Contact:	NA NA	Test Start:	3/19/04
Test No.:	0403-109	Test End:	3/21/04
		Date Collected:	3/19/04

		DO	· · · · · · · · · · · · · · · · · · ·		pH	-	- <u>-</u>	Salinity			Temp	
Sample ID or Conc. 70		(mg/L)			(pH units)			(ppt)			°C	
or Conc. 70	0	24	48	0	24	48	0	24	48	0	24	48
LC	8.2			8.06			30			148		
BC	7.8	9.0		8.08	304	Strey	30	29.3		14.8	14.7	<u> </u>
6.25	8.2	9,1	7.9	8.03	8.06	3.17	36	29.7	29.8	14.8	14.5	14.9
157	8,2	9.1	7.9	8.01	8018	8.70	30	30.0	301	148	الإرج	14.9
25	8,2	9,1	8.0	7.96	8.13	8.22	30	30.0	301	14.8	14,5	14.8
UD	811	9.1	8.1	7.90	8.19	B.27	30	30.1	26.1	14.8	14.5	14.8
766 JK	8,0	9,0	3.1	7.89	8-21	829	30	30.0	20.0	14.8	14.5	14.45
												, <u>, </u>

Comments:	share controls with B.3	
QA Check:	MC 4/4/04	

Brine Dilution Worksheet

Client:

City of Buenaventura

Analyst: The

Sample ID:

Santa Clara River Estuary C3

Test Date: 03/17/2004

est but

Test No:

0403-109

Test Type: Bivalve Embryo Dev.

Salinity of Effluent 1.7
Salinity of Brine 85
Target Salinity 30
Test Dilution Volume 150

Salinity Adjustment Factor:

TS - SE

TS = target salinity

SB - TS

SE = salinity of effluent

SB = salinity of brine

Salinity Adjustment Factor = 0.51

Concentration %	Effluent Volume (mL)	Salinity Adjustment	Brine Volume (mL)	Dilute to to: (mL)
Control	NA	NA	NA	150
6.25	9.4	0.51	4.8	150
12.5	18.8	0.51	9.6	150
25	37.5	0.51	19.3	150
50	75	0.51	39	150
66	99	0.51	51	150

DI Volume

Brine Control	93	0.55	51	150
		total brine	174.3	

Brine Control Salinity Adjustment Factor

Brine Control Calculation:

TS - 0

QC:MC 4/28/04

SB - TS

AMEC Earth and Environmental, Inc. San Diego Bioassay Laboratory 5550 Morehouse Drive. Suite B San Diego, CA 92121

AMEC Earth & Environmental Bioassay Laboratory 5550 Morehouse Dr., Suite B San Diego, CA 92121

Raw Datasheet Water Quality Measurements Marine Chronic Bioassay

Client:

City of Buenaventura SCRE A-1

Sample ID: Test No:

Test Species: A. affinis

Test Date: 3

Sart/End Times: 1500

Concentration	lab	Cont	701 #	<u> </u>				
Day	0 !	1	2	3 i	4	5)	6	7
LOY	0.865-60.8886.0066				2	<u> </u>	0-7	8.6688.6881888 4.66888688
На	8.00	7.95	494	194	8.01	8.01	8.03	
DO (mg/L)	300	7.8	8.8	8.2	8.2	87_	8.00	
Salinity (ppt)	29.6	29.9	3.8 29.8	199	300		292	19
Temp (°C)	19.4	20.0	19.7	ال ازع.انية	20.9	_19.5	20.4	
				199 F	ial .	7 01		779
Нq		7:33	7.74	7-75	7.82	1.81	122	6.1
DO (mg/L)		7.2		68	6.3	20.4		20.2
Temp (°C)		20.4	20.3	20.2	20.3	JU . T	120.6	20, -
			, - , -	<u></u>				
Concentration	[5/14	- Con	trol =	#D				
Day	0	1	1 2	3	4	5	6	7
	3838388. 2008	××××××××××××××××××××××××××××××××××××××		ini	tial			Localitation
рН	8,65	12.8	18.62	8.59	8.53	5.51	3.51	-
DO (ma/L)	7.1	7.5	7.4	7.60_	6.4 (147 779	5.85	-
Salinity (ppt)	29.9	300	29.9	129.9	30.0	29.9	19.9	-
Temp (°C)	20.9	20.	1,9,9	25.tm2	20.4	<u> </u>	<u> </u>	10000000000000000000000000000000000000
				19.9 =	nal	- 3 <i>U</i>	⊺ छ -।।	8.20
На		8.37	8.28		8.30	8.34	15:4	5.3
DO (mg/L)	7	6.7	<u>6.3</u>	<u> </u>	6.1	90.0	30,6	20.4
Temp (°C)	ገ	20 .4	120-4	20.5	30.4	000	1 802	1 20:-
			<u></u> .					
Concentration	1/0.2	51/						
Day	1 1/0	1	2	3	4	5	6	7
				ln .	iliai		· · · · · · · · · · · · · · · · · · ·	Isomorphis
На	18-41	844	18.61	3.59	8.56	8.54	18,47	-
DO (mg/L)	7.1	7,5	14.3	1-4-60	7.7		29.9	-
Salinity (ppt)	30.	30.0	29.8	29.9	139.8	30.0	100	-[
Temp (°C)	20.7	20 1	120.8	ES.TM	£ 20.6	120.4	17-7	10,000,000
				/00 F		TV: LU	12,16	الاراد
рН		4.23	8 26	8.27	8.23	18.54	3.0	15.8
DO (mg/L)	7	6.6	6.5	6.5	20.4	20 2	15.9 120.6	120.
DO (IIIgira)	7		1 4 5 .1		1_1// 4	1 Z V X	120.6	<u> </u>
Temp (°C)	All the second of the second of	<u> 20.5</u>	120.4	20.5	100			
	100.00.0.000000.00	<u> </u>		1 20.3		·		
	12.0		20.4	1 20.3				_
Temp (°C) Concentration	12.0		20.4	3	1 4	5	6	7
Temp (°C)				3	4			<u> </u>
Temp (°C) Concentration Day		5'/.	2	3	4 Itial 8.55	18.54	1 8.45	<u> </u>
Temp (°C) Concentration Day pH				3 3 56 4.4	4 llia 8.55	8.54	9.45	
Temp (°C) Concentration Day pH DO (mg/L)	0 8.42 7.1	5'/. 1 1845 174	8.58 7.5	3 18.56 17.7 121.8	4 Ilia 8.55 1.2 29.8	8.54	1 0.45 6.9 21-1	
Temp (°C) Concentration Day pH DO (mg/L) Salinity (ppt)	8.43 30.1	5'/. 1 1845 174 130.0	8.58 7.5	3 8-56 74.7 29.8	4 Ilia 8.55 1.2 29.8 30.5	8.54	1 9.45 6.9 29-1	
Temp (°C) Concentration Day pH DO (mg/L)	0 8.42 7.1	5 //. 1 1 1 8.45 1 7.4 1 30.0 1 20.1	2 8.58 3.5 29.4 20.4	3 \$-56 4.7 29.8 20.1	4 Itial 8.55 1.2 29.8 30.5	8.54 7.4 30.0 20.5	299 299 299 200	
Temp (°C) Concentration Day pH DO (mg/L) Salinity (ppt)	8.43 30.1	5'/. 1 845 7.4 30.0 20.1	2 8.58 1.5 29.1 20.1	3 \$-50 4.4 29.8 20.1	4 tia 18.55 1.2 29.8 20.5 inal	8.54 7.4 30.0 20.5	8.45 6.9 27-7 20.0	811
Temp (°C) Concentration Day pH DO (mg/L) Salinity (ppt) Temp (°C)	8.43 30.1	5 //. 1 1 1 8.45 1 7.4 1 30.0 1 20.1	8.58 7.5 29.7 20.7 8.27 6.60	3 \$-56 41.4 29.8 20.1 8.27 6.5	4 tia 8.55 1.2 29.8 29.5 inal 8.13 6.3	B.54 7.4 36.0 20.5 8.57	8.45 6.9 27.7 20.0	8.1
Temp (°C) Concentration Day pH DO (mg/L) Salinity (ppt) Temp (°C)	8.43 30.1	5'/. 1 845 7.4 30.0 20.1	2 8.58 1.5 29.1 20.1	3 \$-50 4.4 29.8 20.1	4 tia 18.55 1.2 29.8 20.5 inal	8.54 7.4 30.0 20.5	8.45 6.9 27-7 20.0	8.1
Temp (°C) Concentration Day PH DO (mg/L) Salinity (ppt) Temp (°C) PH DO (mg/L)	8.43 30.1	5'/. 1 1845 17.4 130.0 120.1 20.1 20.5	8.58 7.5 29.7 20.7 8.27 6.66 1 20.4	3 \$-50 41.4 29.8 20.1 8.27 6.5 20.5	4 tia 8.55 7.2 29.8 20.5 inal 8.23 6.3 20.4	8.54 30.0 20.5 8.31 6.1 24.3	8-16 8-1 8-16 20-0	8.1 5.6 20.
Temp (°C) Concentration Day PH DO (mg/L) Salinity (ppt) Temp (°C) PH DO (mg/L)	8.43 30.1	5'/. 1 1 1 845 1 74 1 30.0 1 20.1 8.23 6.7	8.58 7.5 29.7 20.7 8.27 6.60	3 \$-56 41.4 29.8 20.1 8.27 6.5	4 tia 8.55 1.2 29.8 29.5 inal 8.13 6.3	8.57 30.0 20.5 8.57 6.1 20.3	8.45 6.9 27.7 20.0	8.1

Comments:

Animal Source/Date Received:

ABS/3/13/04

SH

Animal Age at Initiation: __

Final Review: 044 5/24/04

inc

AMEC Earth & Environmental Bioassay Laboratory 5550 Morehouse Dr. Suite B San Diego, CA 92121

Raw Data Sheet Initial and Final Chemistries Seven Day Chronic Bioassay

Test Species: Alaffinis

Client:

City of Buenaventura

SCRE A7

Test Date/Time: 317/04

Sample ID:

Test No: 0403-094

Concentration	25	J		_,,			,	,
Day	0	1	2	3	4	5	6	7
				In	itial			
рН	8.43	6.38	8.53	8-51_	8-51	8,50	8.42	_
DO (mg/L)	7.3	7.4	7.60	78_	73	7.5	70_	_
Salinity (ppt)	301	30.0	29.7	29.7	29.8	30.0	29.9	_
Temp (°C)	207	20.0	26.6	20.1	20.5	20.5	19.9	
1				F	mal			
рΗ		8.24	8.26	8.26	8,2-3	8.28	8.19	8,19
DO (mg/L)	\neg	6.8	6.5	6.4	6.2	6.1	6.0	5.8
Temp (°C)		26.5	20.4	20-5	20.4	20.3	20.6	20.5

Concentration	501	· .						
Day	0	1	2	3	4	5	6	7
					nitial			
pН	8.43	8.30	જ.વવ	8.41	8.42	B.42	8.35	_
DO (mg/L)	7.6	7.5	7.9	8.1	7. 0	7.9	7.4	_
Salinity (ppt)	30.1	30.1	29.6	29.8	29.7	30.0	29.8	_
Temp (°C)	209	20.0	20.3	201	20.5	20.5	19-9	
1				1	inst			
рН	1	8,27	8.24	8,26	8.26	8.29	8.19	8.21
DO (mg/L)	7	6.7	6.5	6.5	6. 2	6.2	5.7	5.8
Temp (°C)		20-5	20.4	20.5	20.4	20.3	20.6	20.6

Concentration	100%							
Day	0	1	2	3	4	5	6	7
				Ir	ritial			
рН	826	8.17	8.36	8-28	8.30	8.30	1825	
DO (mg/L)	8.2	7.7	9.3	8.9	8.9	8.7	8,2	
Salinity (ppt)	303	30.3	29.60	29.7	29.7	30.1	29.7	
Temp (°C)	21.0	20.1	200	20.2	20.5	20.3	19.9	
				F	inal		- W 25	
рН		8.24	8.21	8.22	8,27	8.27	8.22	4.27
DO (mg/L)		6.7	6.4	6.3	6.1	6.0	5.6	5.8
Temp (°C)		20.5	20.4	20.5	20.4	203	20.6	20.6

Animal Source:

QA Check:

Analysts: AH SH MC, AW FG

Date Received: 3 13 04

Final Review: 44 512104

AMEC Earth & Environmental Bioassay Laboratory 5550 Morehouse Dr., Suite B

Raw Datasheet Water Quality Measurements Marine Chronic Bioassay

San Diego, CA 921	21	A
Client:	Coty of Buenaventura	Test Species: A.
Sample ID:	SCRE B-1	Test Date: 3/17(04 Sart/End Times: 1500 11500
Test No:	0403-695	Saidello Innes
Concentration	on lab Control #1	4 5 6 7
Day	0 1 1 2 1 0	14. 22. 24. 00.00.000.000.000000000000000

	101-	Cont	70 ±	61				
Concentration	<u>lab</u>	COVII	1 2	3	4	5	6	7
Day	0 1	stant and (200			(El			
	2000 CO	<u> </u>	1497		8.01	B. 01	3.48W	9.05
Hq	3.00	7.95	33	8.2	8.2	3.7	200	\$ 00°
DO (mg/L)	8.(7.8	29.8		30.0	24.9	CAPSC	27 L
Salinity (ppt)	29.6	29.9	20-0	20.0	20.9	19.5	1980	17.O
Temp (°C)	19.4 _	20.0	10-0		nal			
	Tarras incomens	_ 	7.74	7.75	7.82	1.81	17.66	7,79_
pH		7.83	6,9	6.8	6.3	6.3	6.2	(a.i_
DO (mg/L)	1	7.2	20.3	20.2	20.3	20.4	20.6	20.3
Temp (°C)		20.7						
	17.0	700	tm) s	6 1 —				
Concentration	XI +				4		6	7
Day	0	1	2	3 	tial			0.0000000000000000000000000000000000000
	(5)(1)(4/10)(6)				853	18.59	18.4cm	DRSI
рН	8.65	8.61	8.62	8.51	6.4	7.4	LATAU	5.85
DO (mg/L)	7.	7.5	7.4	176	10.0	29.9	299 N	[3 c .]
Salinity (ppt)	29.9	30.0	1 19.9	1299	20 7	19.5	19.69	
Temp (°C)	120.1	201	<u> 19.9</u>	1 20.0	nal .	110		
	- I		₹,28	8.29	8.20	18.24	18.11	8.26
pH	-	8.37	6.3	6.5	0.1	6.3	5.6	15.7
DO (mg/L)	4	6.4	20.4	20.5	120.4	3.0g	20.6	212.4
Temp (°C)		20.4_	140.7	1 20 23	1,00.1	<u> </u>		
		<u> </u>						
Concentration	6.2	<u>51.</u>					6	7
Day	0	11	2	3	4	5		000000000000000000000000000000000000000
			- 2		itlal	8.57	1844	7
pН	3.62	8.29	18,61	8.56	8.55	7.4	7.0	4****
DO (mg/L)	7.1	6.7	7.4	7.5	17.1	+ 500	29.9	┪
Salinity (ppt)	30.1	299	129.3	29.8		20.4	192	1
Temp (°C)	120.9	20 ኢ	<u> 10.8</u>	120.1	<u>ට ට ර </u> inal	1 20.4		
		. 4 3 /	1 6 0 9	8.25	\ გ.2-0	1 4 .25	18.11	18.14
pH	_	8-36	8.28	6.6	6.Z	16.3	5.8	(0.0
DO (mg/L)	4	<u></u>	10.6	20.5	20.4	120.4	20 6	120.6
Temp (°C)		Z0.5	10.5	120,3	100.7	1000	1702.00	
Concentration	12.	<u>り /・</u>						7
Day	0	1	2	3	4	5	6	<u> </u>
-					iltial		7004	1
рН	9.58	8.25	8.58	8.48	18.54	8.56	8.4-4	-
DO (mg/L)	72	17.1	1 7.4	7.6	11.1	1.5	7.0	-
Salinity (ppt)	30.1	30.0	298	19.8	1299	30.0		-
Temp (°C)	205	20.1	20.8	20-2	130.6	ZO-3	19.4	[0800800800
					inel	<u> </u>	VN G	1804
рН		8.35	6.28	8.27	18.27	- 8.25	8.5	18 8 6.0
DO (mg/L)		6.7	6.5	6.6	6.3	20.3	168	
Temp (°C)		204	20.5	20.5	20.4	D-0-3	120.6	120.ce
				_		-	c	7
_			-	3	4	5	6	
	0_	1	2					
: Initial:	Aw	RG	me	mc	HA	RG	AW	

Comments:

Animal Source/Date Received: ue 4/13/04

Animal Age at Initiation: 14 days
Final Review: 46 5/2404

AMEC Earth & Environmental **Bioassay Laboratory** 5550 Morehouse Dr. Suite B San Diego, CA 92121

Raw Data Sheet Initial and Final Chemistries Seven Day Chronic Bioassay

Test Species: A. affinis

Client:

City of Buenaventura SCRE B-1

Test Date/Time: 3 17/04

Sample ID:

Test No: <u>0403-095</u>

Concentration	251.					_,		
Day	0	1	2	3	4	5	6	7
				Ir	difial			
pН	854	8,25	8.61	8.39	8.48	8-49	8.39	
DO (mg/L)	7.3	7,2	7.6	7.7	7.3	17.7	7.3	
Salinity (ppt)	30.2	301	29.7	29.8	29.8	30.0	29.9	
Temp (°C)	20.9	20-1	206	20.3	20.6	20.5	192	
				F	inal			
pН		8-33	8.26	8,23	8.23	8.27	8.17	8.17
DO (mg/L)	7	6.7	6.3	6.6	6.2	6.5	5.7	5.7
Temp (°C)		26,4	20.5	20.5	26.4	20.3	20:6	20.6

Concentration	50'	<i>J</i>						· · · · · ·
Day	- 8	1	2	3	4	5	6	7
				In	ritini			
рН	8.41	<i>\$</i> 1.8	8,42	8.32	<u> </u>	8.44	8.40	
DO (mg/L)	7.7	7.4	8.1	79	7.9	7.9	7.3	
Salinity (ppt)	30.4	30.2	29.6	29.7	39.8	30.0	299	
Temp (°C)	20.8	29,2	20.6	20.3	20.6	20.4	(4.3	
				F	inal			
pН		8.28	8.23	8.23	8.24	8.25	8-17	8.21
DO (mg/L)		6-7	6.3	6.2	6.2	6.3	3.6	5.8
Temp (°C)		20.4	20,5	20.5	20.3	20.3	20.6	20.10

Concentration	100	·/.						,
Day	0	1	2	3	4	5	6	7
				lo	itial			
рН	8.23	8.05	8.23	8-24	8.23	8.32	831	
DO (mg/L)	8.0	8.1	જે.ગ	8.3	9.3	8.1	8.0	
Salinity (ppt)	307	30.6	29.6	29.Le	29.8	30.1	30 <u>0</u>	
Temp (°C)	210	19.9	20.3	20.3	20.6	22.3	19-0	
				F	inal			
pН		8,23	8.20	8.20	8.77	18.24	8.22	8.27
DO (mg/L)		6.7	6.4	6.3	6.1	5.5	5.6	59
Temp (°C)		20.4	20.5	20.5	20.3	26.3	20.6	20.6

Analysts: AH, SH, MC. AW, 24

Animal Source:

Date Received: 313

QA Check:

10 4/13/04

Final Review:

AMEC Earth & Environmental Bioassay Laboratory 5550 Morehouse Dr., Suite B San Diego, CA 92121 Raw Datasheet Water Quality Measurements Marine Chronic Bioassay

San Diego, CA 92121 Test Species: A. affinis aty of Buenaventura Client: Test Date: SCRE B-3 Sample ID: Sart/End Times: 0403-096 Test No: COVITION Concentration Day anitiel. 8.00 7.95 DO (mg/L) Salinity (ppt) 19,6 209 1 20 - 1 Temp (°C) 17.82 787 pН 7.0 7,2 20.1 DO (mg/L) 20.7 120.3 20.4 Temp (°C)

Concentration	TCI	F (1	ntrol	¥ 2				
Dav	1 00.1	1 1	2	1 3	4	5	6	7
209					itial	⊥ 8.5 <i>4</i>	<u>। ४.८।</u>	l .
pH	865	18.61	8.65	1 3.62	18.53	7.4	5.9	
DO (mg/L)	7.0	7.5	129.8	199	30.0	24.9	130.0	1
Salinity (ppt) Temp (°C)	30.1 20.7	<u>30.0 </u>	109	750	20.4	19.5	20.0	ļ
Temp (o)				<i>100</i> F	inal		<i>-</i> 27 17	8.30
pH		8.36	18.20	18.27	18.23	1 6.14	15.11 15.10	5,7
DO (mg/L)	_	6.5	1 Ce 2	20.3	36.1	130.i	205	20.4
Temp (°C)	0,745,000,000,000	∂ Zo.2	120.4	144.7	,,,,,	9.17		

Concentration	1 6.2	61.						,
Day	0	1	2	3	4	5	6	1 /
				::::::::::::::::::::::::::::::::::::::	iitlal		X / X	loss of the second
На	9.55	9.51	18.62	1 8.53	18.20	8.59	8.49	_
DO (mg/L)	7.1	17.3	13,4	ヿ゙゙゙゙゙゙゙゙゙゙゙゚ゔ	7.2	7.2	6.9	_
Salinity (ppt)	30,3	30-0	29.7	29.8	2-9-8	30.0	300	_
Temp (°C)	120,9	20.1	120.8	1200	120.7	20.6	117.9	100000000
				F	inal			
рH		18.8	8.23	8.31	8.24	8.00	18.19	8:15
DO (mg/L)	-	ζ. ₇	16.4	6.4	16.5	16.4	15.8	<u> 6.1</u>
Temp (°C)	\dashv	20.2	20.4	20.4	20. /	100.1	205	i 20.5

Concentration	1 12.1	ラ ノ						·
Day	0	1	2	3	4	5	6	7
				ir	iitial			
рН	247	8.51	18.61	8.50	8.56	8.58	8.48	Į.
DO (mg/L)	1-9-17	7,4	14.4	3.5	7.2	7.3	6,9	_
Salinity (ppt)	30.4	30.0	29.8	29.8		30.c	30.0	_
Temp (°C)	20.7	20.1	20.7	20.6	429.8	20.6	198	
				F	inal			
Нq	1	8.27	8.28	8.31	8,25	B. 7-7	821	8.18
DO (mg/L)	⊣	6.7	T(e.3	6.2	6.3	6.2	5.4	16.0
Temp (°C)	\dashv	20.3	120.4	204	20.1	120.2	1205	120.5

Analysts:

ALL DO ME ALL DIS A	1	1
Initial AW RG WE AF 123 17	<u> </u>	
Final SH Me SH AH AH AH	W	mc

Comments:

Animal Source/Date Received:

QC Check: 12 4/13/04

ABS/ 3-13-04 Animal Age at Initiation:

pe at Initiation: 14 days old Final Review: 44 912404 AMEC Earth & Environmental **Bioassay Laboratory** 5550 Morehouse Dr. Suite B San Diego, CA 92121

Raw Data Sheet Initial and Final Chemistries Seven Day Chronic Bioassay

Test Species: A. affinis

Client:

City of Buenaventura

SCRE B-3

Test Date/Time: 3/17/04

Sample ID:

Test No: 0403 0910

Concentration	35	7.						
Day	0	1	2	3	4	5	6	7
				Ţ,	iifial			
pН	18.44	8 49	8.58	8.47	_xe.3	8.55	8.48	_
DO (mg/L)	7.3	7.4	7.5	7.6	7.4	7.4	7.1	_
Salinity (ppt)	X 30.5	30.0	29.8	29-8	2-9.8	30.1	299	
Temp (°C)	20.8	20.1	20.60	20.0	20.6	20.7	19.7	
					mal			
pН		8.27	8.32	8.37	8.28	8.26	18,21	8.2(
DO (mg/L)		6.7	(Q.3	6.2	6.1	6.3	5.6	5.7
Temp (°C)		26.2	20.4	20.4	20.2	30.3	120.5	20.5

Concentration	50:	1.						
Day	Ó	1	2	3	4	5	6	7
				ln	itial			
pН	3.44	8,45	8.53	848	8.48	8.52	846	
DO (mg/L)	7.6	7.7	7.8	7.7	7.7	7.4	7-5	
Salinity (ppt)	30.6	30.1	29.8	29.8	29.7	30.2	30.1	
Temp (°C)	209_	20 J	20.3	20.0	20.6	70.7	19-6	
				F	nsi			
pН		8.30	8.31	8.31	8.29	8.28	8.25	8.22
DO (mg/L)		6.7	و.(و	6.3	6.3	6.3	5-5	5.9
Temp (°C)		20.3	20.4	20.4	20.2	20.7	20.6	20.5

Concentration	1001	, 						··· ··· ·
Day	0	1	2	3	4 _	5	6	7
				İn	itial			
рН	8 45	8.37	8.45	81.5	8.40	B-49	8.43	
DO (mg/L)	3.4	8.1	8.8	8.6	8.8	8.4	8.1	
Salinity (ppt)	J08	30.4	30.0	29.9	29.6	80.2	30.3	
Temp (°C)	121.0	20.0	20.0	20.0	20.9	20.7	195	
				F	inal			
pН		8.33	8:3	3.30	P.32	8.3	826	8.26
DO (mg/L)		6.7	6,6	6.4	6.2	6.3	509	6.D
Temp (°C)		20.4	20.4	20.11	20.2	20.8	120.5	20.5

Comments: Animal Source:

Analysts: At MC SH, RG AW Date Received: 3/13/04

QA Check:

ABS LC 4/13/04

Final Review: _

AMEC Earth & Environmental Bioassay Laboratory 5550 Morehouse Dr., Suite B San Diego, CA 92121

Raw Datasheet Water Quality Measurements Marine Chronic Bioassay

Client:

City of Buenaventura

Test Species: A. affinis

Sample ID:

Test

	0403	0403-097				Times:	1500	2_/
Concentration	1746	Cont	m #	· 2-				
		1	2	3	4	5	6	7
Day	0 1	T			tial			
		- AC	8, W	1495		<u> </u>	i	
pH	8.00	4,45	8.5	8.5	5.2			
DO (mg/L)	8.1	7.8	29.8	1 79 9	30.0		211	
Salinity (ppt)	296	24,9	19.6	199	209		47	
Temp (°C)	119.4	_20.}	200200000000000000000000000000000000000		nal		ેડલ	
рН	200000000000000000000000000000000000000	ገ 87	7.84		7.82		i	
DO (mg/L)	\dashv	7.2	7-0		6.3		l	
Temp (°C)	-	20-1	20.4	20-3	20.3		1	
Temp (C)	2,0000000000	20.1						
Concentration	Salt	Chry	1001 B	62			 	
Day	0	1	2] 3	4	5	6	7
					itisl	<u> </u>		
pН	365	361	8.65		8,53	8.59	8.51	
DO (mg/L)	7.0	7.5	구 3	17.5	164	7.4	5.9	
Salinity (ppt)	30.1	30.0	129.8	199	30.0	29.9	300	
Temp (°C)	207	20.1	1 20.9	1200	1204	19.5	<u> </u>	
			4 4.		nat 💢 💮	<u> % 14</u>	8-11	<u>የ</u> ፡-}ረ
рН	_	8.36	826	8,27	18,23	6.3	5.6	
DO (mg/L)	_	6.5	162	64	<u> 6.4</u> 20.1	1-0.1	205	<u>5.7</u>
Temp (°C)		20-2	120.4	20.3	1 20.1	100.1	1200	
Concentration	1629	57						
	10:00	1	2	3	4	5	1 6	7
Day					itlal			
рН	18.60	8 ज्ञा	8.58	8.55		8.57	8.46	
DO (mg/L)	7.2	7.5	7.4	7.5	7.2	7.3	7.0	
Salinity (ppt)	301	30.0	129.3	29.8	29.9	30.0	130D	
Temp (°C)	207	20.1	20.7	20.0	20.6	20.60	19.5	
, <u>, , , , , , , , , , , , , , , , , , </u>				F	inal			****
рН		8.33	18.28	8.30	8.21	8.28	818	8 16
DO (mg/L)	\dashv	C.5	6.2	6.0	16.00	1 6.0	<u> 5:5 </u>	59
Temp (°C)		20.3	20.5	26,4	20.3	130.3	120.6	1 20.1
-	1 7 7	6.1						
Concentration	10	<u>ار ر</u>	1 2	3	4	5	6	7
Day	<u> </u>	<u> </u>	l 4		iltial			********
	<u> </u>	I	<u> 8.55</u>	18.50	18.50	1851	842	[8888 88
pH	18.5C	8.47	1 34	7.5	7,2	7.4	17.1	
DO (mg/L)	7.4	7.3	29.8	29.8	29.9	30.0	300	1
Salinity (ppt)	20:1	30.0	20.8	20.0	20.6	20.5		1
Temp (°C)	کات ټکې ۱	20.\	1 - 5, 0		inal			
рН	T	8.32	18.28	8.30	18.28	18.27	18.18	82
DO (mg/L)		6.4	(0.2	6.5	6.3	6.2	15.7	6.1
Temp (°C)	-	26.3	20.4	20.4	20.2	120.2	120.5	120.
125 (0)	1 - re-serve about accounting				_			
	0	1	2	3	4	5	6	7

Analysts:

me βC me Initial: SH mc mc SH

3-13-64

Comments:

Animal Source/Date Received:

QC Check:

Animal Age at Initiation: 14 days

AMEC Earth & Environmental **Bioassay Laboratory** 5550 Morehouse Dr. Suite B San Diego, CA 92121

Raw Data Sheet Initial and Final Chemistries Seven Day Chronic Bioassay

Test Species: A. 944 in is

Client:

City of Bremventura SCIZE C-3

Test Date/Time: 317/04

Sample ID:

Test No: 0403-097

Concentration	251	,						.,
Day	0 '	1	2	3	4	5	6	7
				Ī	nifial			
pH	8.47	8.38	8.47	8,43	841	8.45	8.38	
DO (mg/L)	7.7	7.3	7.5	716	7.3	1-6	7.4	
Salinity (ppt)	30.2	300	19.9	29.8	30.0	30.(30.0	_
Temp (°C)	20.5	201	20.8	20.0	20.6	20.5	1	
				1	inal			
pН		8.31	8.27	8.29	8.30	8.27	19.21	8.23
DO (mg/L)	≾M	6.5 6.2	6.1	6.3	6.]	6.2	5.7	(a. [
Temp (°C)		20.4	20.4	20.3	20.1	30.3	120.5	20.6

Concentration	50%							
Day	0	1	2	3	4	5	6	7
				In	itial			
рН	8.34	8.27	8.35	8.37	8,29	8.36	8,31	
DO (mg/L)	8-4	7.5	7,9	7.9	1.7	7.8	8.0	
Salinity (ppt)	30,4	30.0	29.9	29.9	30.1	302	30,	
Temp (°C)	20.2	20.\	20.8	20.0	20.7	20.5		
				F	inal			
pН		8.27	8,25	8.29	8-31	8.27	8.22	8.28
DO (mg/L)		6.3	6.1	6.1	6.2	16.2	5.3	6.1
Temp (°C)		20,4	20.4	20.3	20.1	26.3	20.4	20.5

Concentration	100%	,						
Day	0	1	2	3	4	5	6	7
				li	iitial			
pН	8.16	8.14	8.19	8.22	8.13	8.20	8,21	
DO (mg/L)	95	8.1	8 9	8.3	8.7	87	9.4	
Salinity (ppt)	30.4	30.1	30.1	30-0	30.3	30-3	30.3	
Temp (°C)	20.2	201	20.8	20.0	20.7	20.3		
					inal			
pН		8-02	8.06	8.01	8.06	8.05	7.99	8.08
DO (mg/L)		6.4	6.0	6.0	58	T59	5.0	6.0
Temp (°C)		20.4	20.4	20,4	20.1	30.3	20,4	20.6

Comments:		Analysts: AH, SH, MC, RG, AW
Animal Source:	ABS	Date Received: 3/7/04
QA Check:	110 4/13/04	Final Review: 9/14 5/24/04

A. BAHIA

Client:

Sample ID:

Test Date: 3 17/04

est No:	0403	<u>3- 69</u>	া	_	Sart/En	d Times:	123	0/10
			_ ,,					- ;-
Concentration	Lab	Contr	701#	1				
Day	0	1	2	3	4	5	6	7
	1_110000 02-00 07 1 1-100 	record A			itial			Wind High and
pH	4.00	195	7.97	1.94	8.61	8-01	8.03	1 1994 C 1 97
DO (mg/L)	8.1	7.95	8.8	8.2	8.2	8.7	2.0	
Salinity (ppt)	29.6	29.9	24.8	19.9	30 0	29.9	29.2	
Temp (°C)	25.0	24.7	24.5	24.5	243	25.1	24.5	
<u> value de la companya de la company</u>		Zi dan dike		A LANGE				
pH	100 100 100 100 100 100 100 100 100 100	7.91	14.80	7.81	7.81	7.84	7,80	8.01
DO (mg/L)		6.0	(0.0	6.2	5.8	5.5	66	5.6
Temp (°C)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24.7	24.6	24.2	24.2	24.3	24.2	24.6
								
Concentration	Sala	- Cont	1701 #	- 1			•••	_
Day	0	1	2	3	4	5	6	7
				a lin	itial.			
Нд	3.65	8.61	8,62	8.59	8.53	8.59	8.51	
DO (mg/L)	7.1	7.5	7,4	76	6.Y	7.4	5.9	
Salinity (ppt)	29.9	30.0	29,9	29.9	30.0	29.9	30.1	
Temp (°C)	25-1	24.9	25.0	25,1	24.4	24.5	24.5	E-EACH
	rei Perrich		a alan ay	F	nal			2010757
pH		₹·32	8.23	8.21	8.14	8.24	8.6	18.30
DO (mg/L)		ב, ד	5.0	6.2	5.8	5.6	67	5.4
Temp (°C)	- 1, 11, 1 had at	24,9	24.9	24.3	24.2	243	24.3	24.9
		_					<u> </u>	
Concentration	6.25	57.					-	
Day	0	1	2	3	4	5	6	7
	Aleberany :	RV.	L - The Lat	In	tial			er samelania
pH_	8,40	8 8.44	8.61	8.59	8.56	8.54	8,47	a.Payernage
DO (mg/L)	7.0	7.5	7.3	7.10	7.2	7.2	6.9	
Salinity (ppt)	30.1	30.0	29,8	29.9	29.8	30.0	29.9	
Temp (°C)	25.(24.9	25.0	25.1	24.3	24.60	04.5	
			graffin Mr. i Day	Fi	nal		2015年前16	facility similar
<u>p</u> H		8.32	8.26	8.22	8.21	8.33	权,19	8.25
DO (mg/L)		5.5	59	6.0	58	5.9	69	5.4
Temp (°C)		25.2	24.7	24.3	24.3	24.3	24.3	24.6
0	710 =			_ .				
Concentration	12.5	,	<u>, , , , , , , , , , , , , , , , , , , </u>					
Day	0	1	2	3	4	5	6	7
				in In	tial			
pH	8-44	8.45	8.28		8.55	8.54	18.45	
DO (mg/L)	<u> 7.3</u>	7.4	7.5	3.3	7.2	7.4	6.9	
Salinity (ppt)	<u>30.0</u>	30.6	29.7	29.8	29.8	30.0	29.9	
Temp (°C)	25.1	24.8	250	25.1	24.3	24.7	24.5	
					nal		THE PROPERTY	
pH		8.31	8.24	8.20	8.21	8.34	8,23	8.27
DO (mg/L)		2.2	5.5	6.1	5-8	5.5	70	5.0
Temp (°C)		25.1	24.8	24.2	24.3	54.3	243	24.7
	_ 0 _	1	2	3	4	5	6	7
alysts: Initial	: KG	Eh	MC	ne	AH	K 6	AWA	
	Barrian Marcon, No. 3 of	1 -						

Comments:

QC Check:

Animal Source/Date Received:

Mc 4/13/04

Final:

ABS/3-16-64

SH

Animal Age at Initiation: 7 days old of the Final Review: 912404

Client:

City of Buenaventura Test Species: _
SCRE A-L Test Date: _

Sample ID:

Test No:

Test Date: 3/17/04

Sart/End Times: 1530 /1435

Concentration	25%	<i>'</i> .	<u>-</u>					
Day	0	1	2	3	4	5	6	7
	7 = 751, 10				itial	ing out of the second of		MERETTAL
рН	8,44	8.38	8.53	8.51	8.51	8-50	8.42	PER PAR
DO (mg/L)	74	7.4	7.6	78	7.3	25	7.0	
Salinity (ppt)	301	30,0	29.7	29.7	29.8	30-0	299	
Temp (°C)	247	24.8	25.0	251	243	24.4	2-4-5	Maria de la Pol
	Williams			Arabi i jiji F	inal		Fine <u>r</u> alelo al gior	
pН		8.3	8.24	8.21	8.23	8.35	18/24	8.27
DO (mg/L)		5.3	5.6	5.7	5.6	5.7	6.8	5.4
Temp (°C)		25.4	25.1	24.2	24.3	24.3	24-4	24.9

Concentration	50%	/.				_		
Day	0	1	2	3	4	5	6	7
				erra establi	nitial =			
Hq	8.41	93,30	8.44	8.41	8.42	8,42	8.35	544 ₋ 1-7
DO (mg/L)	7.2	7,5	7,9	8-1	7.8	7.4	7.4	
Salinity (ppt)	20.1	30.(29.6	29.8	247	30.0	29.8	
Temp (°C)	24.5	24.7	25.0	25.	24.3	24.5	245	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					inal	and a track at		aarineen e
рН		৪.2 8	8.28	8.23	8.27	8.36	8 29	8.32
DO (mg/L)		5.3	5.4	5.3	3.7	5.8	6.9	5.2
Temp (°C)		25-3	25.D	24.2	24.2	24.2	243	25.0

Concentration	100%	/,						
Day	0	_ 1	2	3	4	5	6	7
A CONTROL OF THE PARTY OF THE P				- Albandin	itial :	roma all	dom Nacional	HIMALINIA N
pH	8.25	8.17	8.30	8.28	8,30	B.30	8125	
DO (mg/L)	7.3	1.7'	4,3	8.9	8.9	8.7	8.2	
Salinity (ppt)	30.3	303	29,6	29.7	29.7	3:2-1	39.7	
Temp (°C)	24,9	24.9	250	25.0	24.3	74.5	245	
	Filada.			FI	inal			
pH		8.24	8.27	8,23	8.33	8.35	2.32	8. <i>35</i>
DO (mg/L)		5.4	58	5.8	5.4	5.7	68	5.2
Temp (°C)		25.4	24.7	24.2	24.1	24.3	24.3	25.0

Analysts:

	0	1	2	3	4	5	6	7
Initial:	RG	£4	MC	mc_	AH	kg	AWA	
Final:			MC	SH	AH	AH	AW	iic

Comments:

Animal Source/Date Received:

ABS 3-16-04

Animal Age at Initiation: 7 days 01

QC Check:

JJC 4/13/14

Client: City of Berenaventura Test Species: M. bahja

Sample ID: SCRE B-1 Test Date: 3 17/04

Test No: 0403-099 Sart/End Times: 1530 1436

Concentration	Lab	Ontr	01#	1				
Day	0	1	2	3	4	5	6	7
ASSESSED 1.13	1.000.000	garage, so	The Physic	in in	itial#955.55	જિલ્લોએ છે હતી	mount gards.	
pH	8,00	1,95	7.97	J.94	8.01	8.00	8.63	A Sungaport
DO (mg/L)	8.1	7.8	8.3	8.2	8.2	8.7	8.0	
Salinity (ppt)	29.60	299	293	29.9	30.0	24.9	29.7	
Temp (°C)	25.0	23.1	24.5	24.5	24.3	24.5	124-5	grander salg
是是是#阿斯尔奇(4)		y 1.	1.20	. Fi	inal	27.12	6) 38 + 3	
pH		7,91	P8.F	7.81	7.81	7.84	1.780	8.01
DO (mg/L)		6,0	6.0	62	5.8	5.5	6.6	5.6
Temp (°C)		24.7	246	24.2	34.2	24.3	24.7	24.60

Concentration	Salt	- Cont	rol #	7				
Day	0	1	2	3	4	5	6	7
Madelin kali (sp. 1				- in	itial		aest Ribu	그 한덕목과
рН	8.65	3,60	8,62	8.69	8,53	8.59	8.51	
DO (mg/L)	7.1	7.5	3.4	7.6	6.4	7.4	5.9	
Salinity (ppt)	29.9	30.0	299	29.9	30.0	29.9	30.1	
Temp (°C)	25.(24.4	750	25.1	74,4	24.5	マイ・て	의 항원 (점)
	1 ,		-1 Yu - 1 - 4	ing the Fi	inal		134 4617	7 A 200 100 1
pН	18	4.35	8,23	8.21	18.14	8.24	18-66	8.30
DO (mg/L)		5.7	5.6	C.2	5.8	56	6.7	5.4
Temp (°C)	, i the sale.	24.9	24,9	₽H-3	34.2	24.3	24.3	24.9

Concentration	6,25	ار ا				•		
Day	0	1	2	3	4	5	6	7
经数据的 自由。			Harry .	<u>In</u>	itial		2 45° (5.3)	Salara Salara
рН	8.58	8.29	861	₹.5(a	8 55	8-57	8.48	
DO (mg/L)	7.1	6.7	7.4	7.5	7.1	7.7	7,0	
Salinity (ppt)	301	29.9	27	29.8	29.9	3000	29.9	
Temp (°C)	24.3	24.9	20.8 25	0 25.6	24.4	25.4	24.5	
4. 監察的問題的作。			5H		inal	Sign to the sign	Selejjijaji see	rike i roma
рН	1. 1. 1.	8-32	8.23	8,20	2.17	8.31	8,21	8.35
DO (mg/L)]	5.5	5.4	6.1	5.5	5.9	6.8	5.7
Temp (°C)	** *-, *-,	25.3	25.1	24.2	74.7	244	243	24.7

Concentration	12.5	1.				•		
Day	0	1	2	3	4	5	6	7
		- at it. Their	<u> </u>	ini	tial		nakiju uska	ri gra-jir darah
pН	8.55	8.25	8.58	8.48	8.54	8-56	8.44	ได้ชื่อ ระสา ซึ่ง
DO (mg/L)	7. 2	3.1	T.4	7.6	٦,١	7.5	7.0	
Salinity (ppt)	301	30.0	298	29.8	29.9	320	29.9	Literatura di Santi
Temp (°C)	24.4	244	260	2516	24.4	25.2	24.2	
国際開發的英國的 立行任	524557	Land Branch	385. At 55. E	Fi	nal 🦠 🔆	y and the	선생님은 아이들이 받아	HART INT
pН	Film in	જ.3ા	8.25	3.26	8.19	8.32	427	8.27
DO (mg/L)	Mind in 10.	5.6	5.6	6.2	5.7	5.0	6,5	5.6
Temp (°C)		25.4	251	24.3	24.2	24 4	DAIL	24.9

Analysts: Initial: Ry Ry MC MC AH RG ANAN MC

Final: SH MC SH AH AH AW MC

Comments:

Animal Source/Date Received:

ABS/3-16-64

Animal Age at Initiation: 7 days old

Final Review:

Water Quality Measurements

Client:

Sample ID:

Test Date: 3/17/04

Test No:

0403-099

Sart/End Times: 30 1438

Concentration	25%	<i>t</i> .						
Day	0	1	2	3	4	5	6	7
建等建筑和政治 中于		$\mathcal{F} = \mathcal{F} \cup \mathcal{F} \cup \mathcal{F}$		<u>Halfay të In</u>	itial 🖓 🚉	心心不够 在2000	i Pirating	
pH	8.5	8.25	8.51	8.39	8.48	8-49	8.39	
DO (mg/L)	7.2	1,2	7.6	77	1.3	7.7	7.3	
Salinity (ppt)	30.2	30.1	29.7	29.8	J.9.8	30.0	29.9	
Temp (°C)	261	24,9	25.0	25.0	24.4	25.1	24.5	
罗斯斯特斯斯特 拉克		6.3.1.5.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	arijî e ya Yeşî û	Tarabani F	inal		हाएक है। एक प्रतिप्रकार	
pН	078794E 10	8,30	8.25	8.21	8.24	8.33	13.24	8.36
DO (mg/L)		5.2	4.8	5.9	5.4	5.7	6.7	5.5
Temp (°C)	} ettelø	25.8	25.4	24.3	243	24.5	124.3	25.1

Concentration	50%	<u>/.</u>						
Day	0	1	2	3	4	5	6	7
(性格)以下		5.5	11. 1	The free In	itial 🗀 😘		y tena ini	Tape to be offered
pH	8.40	8,18	8.42	832	8.38	B.44	8.40	推销的 法自
DO (mg/L)	7.4	74	8.1	7.9	7.9	7.9	7.3	
Salinity (ppt)	304	30.2	246	24.7	2-9.8	30.0	29.9	
Temp (°C)	251	24.8	25.0	25.0	24.4	25.0	245	21976 P. (4) - 21.
in gereken kanalisa da	7.5		State of the	traindon Fi	nalo 😁 🤚	र्जना हुँ हैं। जो दी		
На		€.26	8.29	8,22	8.27	8.33	8.29	8.33
DO (mg/L)		5.4	5.7	6.1	5:5	5-8	67	55
Temp (°C)		25.7	25.4	242	24.4	24.5	243	251

Concentration	100%	7,						
Day	0	1	2	3	4	5	6	7
医医療性病性	ing single and single	الميات		ભાગમ‱્ in	itial	i di Kaliwi	and the figure of	
pН	8.24	805	8,23	824	8.23	8-32	8.31	的某一探测
DO (mg/L)	7.9	8.1	ଟ. ୨	8.3	9,3	84	90.0	
Salinity (ppt)	30/50	30 G	29.6	296	29.8	301	30.0	
Temp (°C)	25.0	24.7	25,0	25.0	24.4	25.0	124.5	eri (U.V.)
\$#####################################	TALL ME LOS			945, 146, F	inal	HELMITE		المناوية أولياناه وثوا
pΗ		8.24	8.27	8.22	8.31_	8.32	<u> 43.11</u>	8.42
DO (mg/L)		5.6	5.8	2.8	5.3	5.5	6.5	うら
Temp (°C)		25.5	26.1	24,2	24.4	24.4	24.3	25.0

Analysts:

0 1 3 MC RG RLY MC Initial: ΑH AH 54 MC 54

Comments:

QC Check:

Animal Source/Date Received:

1104/12/04

3-16-04

Animal Age at Initiation: 7 days 01 d Final Review: 844 5/24/04

Client:	City of Berenaventura	Test Species: M · C
---------	-----------------------	---------------------

Sample ID:

Test Date: 3 17/04

Test No:

Sart/End Times: 15名り

Concentration	Lab	Contr	ol #	>				
Day	0	1	2	3	4	5	6	7
Company of the control of the contro		1 gi v 1	err Tarkija	alebera In	itial .			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
pН	8,00	1 25	8.00	1.95	8.01	8.01	1 4	803
DO (mg/L)	8.1	7.8	8.5	8.3	8.2	9.7		8.0
Salinity (ppt)	29.60	29.9	29,8	29.9	30.0	29.9		297
Temp (°C)	25.0	2-6-7	25.0	24.6	24.2	25-1		245
	Contractives the	a jari.	anterior (f	99 € F	inal	Standard States		A 17 (1)
pН	lu lein filit.	7.95	787	7:86	1.92	7.99	7.83	18.01
DO (mg/L)		6.0	5.8	6.2	5.7	58	6.9	58
Temp (°C)		25.2	25.0	24,3	24.2	24.3	24.2	245
								24.9

Concentration	Salt	- Cont	rol #	2				
Day	0	1	2	3	4	5	6	7
2012年12日 1878年 日本島	, .	91 14 C	- F	Ini	tial	S. F. 18	11 <u>) 155 h</u>	100
рН	8.65	8.60	8.65	8.62	6.53	8.59	8.51	
DO (mg/L)	7.1	1.5	7,3	7.5	64	7.1	5.9	
Salinity (ppt)	29.9	300	29.4	29.9	30.0	24.9	30.0	
Temp (°C)	25.	249	25.0	25.6	24.3	24.5	24. 5	
विकास हो की जिल्ला है।	. 5 .			in in Fi	nai	355-11±	3.	1
pH		8 32	8.27	8.21	8.6	8,30	19.20	8 29
DO (mg/L)		5.5	5.3	59	5.8	5.9	7.0	15,4
Temp (°C)	1.5	25.1	24.9	24.3	24.2	p-4.3	24.2	24.9

Concentration	6.25). J.		•				
Day	0	1	2	3	4	5	6	7
元の音が した。				ln'	îtîat	e gare legisir	Server training	ette <u>l ja s</u> ik
pН	8.55	8.51	8,62	8.50	8.54	8.59	8,49	计操作员 斯
DO (mg/L)	7.2	7.3	7,4	7.5	7.7	7.2	6.9	
Salinity (ppt)	30.3	30.0	297	29.8	29.8	30.0	30.0	
Temp (°C)	25.1	24.9	25.0	25.6	24.4	24.4	24.5	N. C. Marie
·高斯男子等 (1)	1 July 18		1,64	Fi	inal			
рН	5,7,4	€.35	8.27	8,23	8-16	835,	9.20	8.24
DO (mg/L)		5.6	6.0	E.3	5.5	5.7	63	5.7
Temp (°C)		25.2	24.4	24, 2	24.1	24.5	24:3	24.6

Concentration	12.5	7.				_	•	
Day	0	1	2	3	4	5	6	7
SARESTEIN TO HE	an entre an		81.50F-1 24.0	alin azide iln i	tial			ejemiatije
рН	8.49	8.51	8.61	8.56	8.56	8.56	8,48	
DO (mg/L)	7.2	7.4	7,4	7.5	7.2	7.3	6.9	
Salinity (ppt)	30.4	30.0	29.8	29.8	3.9.8	30.0	30.0	
Temp (°C)	24.9	24.7	25.0	25.6	24.4	24.4	34.7	
非国际政治是 有政治。由27、次		. १५ - च प्रतिस्था	taut van teitja	-335 a 1 Fi	nal -		glands i gje a	ng kiyê bêji ti.
pН	: 27 Let 67"	8.34	8.36	4.7 5	8.50	8,31	9.20	8.27
DO (mg/L)	1455 C	5.7	(0,0	6.3	5.7	5.9	6.9	57
Temp (°C)		25.\	25.0	242	241	24.4	24.4	24.9

Þц MC RU ML Analysts: Initial: **5**Ħ SH mc me

Comments:

Animal Source/Date Received:

3-16-64

Animal Age at Initiation: 7 days

Final Review:

10 4/3/04 QC Check:

Client:

City of Buenaventura Test Species: A. bahia

SCIZE B-3

Test Date: 3/17/04

Sample ID:

Test No:

0403-100

Test Date: 3/17/04

Sart/End Times: 1530 (135)

Concentration	25%	· .		• •	_			
Day	0	1	2	3	4	5	6	7
深层设体线形	Joseph State	12 (13)	Bar Libb	oja, oras Ini	tial 💮 🗀	的编数操作		
pН	8.44	3.49	8.53	8.47	8.54	8-55	8.48	第1987 学
DO (mg/L)	7.2	7.4	7.5	7.6	17,4	74	71	的复数
Salinity (ppt)	304	30,0	29.8	298	29.86	30:1	1299	
Temp (°C)	25.1	25,1	25.0	250	24.4	24.2	395	被简复是
李明显是《图图》的《图图	리스리 작의 등록	in i della di	gart tamb	i Datie Fi	nai	<u> </u>		gsāri gar
pН	u de la	835	8-30	8,25	8.23	8,36	823	8.27
DO (mg/L)		5.4	5.4	6.0	5-7	5.5	6-8	5.2
Temp (°C)		25.4	25.2	24.3	24.1	24.4	124.5	250

Concentration	507	<u>/.</u>						
Day	0	1	2	3	4	5	6	7
A Configuration with the same		1.35 p. 1.35	1.5	ln in	ittial 📉 🐬 😚	9 - 17 to 1	13.8 5.24	James I.
pН	8.45	8,45	8,53	8.48	8.48	8.52	8.46	
DO (mg/L)	7.3	7.7	8.7	4.7	7.7	7.50	75	
Salinity (ppt)	30.6	30,1	29.8	29.8	217	30.2	30.1	
Temp (°C)	24.9	25.1	25.0	25.0	24.4	244	348	
Service of the servic	7.57 N. 15.			11 a fil a F	inal ::	Section 1	ing to the	
рН	etalish e	8.31	8.32	8.20	8.29	39	18,27	8.29
DO (mg/L)		5.6	5.8	6.0	5.7	59	68	5.1
Temp (°C)		25.3	25.3	24.5	24.1	24.3	245	25.0

Concentration	100%	<u>/, </u>					-	
Day	0	1	2	3	4	5	6	7
BURRECKS LEAST OF TO THE	of the last to		,	tett er eg lin j	tial 🗀 🗀	Edit ANG G		I for the
рH	8.46	837	8.45	8.48	8.40	8.49	8.43	i g(<u>à</u> p¢i :
DO (mg/L)	7.4	8.1	8,8	8.6	8.8	8-1	8.1	
Salinity (ppt)	30.7	30.4	30.0	29.9	29.6	30	30.3	
Temp (°C)	250	25.2	25.0	25.6	24.4	24.4	24.5	
		STOPPING	arti dan	Fi	nal William	Sant Silveri.		
pН		8.33	8.30	8.27	8.30	8.31	8.32	8.23
DO (mg/L)		5∙ 5	5.4	5.8	5.7	5.6	6.6	5.3
Temp (°C)		25.5	25.3	24.5	24.2	24.3	24.7	25.i

Analysts:

0 1 2 3 RG ΜC mc Initial: AH SH ue 54

Comments:

Animal Source/Date Received:

3-16-04

Animal Age at Initiation: 7 days 01 d Final Review: 244 512404

QC Check:

NR 4/13/04

AMEC Earth & Environmental Bioassay Laboratory. 5550 Morehouse Dr., Ste. B. San Diego, CA 92121.

Main	e Chionic Blo	assay					water .	∡uunty 1	neasarer	Helita
	,	City of	C Rel	owavo.	NTING		_	**	ن مامدا	_
Client	:	_ •	000	u u vei	NILLIA			_		
Samp	le ID:	SCRE_		3	_				1104	
Test N	lo:	0402	<u> </u>	o i		Sart/End	d Times:	153	D / 130	.2O
		<u> </u>			-				1.5.2	
Г	Concentration	1100	Contr	01 #	2					
F	Day	0	1	2	3	4	5	6	7	
2	是"四位"的					tial				
L	pH	8,00		8.00	795	8,01	80(1\ K	8 03	
Ļ	DO (mg/L)	8./	7.8	8.5	8.3	8.2	8.7		50	
-	Salinity (ppt)	29.6	29.9	29.8	29.9	30.0	29.9		29.2	
-	Temp (°C)	1250	z4.7	<u>125.0</u>	24.6 	24.2	25-(To Company to S	24.5	
1-	 	January States	7,96	17.87	7,86	7.92	7.99	7,83	8.01	
-	pH DO (mg/L)			2.8	6,32	5.7	5.8	86.9	5.8	
-	Temp (°C)		25.2	25,0	24.3	24.2	24.3	242	24.1	
L	reinb (C)	Parametria Mar	23-4	25,0	2-1-3	J-1. B	<i>A</i> 1. 7.	219	124,	
Γ	Concentration	75/17	- Cont	701 d	<u></u>					
-		1 30.1		, 	3	4	5	6	7	
<u> </u>	Day		1 1	2		j 4 itial :		<u> </u>	·	
Ľ		186.				8.53	8-59	8.51	en ege egel assignad	
⊢	pH	8.65		8.65	7.5	6.4		5.9		
F	DO (mg/L)	7.1	7.5	7.3	29.9		74			
}	Salinity (ppt)	21.9	30.0	29,8		24.3	29.4	30.0	, 352, 703, 71	
}-	Temp (°C)	25.1	24.9	25.0	25.0		24.5			
ŀ		200 <u>200 200 200</u>		-,	T -	nal	8.30		8 29	
F	pH	- 134,4,5	8.37	8.27	371	8.15 5.8	5.4	7-2	5.4	
F	DO (mg/L)		5,5	5.3	5.9	24.2	24.3	04 2	24.9	
L	Temp (°C)	gr 41 \$1,53 \$	25.1	24.9	243	01.0	29.2	12-4- 2	<u> </u>	
г	0	11 22	. '1							
L.	Concentration	6,25				T			,	
1	Day	0	11	2	3	4	5	6	7	
<u> </u>	· 1000000000000000000000000000000000000		<u>: +1, </u>	<u> </u>				4 等特别。		
L	рН	855	851	8.58	8.55	B.54		8,46		
L	DO (mg/L)	7.0	7.5	7.4	7.5	7,2	7.3	7.0		
Ļ	Salinity (ppt)	29.9	30.0	29.3	29.8	29.9	30.0	30.0		
Ļ	Temp (°C)	24.2	124.6	25.0	25.0	24.3	22.0	34.5	1 1 1 6	
]_	1. 海海子便公路过去。15	4 4 4 4		<u> 4 2 - 32.</u>		nal				
L	pH		8-34	8.27	8.22	8.19	8.32	8-16	8.21	
L	DO (mg/L)		5.4	5.9	6.3	<u>5. y</u>	5.8	0,0	5.3	
L	Temp (°C)	된 등의 문항점	25.4	24.0	24.2	24.3	24.4	24.6	124.4	
-		1								
L	Concentration	112.5	<u> 7</u>							
	Day	0	1	2	3	4	5	6	7	
	्रम् राज्यान स्टा लिस्सार ।				<u>lni کا کا کی</u>	itial		100 1.05 55 0	efd applyter	
Ĺ	pH	8.50	847	8,55	8,50	8,50	B-21	B.43		:
	DO (mg/L)	7.1	7,3	7.4	7.5	7.2	7-4	7.1		Ì
	Salinity (ppt)	30.0	30.0	24.8	29.8	29.9	30.0	30.0	Zilitake (K)	Ì
	Temp (°C)	24.3	24.7	25.0	25.0	24.3	25.0	24.5	रहेक्ट्रेस स्किन्द्र रहे । इ.स.च्या	1
	建筑建筑建筑	多為蒙洲沙漠			eda, ki sed (F i			e axita filana	A Ministry (Ministry (Mini	İ
L	рН		8.31	8.30	&.22	8.20	8.34	9.2	827	İ
1	DO (mg/L)		5.6	ا نو ا	5.8	1 5.5	5 9	6.9	5.0	İ
L	Temp (°C)	物的原始	25.3	25.0	24.3	1243	24.5	24.6	247	:
		•			•		_	•	-	
		0	1	2	3	, 4	5	T 6	7 15. mer rastall	1
Analys	ts: Initial:	RG	Rig	MC	MC	AH	Rh	AUA	/	
·		1 K ()	 '		Cit	1	 	At 1		
	Fin	al:	3H	mc	SH	AH	TAH	AW	MC	l
Comm	ents:									
COURT	un.J.		A = -	1	4.4				^	
Animal	Source/Date Receiv	/ed:	ABS/	13-16-	-04	_ An	imal Age a	at Initiation:	7 da	<u>45 o</u> ld
00.05	eck: _ <i></i>	12/14	· · · · ·				Ei	nal Review:	G \$H	GIZNIA
QC Ch	eck:	17/107					rii	iidi Keview	- LANA	VII UALO

Client:

City of Buenaventura Test Species:

Sample ID:

Test Date: 3/17/04

Test No:

Sart/End Times: | 530

Concentration	25%	<i>'</i> .						
Day	0	1	2	3	4	5	6	7
等 对数据 是数字(字):	a a said a s			√e Vae In	itial 🐔 🔠		(1) 表现的特别。	NA456 B
pH	8.46	8.38	8.47	8.43	8.41	8.45	18.38	\$150, 10 POST
DO (mg/L)	7.2	7.3	7.5	76	7.3	7.4	7.4	
Salinity (ppt)	30.1	30.0	29.9	29.8	30,0	35/	30.0	
Temp (°C)	25.1	25.0	20:0250	25.0	24.3	24.9	24.5	
工學學院育業科學 中心學	马塔 说图	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SH	- 1 4 M A (1 E i	inal 💮 💮	leskal eli te		
рН	g in stiffer to	8,30	8.3	8.25	8.78	8.34	8.24	8.31
DO (mg/L)		5,2	5.9	5.9	5.4	5.5	6.7	9.4
Temp (°C)		25.4	250	24.3	24.3	24.5	24.3	24.8

Concentration	50	7.			<u> </u>			
Day	0	1	2	3	4	5	6	7
an a graph of the first of the second	: 1 1 1	ر. الجار الم	şi ş	in in	itial		72 5 53	14 18 11 (AL)
pH	8.39	8.27	8.35	8.37	8.29	83.34	8.31	
DO (mg/L)	8,6	1.5	7.9	7.9	7.7	7.8	B,0	
Salinity (ppt)	302	30.0	29,9	29.9	300	302	30.1	
Temp (°C)	25.1	24.9	25.0	25.6	2Y.3	24.9	24-5	
	22 - 2		15 E	प्रकृतिविद्यानीका म	inal 🖟 🖟	egalatiki .		당시 선택하는
pH		8.26	8.21	8.53	8-26	8.24	8.15	8.27
DO (mg/L)		5.2	ن،ها	5.7	5.7	5.5	64	50
Temp (°C)		25,4	25.6	243	24.2	12-4.4	24,4	24.8

Concentration	100%	/,		.,				
Day	0	1	2	3	4	5	6	7
3.25年 和 在1985年1月1日	٠.	2	ker lan	ln	itial		Çarazınık	. Na or a test,
pН	9.15	8.14	8.19	8.22	8,13	8.20	8.21	Sala Sala Sala
DO (mg/L)	8.5	80	8.9	8.3	8.7	8.7	ay	
Salinity (ppt)	30.2	30.1	30.1	30.0	30.3	30.3	30.3	gir i <u>Ligi</u> ra
Temp (°C)	520	24.8	250	25.0	24.3	H. B	24.5	医经验管性
· · · · · · · · · · · · · · · · · · ·] \$j \$.	14 (44)	Name of the	faski bafişil F i	inal 💮 🔆	au agairtí 🖫		MENTAL COLUMN
pН	4.3	8-01	3.06	7,92	8.04	8.03	802	8.03
DO (mg/L)		5.3	ره، ی	5.9	57	3.5	6.3	51
Temp (°C)	· 4/2/27/2	25.4	25.0	24.3	24.2	04.4	24.4	24.7

Analysts:

3 5 1 2 ΜC RY MC ΔH Initial: AH SH uc SH mc

Comments:

Animal Source/Date Received:

Animal Age at Initiation: 7 days old

QC Check:

Le 4/13/04

AMEC Earth & Environmental Bioassay Laboratory. 5550 Morehouse Dr., Ste. B. San Diego, CA 92121.

AMEC Earth and Environmental Bioassay Laboratory 5550 Morehouse Dr. Suite B San Diego, CA 92121 Raw Datasheet Water Quality Measurements Marine Chronic Bioassay

Client:	City of Buena ventura	Test Species:	Macrocys	stis pyrifera
Sample ID:	•	Start/End Dates:	31704	13.19.04
Test No:	0463-102	Start/End Times:	llezd	1 i320 ·
Analyst:	mc	Test Type:	Kelp Spore Gern	nination and Growth

	lı .	nitial Reading	5	Final Readings			
Concentration	D.O. (mg/L)	pH (pH units)	Salinity (ppt)	D.O. (mg/L)	pH (pH units)	Salinity (ppt)	
LC#1	8,0	8.00	33.4	7.2	8.02	33.7	
BC#1	7.5	80.8	32.3	7.3	8.01	32.8	
6.25	8.2	8.00	33.3	7.2	8.01	34.1	
12.5	8.1	797	33.5	7 3	8,66	34.1	
25	8.1	794	32.8	7.4	8112	32.9	
50	7.9	7.86	31.8	₹.3	8.20	32.3	
60	7.8	7.83	3\.5	7.3	8.22	31.5	
LC#3	9.1	193	31.5	7.3	7.98	31.3	

Comments:

QC Check: MC 4/L/04

Final Review: off 0/24/0+

Brine Dilution Worksheet

Client: City of Buenaventura Analyst: wc/Ait

Sample ID: Santa Clara River Estuary A2 Test Date: 03/17/2004

Test No: 6403-102 Test Type: Kelp spore germ. & growth

Salinity of Effluent3.1 ★Salinity of Brine75.1Target Salinity32Test Dilution Volume200

Salinity Adjustment Factor: TS - SE TS = target salinity

SB - TS SE = salinity of effluent

SB = salinity of brine

Salinity Adjustment Factor = 0.67

Concentration %	Effluent Volume (mL)	Salinity Adjustment	Brine Volume (mL)	Dilute to to: (mL)
Control	NA	NA	NA	200
6.25	12.5	0.67	8.4	200
12.5	25.0	0.67	16.8	200
25	50.0	0.67	33.5	200
50	100	0.67	67	200
60	120	0.67	80	200

7/4/1

	DI Volume			
Brine Control	108	0.74	80	200

total brine 286.3

Brine Control Salinity Adjustment Factor

Brine Control Calculation: TS - 0
SB - TS

AMEC Earth and Environmental, Inc. San Diego Bioassay Laboratory 5550 Morehouse Drive. Suite B San Diego, CA 92121 AMEC Earth and Environmental Bioassay Laboratory 5550 Morehouse Dr. Suite B San Diego, CA 92121 Raw Datasheet Water Quality Measurements Marine Chronic Bioassay

Client: aty of Buenawatura	Test Species: Macrocystis pyrifera	
Sample ID: B-1	Start/End Dates: 3.17.64 / 3.19.01	4_
Test No: 6463-103	Start/End Times: 1020 / 1320	
Analyst: mc	Test Type: Kelp Spore Germination and Grow	<u>⁄th</u>

	Initial Readings			Final Readings		
Concentration	D.O. (mg/L)	pH (pH units)	Salinity (ppt)	D.O. (mg/L)	pH (pH units)	Salinity (ppt)
LC#1	8.6	8,00	33.4	7.2	8.02	33.7
BC #1	75	8.08	32-3	7.3	8.01	32.8
6.25	7.9	3P.F	33.1	7.3	8.04	33.5
12.5	8.0	7.99	33.3	Ŧ.3	807	3 3 .4
25	79	794	32.1	7.3	8.12	32-5
50	7.7	7.84	32.1	7.3	8.28	32.4 33.4 M
58	7.6	7.81	32.0	7.3	8.23	31.4

Comments:	

QC Check: <u>Me 4/14/04</u>

Final Review: 9/24/04

Brine Dilution Worksheet

Client:

City of Buenaventura

Analyst:

Sample ID:

Santa Clara River Estuary B1

Test Date: 03/17/2004

Test No:

0403-103

Test Type: Kelp spore germ. & growth

Salinity of Effluent

1.4 75.1 Salinity of Brine

Target Salinity

32 200

Salinity Adjustment Factor:

Test Dilution Volume

TS - SE SB - TS

TS = target salinity

SE = salinity of effluent

SB = salinity of brine

Salinity Adjustment Factor =

0.71

Concentration %	Effluent Volume (mL)	Salinity Adjustment	Brine Volume (mL)	Dilute to to: (mL)
Control	NA	NA	NA	200
6.25	12.5	0.71	8.9	200
12.5	25.0	0.71	17.7	200
25	50.0	0.71	35.5	200
50	100	0.71	71	200
58	117	0.71	83	200

DI Volume

	Di Voluine			
Brine Control	112	0.74	83	- 200

299.2 total brine

Brine Control Salinity Adjustment Factor

Brine Control Calculation:

TS - 0

AMEC Earth and Environmental, Inc. San Diego Bioassay Laboratory 5550 Morehouse Drive. Suite B San Diego, CA 92121

AMEC Earth and Environmental Bioassay Laboratory 5550 Morehouse Dr. Suite B San Diego, CA 92121 Raw Datasheet Water Quality Measurements Marine Chronic Bioassay

Client: City of Buravertura	Test Species: _	Macrocystis pyrifera		
Sample ID:	Start/End Dates: _	3.7.04 / 3.19.04		
Test No: 6463-104	Start/End Times: _	1620 / 1320		
Analyst: MC	Test Type: _	Kelp Spore Germination and Growth		

	Initial Readings			F	inal Reading	
Concentration (½,)	D.O. (mg/L)	pH (pH units)	Salinity (ppt)	D.O. (mg/L)	pH (pH units)	Salinity (ppt)
LC#2	8.5	7.99	33.5	7,2	8.03	<i>3</i> 3.7
BC#2	76	80.8	32.0	7.1	8:01	32.4
6.25	89	8.05	33.1	7.2	8.05	33 .1
12.5	9.0	808	33.3	7.2	8,06	338
25	8.9	8.12	32.9	7,2	8,12	33.3
50	8.7	8.19	32.0	7.1	8.20	32.4 33.MC
68	8.8	8.23	31.8	7.2	8,24	32.0

 ,	 <u></u>	

QC Check: 110 4/14/04

Final Review: aft 5/24/04

Brine Dilution Worksheet

Client:

City of Buenaventura

Analyst: mc/AH_____

Sample ID: Santa Clara River Estuary B3

Test Date: 03/17/2004

Test No:

0403-104

Test Type: Kelp spore germ. & growth

Salinity of Effluent Salinity of Brine

12.1 75.1 32

Target Salinity Test Dilution Volume 200

Salinity Adjustment Factor:

TS - SE SB - TS

0.46

TS = target salinity

SE = salinity of effluent

SB = salinity of brine

Salinity Adjustment Factor =

Concentration %	Effluent Volume (mL)	Salinity Adjustment	Brine Volume (mL)	Dilute to to: (mL)
Control	NA	NA	NA	200
6.25	12.5	0.46	5.8	200
12.5	25.0	0.46	11.5	200
25	50.0	0.46	23.1	200
50	100	0.46	46	200
68	137	0.46	63	200

	DI Volume			
Brine Control	85	0.74	63	200

Brine Control Salinity Adjustment Factor

Brine Control Calculation:

TS - 0 SB - TS

total brine

212.9

AMEC Earth and Environmental, Inc. San Diego Bioassay Laboratory 5550 Morehouse Drive. Suite B San Diego, CA 92121

DC:MC 4/14/W

AMEC Earth and Environmental Bioassay Laboratory 5550 Morehouse Dr. Suite B San Diego, CA 92121 Raw Datasheet Water Quality Measurements Marine Chronic Bioassay

Client :	City of Buenavoutura	Test Species: _	Macrocystis pyrifera
Sample ID:	3 0	Start/End Dates: _	3-17-04 / 3-19-04
Test No:	0403-105	Start/End Times:_	1620 / 1320
Analyst:	mc	Test Type: _	Kelp Spore Germination and Growth

	Initial Readings				inal Reading	
Concentration	D.O. (mg/L)	pH (pH units)	Salinity (ppt)	D.O. (mg/L)	pH (pH units)	Salinity (ppt)
LC#2	8.5	7.99	33.5	7.2	8.03	33.7
BC#2	7.6	80.8	32.0	7.1	8.01	32.4
6.25	8.8	8.00	334	43	8,07	33.3
12.5	8.8	196	335	7.4	11,8	<i>3</i> 3.8
25	8.8	7.91	382.8	4.4	8,20	33.2
56	8.6	7.85	31.7	7.4	8.33	32.0
59	8.60	7.83	31.4	7.3	8.37	31.7

Comments.		 	<u> </u>		
			Final Review:	041	abul A
QC Check:	115 4/14/04		Final Review:	CATA	nalo

Brine Dilution Worksheet

Client: City of Buenaventura Analyst: __me / AH

Sample ID: Santa Clara River Estuary C3 Test Date: 03/17/2004

Test No: 0403 - 105 Test Type: Kelp spore germ. & growth

Salinity of Effluent 1.7
Salinity of Brine 75.1
Target Salinity 32
Test Dilution Volume 200

Salinity Adjustment Factor: TS - SE TS = target salinity

SB - TS SE = salinity of effluent

SB = salinity of brine

Salinity Adjustment Factor = 0.70

Concentration %	Effluent Volume (mL)	Salinity Adjustment	Brine Volume (mL)	Dilute to to: (mL)
Control	NA	NA _	NA	200
6.25	12.5	0.70	8.8	200
12.5	25.0	0.70	17.6	200
25	50.0	0.70	35.2	200
50	100	0.70	70	200
59	117	0.70	83	200

 DI Volume

 Brine Control
 111
 0.74
 83
 200

total brine 296.9

Brine Control Salinity Adjustment Factor

Brine Control Calculation: TS - 0
SB - TS

AMEC Earth and Environmental, Inc. San Diego Bioassay Laboratory 5550 Morehouse Drive. Suite B San Diego, CA 92121

ac:inc 4/14/04

APPENDIX C
REFERENCE TOXICANT DATA

CONCURRENT TO WHOLE SEDIMENT TESTING

·-	•••			Amphipod 10	0-day Survival	Bioassay-Surviv	/al
Start Date:	03/24/2004		Test ID:	040324eera		Sample ID:	REF-Ref Toxicant
End Date:	03/28/2004		Lab ID:	AEESD-AME	C Bioassay SD	Sample Type:	CUCL-Copper chloride
Sample Date:			Protocol:	ASTM 93		Test Species:	EE-Eohaustorius estuarius
Comments:						·	
Conc-mg/L	1	2	3	4			<u>-</u>
Lab Control	0.9000	0.8000	1.0000	0.9000			
1.25	0.9000	1.0000	0.9000	1.0000			
2.5	0.8000	0.7000	1.0000	0.7000			
5	0.5000	0.5000	0.6000	0.8000			
10	0.4000	0.2000	0.2000	0.3000			
20	0.1000	0.1000	0.0000	0.1000			

	-	_	Transform: Arcsin Square Root				_	1-Tailed			Total	
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
Lab Control	0.9000	1.0000	1.2543	1.1071	1.4120	9.935	4	_			4	40
1.25	0.9500	1.0556	1.3305	1.2490	1.4120	7.072	4	-0.815	2.410	0.2253	2	40
2.5	0.8000	0.8889	1.1254	0.9912	1.4120	17.662	4	1.379	2.410	0.2253	8	40
*5	0.6000	0.6667	0.8910	0.7854	1.1071	17.027	4	3.887	2.410	0.2253	16	40
*10	0.2750	0.3056	0.5479	0.4636	0.6847	19,408	4	7.557	2.410	0.2253	29	40
*20	0.0750	0.0833	0.2810	0.1588	0.3218	28.997	4	10.412	2.410	0.2253	37	40

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates norr	nal distrib	ution (p >	0.01)		0.9255		0.884		0.79952	0.12084
Bartlett's Test indicates equal vari					2.94814		15.0863			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSD _P _	MSB	MSE	F-Prob	df
Dunnett's Test	2.5	5	3.53553		0.16903	0.18716	0.69499	0.01748	4.1E-09	5, 18

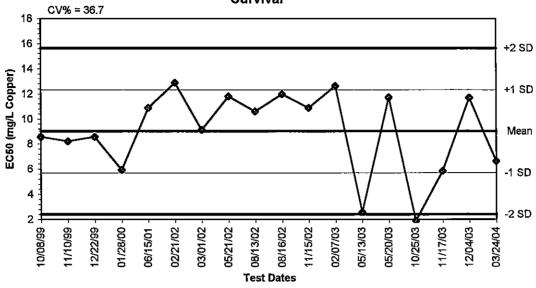
_				Ma	ximum Likelih	ood-Probi	t				
Parameter	Value	SE	95% Fidu	cial Limits_	Contro	l Chi-Sq		P-value	<u>Mu</u>	Sigma	iter
Slope	2.94899	0.49528	1.97825	3.91974	0.1	1.02276	7.81472	0.8	0.82166	0.3391	4
Intercept	2.57693	0.45291	1.68922	3.46463							
TSCR	0.07594	0.03383	0.00964	0.14224							
Point	Probits	mg/L	95% Fidu	cial <u>Limi</u> ts	۱ 🔢	_	_	_			
EC01	2.674	1.07845	0.37862	1.8606	0.9						
EC05	3.355	1.83609	0.82762	2.80789	0.8				т		
EC10	3.718	2.43831	1.25144	3,50862	0.7	. . .		<u> </u>			
EC15	3.964	2.95262	1.65026	4.08727	3						
EC20	4.158	3.4377	2.05192	4.62385	0.6 m 0.5 m 0.4 m				7		
EC25	4.326	3.9169	2.46862	5.15029	₹ 0.5				Τ/		
EC40	4.747	5.44191	3.88128	6.84919	S 0.4				`	\ т	
EC50	5.000	6.63225	5.01759	8.25693	1						
EC60	5.253	8.08297	6.3682	10.139	0.3					*	
EC75	5.674	11.23	9.01385	14.9772	0.2					`	
EC80	5.842	12.7954	10.1957	17.7438	0.1						<u> </u>
EC85	6.036	14.8975	11.6845	21.7787	۰.						
EC90	6.282	18,0399	13.762	28.4055		.25	ų	?	ហ	÷	9
EC95	6.645	23,9568	17.3662	42.5314	ontr	4	C	N		÷	•
EC99	7.326	40.7871	26.4404	92.1516	Lab Control						
<u> </u>	_				[a						

Sediment Testing Reference Toxicant Results AMEC Bioassay Laboratory

Client:	Intern	al
Toxicant:	CdClz	000324 EERA
Analysts:	JR AH	

Test Organism: E. estuarius

Start Date/Time: 3/24/04


End Date/Time: 3/88/04

Conc.		Sur	/ival		· D	O (mg/	'L)	· · · ·	<u> </u>	рH	nu Hq)	nits)		<u> </u>	Sal	linity (_l	pt)		-	Temp	eratur	e (°C)	
(mg/L)	Rep	0	96	0		48	72	96	0				96					96		24	48	72	96
LC.	Α	lo	9	9.2	7.8	7.9	7.8	7.2	8,06	7.01N	7.92	8.04	7.87	29.8	29.8	29.8	29.8	30.1	15.6	BO	15.6	15.0	15.1
	В	10	-8							701													
	С	10	10																				
	D	10	9																				
1.25	Α	10	9	9.4	7-9	7,8	7.9	7.8	8,08	7.92	792	8.06	798	29.9	<i>30:</i> 0	30.0	30.1	30-4	147	150	15.0	149	15.0
	В	io	10																				
	С	Į0	9																				8.00.00
	D	10	10																				
7.5	A	10	B	9.4	80	7.9	8.0	7.9	849	7.92	7.92	8.06	B.01	29.9	299	0.68	30.0	30.3	147	15.0	15.1	15.0	15.0
	В	ιo	7																				
	С	٥	10																				80000 / ·
	D	10	7																				
2.0	٨	10	5	9.4	8.0	7,%	8.0	3.0	8.09	7.90	7.91	30.8	8.02	29.8	30,0	30.0	3ა.0	30.2	14.6	i5.0	15.\	15:0	15.0
	В	10	5																				
	С	lo	b																				
	D	[6	8																				
10	Α	10	4	9.3	80	7.8	8.0	8.0	8109	7.91	7.90	8.06	8.13	19.8	293	29.9	29,9	30.1	14.4	15.0	15.0	15.0	15.0
	В	10	2																				
	С	[0	4																				
	D	(6	3																				
20	Λ	ĮD.	1	9.2	7.9	7.9	8.1	7.9	8.ધ્ય	7.90	7.90	8.07	8.03	29.7	29.7	29.8	29.8	30.1	14.6	iS.0	15.0	149	149
	В	(D	1																				
	С	[D	Ó																				
	1 1	-14		I	1																		


AMEC Bioassay Laboratory - 5550 Morehouse Dr., Suite B. San Diego, CA 92121.

QA Check: 110 4-7-04
Final Review: 110 510004

Copper (II) Chloride Reference Toxicant Control Chart - Amphipod Survival

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
10/08/99	8.5659	9.0192	5.7076	2.3961	12.3307	15.6423
11/10/99	8.2133	9.0192	5.7076	2.3961	12.3307	15.6423
12/22/99	8.5659	9.0192	5.7076	2.3961	12.3307	15.6423
01/28/00	5.9193	9.0192	5.7076	2.3961	12.3307	15.6423
06/15/01	10.8749	9.0192	5.7076	2.3961	12.3307	15.6423
02/21/02	12.8870	9.0192	5.7076	2.3961	12.3307	15.6423
03/01/02	9.1171	9.0192	5.7076	2.3961	12.3307	15.6423
05/21/02	11.7849	9.0192	5.7076	2.3961	12.3307	15.6423
08/13/02	10.5923	9.0192	5.7076	2.3961	12,3307	15.6423
08/16/02	11.9653	9.0192	5.7076	2.3961	12,3307	15.6423
11/15/02	10.8858	9.0192	5.7076	2.3961	12.3307	15.6423
02/07/03	12.6153	9.0192	5.7076	2.3961	12.3307	15.6423
05/13/03	2.5734	9.0192	5.7076	2.3961	12.3307	15.6423
05/20/03	11.7033	9.0192	5.7076	2,3961	12.3307	15.6423
10/25/03	1.9071	9.0192	5.7076	2,3961	12.3307	15.6423
11/17/03	5,8583	9,0192	5,7076	2.3961	12.3307	15.6423
12/04/03	11.6843	9.0192	5,7076	2.3961	12.3307	15.6423
03/24/04	6.6323	9.0192	5.7076	2.3961	12.3307	15.6423

			Bivalve La	arval Survi	val and Devel	opment Test-Propo	
Start Date:	03/23/2004		Test ID:	040323me	ert	Sample ID:	REF-Ref Toxicant
End Date:	03/25/2004		Lab ID:	AEESD-AI	MEC Bioassay	SD Sample Type:	CUCL-Copper chloride
Sample Date:			Protocol:	ASTM 93		Test Species:	ME-Mytilis edulis
Comments:							
Conc-ug/L	1	2	3	4	5	·	
L-Lab Control	0.5763	0.7647	0,5625	0.7941	0.7143		
2.5	0.6438	0.7162	0.6849	0.5455	0.7021		
5	0.6721	0.7037	0.5606	0.6410	0,6623		·
10	0.5714	0.5325	0.5634	0.4096	0.5067		
20	0.0200	0.0563	0.0000	0.0000	0.0000		
40	0.0000	0.0000	0.1176	0.0000	0.0000		

			Tra	Transform: Arcsin Square Root					1-Tailed		Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
L-Lab Control	0.6824	1.0000	0.9762	0.8481	1.0998	11.843	5				105	333
2.5	0.6585	0.9650	0.9479	0.8309	1.0090	7.552	5	0.533	2.360	0.1253	128	380
5	0.6480	0.9496	0.9363	0.8462	0.9952	5.966	5	0.752	2.360	0.1253	127	363
*10	0.5167	0.7572	0.8021	0.6945	0.8571	8.160	5	3.280	2.360	0.1253	183	376
*20	0.0153	0.0224	0.1195	0.0578	0.2396	62.759	5	16.139	2.360	0.1253	281	286
*40	0.0235	0,0345	0.1667	0.0946	0.3501	62.190	5	15.249	2.360	0.1253	88	90

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates norr	nal distrib	ution (p >	0.01)		0.97637		0.9		0.26689	-0.1363
Bartlett's Test indicates equal vari	ances (p =	0.72)			2.88763		15.08 <u>63</u>			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	5	10	7.07107		0.12087	0.17614	0.81488	0.00704	5.5E-16	5, 24

			Ma	ximum Likel	ihood-Probit	<u> </u>				
Parameter	Value	SE	95% Fiducial Limits	Cont			P-value	Mu	Sigma	iter
Slope	7.03814	7.68106	-17.406 31.4827	0.315	32 459.508	7.81472	2.8E-99	1.08715	0.14208	5
Intercept	-2.6515	8.69963	-30.338 25.0346							
TSCR	0.3302	0,18007	-0.2429 0.90327	_						
Point	Probits	ug/L	95% Fiducial Limits	¹ <u>₹</u>						
EC01	2.674	5.70973		0.9 츀						- [
EC05	3,355	7.13583		_ 0.8 🖡						
EC10	3.718	8.03644		0.7 0.6	т					
EC15	3.964	8.70745		5		-				
EC20	4.158	9.28048			<u>-</u>			:T		
EC25	4.326	9.80205	i	Proportion 0.4 0.3				7		
EC40	4.747	11.25	1	등 0.4 🗐				_T /		
EC50	5.000	12.2222		0.3						ļ
EC60	5.253	13.2784		0.2				/		
EC75	5.674	15.24		4				`	\	
EC80	5.842	16.0965	i	0.1 🛔					\	T
EC85	6.036	17.1558	}	o]				1	<u> </u>	
EC90	6.282	18.5882	<u>}</u>	<u>5</u>	2.5	ហ		10	1 20	4.
EC95	6.645	20.9342	<u>)</u>	5						
EC99	7.326	26.1628	}	ф О						
Significant he	eterogeneity	y detected	d (p = 2.84E-99)	L-Lab Control						

Test: BV-Bivalve Larval Survival and Development Test

Species: ME-Mytilis edulis

Sample ID: REF-Ref Toxicant Start Date: 03/23/2004

End Date: 03/25/2004

Test ID: 040323mert

Protocol: ASTM 87.93 Sample Type: CUCL-Copper chloride Lab ID: AFESD-AMEC Bioassay SD

Start	Date:	03/23	/2004 E	nd Date: 03/2	SD-AMEC Bio	assay SD		
				Initial	Final	Total	Number	-
Pos	ID .	Rep	Group	Density	Density	Counted	Normal	Notes
1	8	3	2.5			73	50	·
2	17	2	10			77	41	
3	29	4	40			15	0	
4	20	5	10		-	75	. 38	
5	5	5	L-Lab Control			91	65	
6	6	1	2.5	_		73	47	·
7	18	3	10			71	40	
8	26	1	40	,		14	0	
9	3	3	L-Lab Control			64	36	
10	30	5	40			16	0	
11	23	3	20			62	0	
12	4	4	L-Lab Control			68	54	
13	2	2	L-Lab Control			51	39	
14	10	5	2.5			94	66	
15	28	3	40			17	2	
16	11	1	5			61	41	
17	7	2	2.5			74	53	
18	1	1	L-Lab Control			59	34	
19	25	5	20			75	0	
20	21	1	20			50	1 _	
21	22	2	20			71	4	
22	12	2	5			81	57	
23	16	1	10			70	40	
24	15	5	5.0			77	51	
25	27	2	40		l	28	0	
26	19	4	10			83	34	
27	24	4	20	1		28	0	
28	14	4	5			78	50	
29	13	3	5			66	37	
30	9	4	2.5		1 -	66	36	
Com	ments		-					

Comments:

data entry QCC+H

Test: BV-Bivalve Larval Survival and Development Test Test ID: 040323mert

Species: ME-Mytilis edulis

Protocol: ASTM \$7 93 Sample Type: CUCL-Copper chloride Lab ID: AEESD-AMEC Bioassay SD Sample ID: REF-Ref Toxicant Start Date: 03/23/2004 End Date: 03/25/2004

Pos ID Rep Group Density Density Counted Number Notes	Start	Date:	03/23	/2004	End Date: 03/2	25/2004	Lab ID: AEES	SD-AMEC Bio	passay SD
1									
2	Pos	ID	Rep	Group	Density	Density			
15							73	<u>50</u>	<i>\$</i> 0
4							77	4) _	
5	3						15		
6	4						75	38	
6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7							91	65	
7							73	47	
8	7							40	V
9 64 36 NAT 10 16 0 TWT 11 6A 0 TWT 12 68 54 NAT 13 14 14 14 15 17 17 17 17 17 17 17 17 17 17 17 17 17	8			_			_ 14	Ð -	()い()
10	9						64	36	
12	10						16	0	
12	11						62	Q .	
14							68	.54	
14	13						E I	39	
15	14						94		さた
17	15						1 17	2	17.7
18	16						61	4	17.7
18	17			į			187274	2120 53	4.4
19	18				1			34	TV
22 81 57 JJ 23 70 40 JJ 24 77 51 JJ 25 28 28 78 50 JWJ 29 86 37 JWJ	19						25	0	77
22 81 57 JJ 23 70 40 JJ 24 77 51 JJ 25 28 28 78 50 JWJ 29 86 37 JWJ	20						50	1	75
23	21					_	71	4	
23	22						81	57	13
26 83 34 TI 27 28 0 JJ 28 75 50 JWJ 29 8 66 37 JWT	23						70		JJ
26 83 34 TI 27 28 0 JJ 28 75 50 JWJ 29 8 66 37 JWT	24			<u> </u>			77	51	10
26 33 34 JJ 27 28 28 78 50 JWJ 29 8 66 37 JWJ	25						1 37	0	133
28 78 50 JWJ 29 866 37 JWJ	26						83	34	र्रा
28 78 50 JWJ 29 866 37 JWJ	27						28	0	13T
29 8 66 37 JWT	28						78	50	TIWIT
30 Bb 66 36 JWJ	29							37	JWC
	30						18/10 660	36	1 w 3

Comments:

48 35 - 71% 82 58 - 71%

Test: BV-Bivalve Larval Survival and Development Test
Species: ME-Mytilis edulis
Sample ID: REF-Ref Toxicant

Test ID: 040323mert
Protocol: ASTM & 93 All
Sample Type: CUCL-Copper chloride

Lab ID: AEESD-AMEC Bioassay SD Start Date: 03/23/2004 End Date: 03/25/2004 Initial Final Total Number Density Density Counted Normal Notes Pos ID Rep Group L-Lab Control L-Lab Control L-Lab Control L-Lab Control L-Lab Control 2.5 2 2.5 2.5 2.5 2.5

Comments:

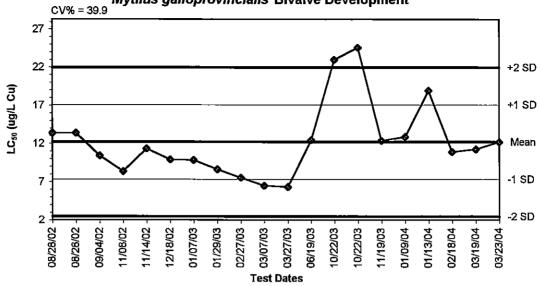
5 40

٠.

Bivalve Development Bioassay Worksheet

Client: Brenaventura + SPAWAR + CHC/2	Start Date/Time:	3/23/04
	End Date/Time:	3/25/04
Test No.: Test Species: M. gelloprovincialis	Date Received:	3/22/04
Sample Type: <u>Whole dedenant (Buena</u>	ilouna,	
Test Chamber Type and Sample Volume: 1L glass	jour, 10ml :	hellible
Spawn Initiation Time: 1145		
Male Female Number of Spawners: 10 8		
Spawn Condition: 1000		
Fertilization Time: 1415		
Egg Stock Density Calculation:		
Eggs Counted (x): 165	an dilution 1: 106.5	
Mean: 1665 X 42 = 4,473 eggs/ml	·	•
Initial Stock - 44730 eggs/ml = 2.03 Inoculum Stock - 72000 eggs/ml		
Percent Division Upon Inoculation: 801.		
Time of Inoculation: <u>1436</u>		
Comments:	AMEC Bioassay La	rive, Suite B
Reviewed/ Date: <u>LIC 4/8/C4</u>	San Diego, CA 921 (858) 458-9044	۷1

Water Quality Measurements


Raw Datasheet

Client:	Internal	Test Species: _	M. galloporincial	_ک'د
Sample ID:		Start/End Dates:		104
Test No.:	040323 MEET	Start/End Times:	1436 136	<u> </u>
100010	010022511 <u>401</u>			

Concentration	Temperature (°C)				Salinity (ppt)			Dissolved Oxygen (mg/L)			pH (pH units)		
~3	0	24	48	0	24	48	0	24	48	0	24	48	
и	14.3	15.6	15.4	<i>33</i> .千	34.3	34.3	10.2	8.5	7.6	8.05	8:16	7.92	
2.5	143	15.0	150	33.7	34.4	34.5	16.1	8.5	7-6	8.08	8.16	7-94	
50	14.3	15.0	15.0	33:4	34.4	34.6	16.1	8.5	7.7	8.00	8.10	7.96	
10	14.3	15.6	150	33.6	31.3	34-5	10.1	8.5	7.7	8.09	8.10	7.98	
20	14.3	15.0	149	33.6	34.4	34.6	16.1	8,6	8.1	8.12	8.16	8.00	
40	14.3	15.0	(49	33.8	34.2	34-5	10.2	ع، نو	8.0	8,16	8,15	802	
	<u> </u>						ļ	<u> </u>			-	ļ—.	
								<u> </u>		<u> </u>	<u> </u>	<u> </u>	
								ļ	ļ	<u> </u>		<u> </u>	
							<u> </u>	<u> </u>	ļ	ļ		ļ	
											 	<u> </u>	
					<u> </u>			 		 		ļ <u> </u>	
				<u> </u>			<u> </u>	ļ <u>.</u>	<u> </u>	 			
							<u> </u>	<u> </u>		<u> </u>	<u> </u>		


Technician Initia	0 als: M∠	24 48 . Mc AW	
Animal Source/	Date Received:	Carlsbad Aquaturns /3	0.22.04
Comments:	0 hrs: 24 hrs: 48 hrs:		AMEC Earth and Environmental Bioassay Laboratory
QC Check:	uc 4/8/a	Final Review: BCS	5550 Morehouse Dr., Suite B San Diego, CA 92121

Copper (II) Chloride Reference Toxicant Control Chart - Mytilus galloprovincialis Bivalve Development

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
08/28/02	13.3760	12.2174	7.3379	2.4584	17.0969	21.9764
08/28/02	13.3760	12.2174	7.3379	2.4584	17.0969	21.9764
09/04/02	10.4338	12.2174	7.3379	2.4584	17.0969	21.9764
11/08/02	8.3754	12.2174	7.3379	2.4584	17.0969	21.9764
11/14/02	11.3155	12.2174	7.3379	2.4584	17.0969	21.9764
12/18/02	9.9361	12.2174	7.3379	2.4584	17.0969	21.9764
01/07/03	9.8373	12.2174	7.3379	2.4584	17.0969	21.9764
01/29/03	8.6253	12.2174	7.3379	2.4584	17.0969	21.9764
02/27/03	7.5397	12.2174	7.3379	2.4584	17.0969	21.9764
03/07/03	6.5174	12.2174	7.3379	2.4584	17.0969	21.9764
03/27/03	6,3338	12.2174	7.3379	2.4584	17.0969	21.9764
06/19/03	12.4539	12.2174	7.3379	2.4584	17.0969	21.9764
10/22/03	23.0103	12.2174	7.3379	2.4584	17.0969	21.9764
10/22/03	24.5820	12.2174	7.3379	2.4584	17.0969	21.9764
11/19/03	12.3871	12.2174	7.3379	2.4584	17.0969	21.9764
01/09/04	12.8695	12.2174	7.3379	2.4584	17.0969	21.9764
01/13/04	18.9772	12.2174	7.3379	2.4584	17.0969	21.9764
02/18/04	10.9125	12.2174	7.3379	2.4584	17.0969	21.9764
03/19/04	11.2668	12.2174	7.3379	2.4584	17.0969	21.9764
03/23/04	12.2223	12.2174	7.3379	2.4584	17.0969	21.9764

P. PROMELAS

			Laı	val Fish Grov	wth and Surviv	/al Test-7 Day Si	ırvival
Start Date:	03/18/2004		Test ID:	040318PPRT		Sample ID:	REF-Ref Toxicant
End Date:	03/25/2004		Lab ID:	AEESD-AME	C Bioassay SD	Sample Type:	CUCL-Copper chloride
Sample Date:			Protocol:	EPAF 02-EPA	A Freshwater C	Test Species:	PP-Pimephales promelas
Comments:							
Conc-ug/L	1	2	3	4			
L-Lab Control	0.9000	1.0000	1.0000	1.0000		·	
15	0.8000	0.9000	0.9000	0.9000			
30	0.7000	0.9000	0.6000	0.3000			
60	0.8000	0.4000	0.7000	0.6000			
120	0.6000	0.4000	0.6000	0.8000			
240	0.2000	0.3000	0.2000	0.3000			

			Tra	ansform:	Arcsin So	guare Roo	t		1-Tailed		Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
L-Lab Control	0.9750	1.0000	1.3713	1.2490	1.4120	5.942	4				1	40
15	0.8750	0.8974	1.2136	1.1071	1.2490	5.846	4	1.388	2.410	0.2738	5	40
*30	0.6250	0.6410	0.9265	0.5796	1.2490	29.897	4	3.916	2.410	0.2738	15	40
*60	0.6250	0.6410	0.9173	0.6847	1.1071	19.559	4	3.997	2.410	0.2738	15	40
*120	0.6000	0.6154	0.8910	0.6847	1.1071	19.366	4	4.228	2.410	0.2738	16	40
*240	0.2500	0.2564	0.5216	0.4636	0.5796	12.838	4	7.480	2.410	0.2738	30	40

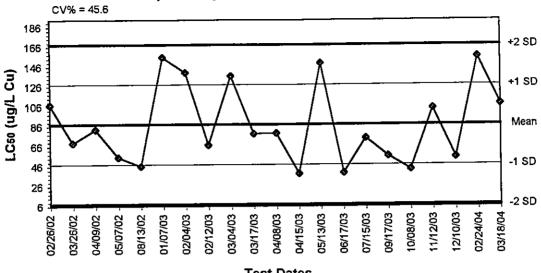
Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor		0.94701		0.884		-0.2428	1.2682			
Bartlett's Test indicates equal vari		8.73345		15.0863						
Hypothesis Test (1-tail, 0.05)	TU	MSDu	MSDp	MSB	MSE	F-Prob	df			
Dunnett's Test	15	30	21.2132		0.16848	0.17537	0.34577	0.02581	1.5E-05	5, 18

				Ma	ximum Likeliho	od-Probi	t				
Parameter	Value	SE	95% Fidu	icial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	Iter
Slope	1.23092	0.24846	0.74393	1.7179	0.025	6.98147	7.81472	0.07	2.03563	0.8124	3
Intercept	2.4943	0.47045	1.57222	3.41639							
TSCR	0.02483	0.02454	-0.0233	0.07292	4						
Point	Probits	ug/L	95% Fidu	icial Limits	'						
EC01	2.674	1.39864	0.09714	4.56334	0.9	T	Т				
EC05	3.355	5.0044	0.78348	11.626	0.8	· · · · T· /	< 		- †	· · · · · · · · ·	
EC10	3.718	9.87414	2.36056	19.3319	- 0.7 E						
EC15	3.964	15,6183	4.92467	27.4844	<u>.≅</u>		V		-	l	
EC20	4.158	22.4853	8.75121	36.7	0.7 0.6 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5					7	
EC25	4.326	30,7381	14.1646	47.5857							
EC40	4.747	67.5795	42.8111	101.948	0.4 Day				Τ	Τ	
EC50	5.000	108.551	73.1053	183.659	D 0.3						
EC60	5,253	174.363	113.937	362.513	3						
EC75	5.674	383.346	216.57	1234.93	0.2						
EC80	5.842	524.046	275.462	2037.65	0.1 🗐						
EC85	6.036	754.458	362,79	3671.17	۰						
EC90	6.282	1193.35	510.513	7737.99	<u>ē</u>	7	ွ ိ		.00	120	
EC95	6.645	2354,6	841.918	23507.1	i		*		*	; -	
EC99	7.326	8424.9	2130.48	190883	0						
					L-Lab Control						
					-						

Larval Fish Growth and Survival Test-7 Day Growth											
Start Date:	03/18/2004	_	Test ID:	040318PPRT		Sample ID:	Ref Toxicant				
End Date:	03/25/2004		Lab ID:	AEESD-AMEC	C Bioassay SD	Sample Type:	Copper chloride				
Sample Date:			Protocol:	EPAF 02-EPA	Freshwater C	Test Species:	PP-Pimephales promelas				
Comments:											
Conc-ug/L	1	2	3	4		<u>_</u>					
L-Lab Control	0.3390	0.3610	0,3330	0.3290							
15	0.2820	0.3200	0.3360	0.3510							
30	0.1700	0.2710	0.2270	0.1250							
60	0.3200	0.1270	0.2730	0.2830							

120 0.2200 0.1110 0.1900 0.2280 240 0.0220 0.0120 0.0510 0.0260

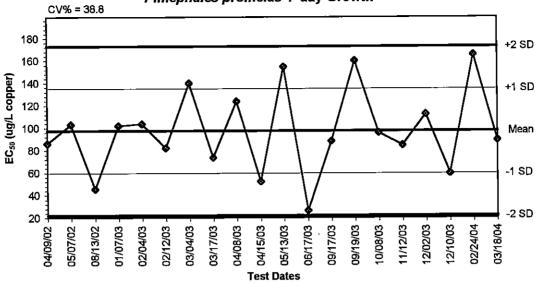
			-	Transforn	n: Untran	sformed		1-Tailed				
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
L-Lab Control	0.3405	1,0000	0.3405	0.3290	0.3610	4.191	4				0.3405	0.0000
15	0.3223	0.9464	0.3223	0.2820	0.3510	9.207	4	0.507	2.410	0.0867	0.3223	0.0536
*30	0.1983	0.5822	0.1983	0.1250	0.2710	32.276	4	3.956	2.410	0.0867	0.1983	0.4178
*60	0.2508	0.7364	0.2508	0.1270	0.3200	33.875	4	2.496	2.410	0.0867	0.2508	0.2636
*120	0.1873	0.5499	0.1873	0.1110	0.2280	28.518	4	4.261	2.410	0.0867	0.1873	0.4501
*240	0.0278		0.0278	0.0120	0.0510	59.750	4	8.697	2.410	0.0867	0.0278	0.9185


Auxiliary Tests	-	Statistic		Critical			Kurt			
Shapiro-Wilk's Test indicates non		0.9273		0.884		-0.984	1.50589			
	Bartlett's Test indicates equal variances (p = 0.04)									
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	<u>df</u>
Dunnett's Test	15	30	21.2132		0.08667	0.25454	0.05154	0.00259	9.1E-07	5, 18

· -	_	_		Ma	ximum Likeliho	od-Probit	:				
Parameter	Value	SE	95% Fidu	cial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	<u>lter</u>
Slope	1.66621	0.59443	0.50113	2.8313	0	4.74262	7.81472	0.19	1.95091	0.60016	6
Intercept	1.74936	1.14469	-0.4942	3.99296							
TSCR					0.4			<u> </u>			
Point	Probits	ug/L	95% Fidu	cial Limits	" "∄						
EC01	2.674	3,58693	0.00256	13.699	0.35	_					
EC05	3.355	9,19878	0.05695	24.5704	- آ ا	-			Τ		
EC10	3.718	15.1974	0.29361	33.9933	0.3	Τ,	\ .				
EC15	3.964	21.3246	0.87779	42.8033	U 0.25 0.25 0.2	 -	\ `		·		
EC20	4.158	27.9126	2.07026	52.047	<u> </u>		\			▼ T	
EC25	4.326	35.1646	4.25587	62.5133	9 0.2		٦			A	
EC40	4.747	62.9304	22.2032	116.864	0.15						
EC50	5,000	89.312	45.7122	223.407	7 1			L	<u> </u>	1	
EC60	5.253	126.753	72.733	552.625	0.1 🗐						
EC75	5.674	226.837	120.833	3244.23	0.05						
EC80	5.842	285.772	142.836	6776.37	0.05						
EC85	6.036	374.058	171.779	16159.2	o]			-	-		
EC90	6.282	524.867	214.57	48699.7	豆	1		င္က	9	120	
EC95	6.645	867.14	294.985	252685	ab Control			-	-	i	
EC99	7,326	2223.81	526.377	5645482	요						

							Tes	t Spe	cies:_	origing.	۱۱۰	(a s		
Client Name	:	Intec	nci					Test [Date: _	3.15	<u> </u>	<u> </u>		
Sample ID:		<u> </u>	(12			<u>-</u>		Test	No.: _	01031	BF	PRT		
				·-	Test D	lav.				Percent		pan wt.	pan + fish	
Conc.	Rep.	0	1	2		4	5	6	7	Survival		(g)	(g)	
(lically		-	9	9	q	4	9	9	9	90		0.02604	0.02943	
	<u>а</u> ь	10	w	6	10	10	io	10	16	. 100		3.02878	0 05249	
	C	io	10	ю	10	10	io	10	W	100			0.535060	
	q	10	10	8	70	[0]	lo lo	10	10	100	12		0.02727	
15	a		9	q	ප	8	ય	β	8	780	\$	0.03631	0.03913	
-12	ь	0 0		ì	10	9	9	9	a	90		0.03019	0.03339	
ļ	C	10	10	16	10	10	10	9	9	90		0.03419	0.03755	
	d	10	10	10		9	q	4	9	40		0.03079	0.63430	-
		+		8	8	8	8	1 8	70	70		0.03334	10.03504	ŀ
30_	a	10	40	NO O	9	-3-	7	9	9	90		0.03276	0.03547	
	b	10) 	a	9	- <u>(</u>	6	6	(0	100		0.03075	0.03302	
		10			5		3	3	3	30	- I	0.03500	7 . 712 7 . 1	j
	d	10	5_	5		-		<u> 2</u>	8	\$17		0,03201		
1,0	<u>a</u>	10	10	10	10	8_	8	8	12	80 40		0.03944		1
	ь	10	wia_	٦		_7_	5		7	70	- [議]	0.03161		
	С	10	78	8	3	3	8	7	6	60		0.02860		
	d	10	8	8	5	- '	6	 [e _	<u> </u>	60	- iz	0.03500		1
120	а	0	7	7	7	مِ ا	6	10	6	40	-	0.03289		1
	þ	<u>_l_o_</u>	9	7	4	5	5_	5	4		-52	0.02998	0	1
	C	10	8	7	17	1	<u> </u>	17	18	80 80	- ;≥		~ ~ ~	1
	d	10_	8	8	5	3	3	8	8		-	0.02861	0.03343	1
240	a	10	6	14	<u> 4 </u>	3	3	12_	2	20	− iš.	0.03321		†
	Ь	10	8	4	3	3	3	3	3	30	3			1
	С	10	5	3	3	7	2	12	1	30 30		0.02941	0.03137	-{
	d	lo	4	4	Į Y	4	4_	3	3	30		0.03111	0.0 312 1	4
	a	10			T _	<u> </u>	<u> </u>	Ш	<u> </u>		_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u></u>		-
	Ь	1/0	T	1		[1	<u> </u>	<u> </u>	<u></u>			 	-{
 	c	10			T .		1	1	<u> </u>					-{
	d	10/					Ţ <u></u>		<u>.l</u>				<u> </u>	
Tech Initials		MT/SH	ηW	Sit	RU	१८	SH	186	me	_		Wei	ght Data:	
							_	_	_				n:3.7504 17	Q.
Feeding Time	es (da)	/ }:	0	1	2	3	4	5	6	7		Date/ I III III	1: 3.26.04	* 2u
_				0815	CHOS			<u>7 0.830</u>		_{_				5
r				1245	1130	1570		245		4	O,	ven Temp (°C		-
			1515	1700	1400	150	17436	(5) K30	1530	_		Tech Initial	s <u>77</u>	_
								*					k: 9443]	20/14
Comments:												QC Chec	K: 404-121 31	
				_				_ -				Final Revie	W: RES 3/2	<u> </u>

Client:	laternal	Test Species: P. Avontalas
Sample ID:	Cullz	Test Date: 3.18.04
Test No:	U40318PPRT	Start/End Times: 1430 / 1300
Concentration		Concentration (gC 1122)
Day	0 1 2 3 4 5 6 7	Day 0 1 2 3 4 5 6 7
25. 1.21. 21.22	(nitia)	Initial
pH	7.4 8.1 8.18 8.11 7.92 7.90 8.11 7.4 8.1 8.1 8.0 7.7 7.8	pH 3.13 8.18 8.15 8.14 7.97 7.89 8.11 DO (mg/L) 7.8 8.1 8.1 8.1 7.5 78 7.9
DO (mg/i.) Cond. (jimlios-cm)		
Temp (*C)	2.14 265 203 211 207 207 209 2.5 3 25 3 25.0 24.1 25.0 24.7 24.9	Cond. (jumhos-cm) 70; 700 700 202 205 204 707 Temp (°C) 24,4 25.4 25.1 24,6 24.9 25.0 25-0
	Final	F(nal
pH PO (mm/l)	8,22 7.91 7.63 2.04 8.00 8.15 7.91	PH 8.00 7.92 8.04 7.91 7.98 7.85
DO (nig/L) Temp (*C)	6.8 6.7 5.2 6.2 61 6.4 65 24.8 24.1 24.5 24.5 24.2 25.1 244	Tomp (°C) 7.3 7.4 6.5 6.5 7.1 6.7 6.7 7.1 7.5 7.1 7.5 7.5 7.1 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
79	1.0 0129.0129.0129	101111 0) 10111 1011 1011 1011 1011 101
Concentration	15 100 16	Concontration 120 1 ica iC
Day	0 1 2 3 4 5 6 7	Day 0 1 2 3 4 5 6 7
- 10 m 75 m		initial in the control of the contro
DO (mg/L)	7.27 8.20 8.18 812 795 7.39 8.10	pH 3.24 8.29 51.17 2.17 7.99 738 8.11 DO (mg/L) 7.8 8.2 8.2 8.1 7.5 7.8 7.9
Cond. (junhos-cm)	203 205 203 21) 204 207 209	Cond. (µmhos·cm) (71 199 199 203 203 205
Temp (*C)	24.7 254 25.0 24.6 25.7 25.0 24.9	Tomp (°C) 24.3 25.5 25.1 24.1 27.8 750 25.0
pH	8.15 7.46 7.48 0.02 7.90 8.05 7.91	PH 813 80 796 805 795 801 783
DO (mg/L)	7.0 7.1 6,2 6.4 67.	pH 813 80 795 801 783 DO (mg/L) 73 75 65 77 73 71 66
Temp (*C)	25.3 24.1 244 247 240 25.3 247	Temp (°C) 25.3 24.1 24.0 24.5 26, 250 24.9
Concentration	30 1cal	Concontration 7401ical
Оау	0 1 2 3 4 5 6 7	Day 0 1 / 2 3 4 5 6 7
pH	R i 3 8 · 27 5.19 19.12 7.96 7.90 8.10	pH
DO (mg/L)	77 8,2 8,1 8,1 1.6 7.8 7.9	DO (mg/L) 7.7 8.3 8.2 8.1 7.5 7.9 7.9
Cond. (jmhos-cm)	17:1 12:5 12:5 20:9 1 2:5 12:5 12:5 1	Cond. (µmhos-cm) 198 197 198 200 200 201 203
Temp (*C)	24.9 25.6 25.1 21.6 25. 2250 24.9	Tamp (°C) 24.6 25.4 25.1 24.7 24.7 250 25-0
pH	8.15 798 7.41 8.00 789 8.60 7.84	pH
DO (mg/L)	7.2 74 6.3 4.5 68 6.3 64	DO (mg/L) 7.5 7.6 6.9 7.1 74 7.3 74
Temp (*C)	25.4 244 243 247 241 25 3 250	Temp (°C) 25.2 24.1 24.3 24.4 24.0 25024.7
•	ì	0 1 2 3 4 5 6 7
	Received: APS / 3:18:04	\$ 1 Page
Animal Source/Date		
Animal Age at Initial	ion: 48 hps	Final: ILC SH AH AH AW MC AW
Comments:		· •
QC Check;	apt 3/29/04	Final Roview: BCS 3-29-04

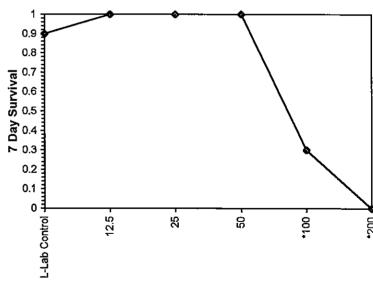

Copper (II) Chloride Reference Toxicant Control Chart -Pimephales promelas 7-Day Survival

Test Dates

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
02/26/02	107.4362	87.8545	47.8357	7.8169	127.8732	167.8920
03/26/02	69.5314	87.8545	47.8357	7.8169	127.8732	167.8920
04/09/02	82.7708	87.8545	47.8357	7.8169	127.8732	167.8920
05/07/02	55.1305	87.8545	47.8357	7.8169	127.8732	167.8920
08/13/02	45.8862	87.8545	47.8357	7.8169	127.8732	167.8920
01/07/03	155,4388	87.8545	47.8357	7.8169	127.8732	167.8920
02/04/03	140,0516	87.8545	47.8357	7.8169	127.8732	167.8920
02/12/03	67,5523	87.8545	47.8357	7.8169	127.8732	167.8920
03/04/03	136.7841	87.8545	47.8357	7.8169	127.8732	167.8920
03/17/03	78.6469	87.8545	47.8357	7.8169	127.8732	167.8920
04/08/03	79.2207	87.8545	47.8357	7.8169	127.8732	167.8920
04/15/03	38.5448	87.8545	47.8357	7.8169	127.8732	167.8920
05/13/03	149.7478	87.8545	47.8357	7.8169	127.8732	167.8920
06/17/03	39.5091	87.8545	47.8357	7.8169	127.8732	167.8920
07/15/03	74,4438	87.8545	47.8357	7.8169	127.8732	167.8920
09/17/03	56.5391	87.8545	47.8357	7.8169	127.8732	167.8920
10/08/03	43.1912	87.8545	47.8357	7.8169	127.8732	167.8920
11/12/03		87.8545	47.8357	7.8169	127.8732	167,8920
12/10/03	1	87.8545	47.8357	7.8169	127.8732	167.8920
02/24/04	_	87.8545	47.8357	7.8169	127.8732	167.8920
03/18/04	1		47.8357	7.8169	127.8732	167.8920

Copper (II) Chloride Reference Toxicant Control Chart - Pimephales promelas 7-day Growth

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
04/09/02	85.9635	97.4437	59.6827	21.9218	135.2046	172.9656
05/07/02	103.1250	97.4437	59.6827	21.9218	135.2046	172.9656
08/13/02	45.6522	97.4437	59.6827	21.9218	135.2046	172.9656
01/07/03	101.9048	97.4437	59.6827	21.9218	135.2046	172.9656
02/04/03	103,5616	97.4437	59.6827	21.9218	135.2046	172.9656
02/12/03	82.1105	97.4437	59.6827	21.9218	135.2046	172.9656
03/04/03	140.0281	97.4437	59.6827	21.9218	135.2046	172.9656
03/17/03	73.5889	97.4437	59.6827	21.9218	135.2046	172.9656
04/08/03	123.7772	97.4437	59.6827	21.9218	135.2046	172.9656
04/15/03	52.4483	97.4437	59.6827	21.9218	135.2046	172.9656
05/13/03	154.7297	97.4437	59.6827	21.9218	135,2046	172.9656
06/17/03	26.3845	97.4437	59.6827	21.9218	135.2046	172.9656
09/17/03	88,2769	97.4437	59.6827	21.9218	135.2046	172.9656
09/19/03	160,1437	97.4437	59.6827	21.9218	135.2046	172.9656
10/08/03	95.8075	97.4437	59,6827	21.9218	135.2046	172.9656
11/12/03	84.6014	97.4437	59,6827	21.9218	135.2046	172.9656
12/02/03	112.3664	97.4437	59.6827	21.9218	135.2046	172.9656
12/10/03	59.6613	97.4437	59.6827	21.9218	135.2046	172.9656
02/24/04	165.4302	97.4437	59.6827	21.9218	135.2046	172.9656
03/18/04	89.3120	97.4437	59.6827	21.9218	135.2046	172.9656

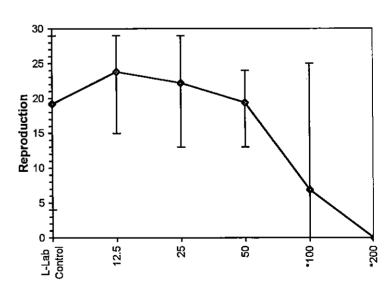

C. DUBIA

			Cerioda	phnia Sur	vival and	Reprodu	iction Tes	t-7 Day	Survival	
Start Date:	03/18/2004		Test ID:	D: 040318CDRT			Sample ID):	REF-Ref 1	oxicant
End Date:	03/25/2004	ļ	Lab ID:	AEESD-AI	MEC Bioa	ssay SD	Sample Ty	/pe:	CUCL-Cop	oper chloride
Sample Date:			Protocol:	EPAF 02-I	EPA Frest	nwater C	Test Spec	ies:	CD-Ceriod	laphnia dubia
Comments:										
Conc-ug/L	1	2	3	4	5	6	7	8	9	10
L-Lab Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000
12.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
50	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000
200	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

				Not			Fisher's	1-Tailed	Isot	Isotonic		
Conc-ug/L	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Mean	N-Mean		
L-Lab Control	0.9000	1.0000	1	9	10	10			0.9750	1.0000		
12.5	1.0000	1.1111	0	10	10	10	0.5000	0.0500	0.9750	1.0000		
25	1.0000	1.1111	0	10	10	10	0,5000	0.0500	0.9750	1.0000		
50	1.0000	1.1111	0	10	10	10	0.5000	0.0500	0.9750	1.0000		
*100	0.3000	0.3333	7	3	10	10	0.0099	0.0500	0.3000	0.3077		
*200	0.0000	0.0000	10	0	10	10	0.0001	0.0500	0.0000	0.0000		

Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	50	100	70.7107		

				Linea	r interpo	lation (200 Resamples)
Point	ug/L	SD	95%	CL	Skew	
IC05	53.611	1.117	52.500	56.500	3,1843	·
IC10	57.222	2.235	55.000	63.000	3.1843	
IC15	60.833	3.352	57.500	69.500	3.1843	1 1
IC20	64.444	4.470	60.000	76.000	3.1843	0.9
IC25	68.056	5.355	62.500	82.500	2.6193	0.8
1C40	78.889	8.070	70.000	102.500	1.9119	3
1C50	86.111	10.380	75.000	118.750	1.7575	E 0.7



			Cerioda	aphnia Sui	rvival and	l Reprod	uction Tes	st-Repro	duction	
Start Date:	03/18/2004		Test ID: 040318CDRT				Sample ID:		REF-Ref Toxicant	
End Date:	03/25/2004	,	Lab ID:	AEESD-AMEC Bioassay SD			Sample Type:		CUCL-Copper chloride	
Sample Date:			Protocol:	EPAF 02-	EPA Frest	nwater C	Test Spec	ies:	CD-Cerioo	laphnia dubia
Comments:										
Conc-ug/L	1	2	3	4	5	6	7	8	9	10
L-Lab Control	4,000	27.000	22.000	29.000	24.000	24.000	5.000	25.000	17.000	15.000
12.5	15.000	29.000	22.000	29.000	27.000	23.000	25.000	29.000	20,000	19.000
25	29.000	27.000	28.000	27.000	26,000	24.000	13.000	16.000	14.000	18.000
50	24.000	13.000	23.000	24.000	18.000	23.000	19.000	21.000	16.000	13.000*
100	25.000	12.000	0.000	0.000	5.000	0.000	15.000	0.000	0.000	12.000
200	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

			Transform: Untransformed			Rank	1-Tailed	Isote	onic		
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Mean	N-Mean
L-Lab Control	19.200	1.0000	19.200	4.000	29.000	45.920	10			21.733	1.0000
12.5	23.800	1.2396	23.800	15.000	29.000	20.373	10	119.50	75.00	21.733	1.0000
25	22.200	1.1563	22.200	13.000	29.000	28.155	10	115.50	75.00	21.733	1.0000
50	19.400	1.0104	19.400	13.000	24.000	22.164	10	96.00	75.00	19.400	0.8926
*100	6.900	0.3594	6.900	0.000	25.000	126.612	10	70.50	75.00	6.900	0.3175
* 200	0.000	0.0000	0.000	0.000	0.000	0.000	10	55.00	75.00	0.000	0.0000

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Kolmogorov D Test indicates nor	mal distrib	ution (p >	0.01)		0.78457	1.035	-0,0858	0.71672
Equality of variance cannot be co	nfirmed					_		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU			- '	
Steel's Many-One Rank Test	50	100	70.7107					

	-			Linea	r Interpola	ation (200 Resamples)
Point	ug/L	SD	95%	CL	Skew	
IC05	36.643	12.244	15.630	54.372	0.0550	
IC10	48.286	12.621	19.391	58.852	-0.0090	
IC15	53.707	10.714	23.104	63,786	-0.0422	30
IC20	58.053	9.146	36,319	69.231	0.6729	† T
IC25	62.400	8.310	47.329	74.589	2.2357	25 -
IC40	75.440	9.505	63.634	94.951	2.3313	["
IC50	84,133	11.082	71.775	113.131	2.0353	

End Date: 3-25-04 3.18.04 Client/Sample ID: Internal Colla Start Date: End Time: 0950 Cets 040318001+ Test No: Start Time: 1100 Daily Reproduction/ Survival Daily Reproduction/ Survival Conc. Rep Total QC Conc. Rep Total QC 4 . 5 ... 6 .**1** % 2 3 1944 5 5 S 6 7 O LL 50 0 10 Ö <u>D</u> 0 0 0 سالتنا w 0 Ô O 0 ไ 4 10 0 Ŀ 0 0 O Ø 10 Analyst 130 Daily Reproduction/ Survival Daily Reproduction/ Survival Rep Total QC Conc. Conc. Rep Total QC 1 - 5 6 2 ુ 3 ∗ુ . 1 4 5 6 6 ٥ *ttt* 5 ਤ 0 $\langle \cdot \rangle$ JQ) 17.5 Ō 22 23 23 23 23 23 24 ルシレ 1416 o Id Δ Old 0 0 010 O 0 0 6mc Ö Ç 0/9 Daily Reproduction/ Survival Daily Reproduction/ Survival Conc. Rep QC Conc. Rep Total Total QC 1 2 4 7 1. 2 ં 3 4.4 7 12 n c/d 200 25 Ō 012 Ð Light 10 Myle _ a 0/4 oDIA 0 _ Ò 4ml Time Fed (day): (0) 1 00 (1) 1015 (2) 1030 (3) 1145 (4) 1330 (5) 1545 (6) 1100 (7) (8) Comments: QC Check: 4 4 3/29/04 Final Review: Bc 5 3 130/04

Client/Sample ID:

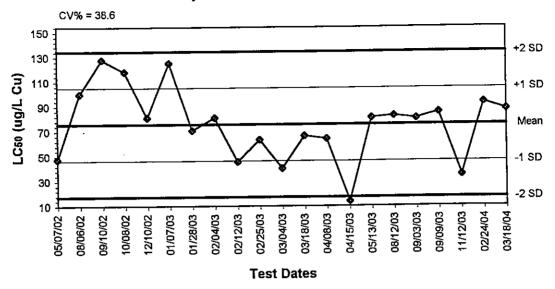
Start Date: 3.18.04

Test Number: Test Species:

Start Time: \\O O

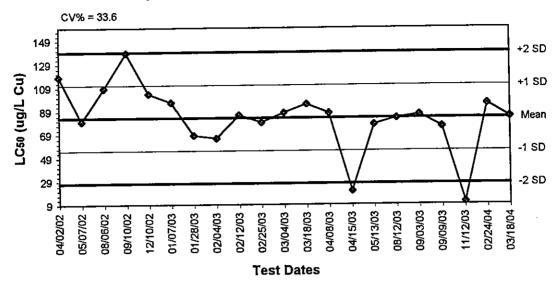
Verified by:

Comments:


QC Check: 6 3 3 104

Final Review: 555 4/1/04

AMEC Earth & Environmental Bioassay Laboratory. 5550 Morehouse Dr., Ste. B. San Diego, CA 92121.


Client:	Internal	Test Species: C. Lubia
Sample ID:	Cuciz	Test Date: 3・18・6リ
Test No:	040318CDRT	Start/End Times: 1401100 , 0950
,,		
Concentration	1 1	Concentration 5014514
Day	0 1 2 3 4 5 6 7	Day 0 1 1 2 3 4 5 6 7
pH	8.28 8.09 8.12 8.00 E.16 7.92 8.20	pH 8.27 8.23 8116 6.17 8.04 7.28 8.13
DO (mg/L)	17. 6 78 8.0 19 7.6 78 8.0	DO (mg/L) 7.4 7.8 8.2 7.4 7.5 7.9 8.0
Cond. (juntios-cm)	205 201 209 204 209 205 205	Cond. (jimhos-cm) 198 197 262 203 205 204 205
Temp (*C)	24.2 74.1 16.7 25.1 24.9 25.0 24.8	Tomp (°C) \$\infty \begin{array}{ c c c c c c c c c c c c c c c c c c c
ρН	300 8,15 8.18 8.02 814 805 8.01	PH 8.06 8.12 8.21 8.01 8.07 7.90
DO (mg/L)	8.1 8.2 7.9 8.3 8.4 8.4 7.5	DO (mg/L) 3.0 8.2 7.9 84 8.3 82 7.3
Tamp (*C)	25.0 25.5 248 240 351 250 250	Tomp (°C) 25.0 25,5 24 9 24.0 25.1 25.0 25.0
<u> </u>		
Concentration	12.5 Light	Concentration (COLO)(C
Day	0 1 3 2 3 4 5 6 7	Day 0 1 O 2 3 4 5 6 7
pH	8.24 8.19 5.15 B19 8103 7.97 8,18	PH 9.18 8.25 8.18 817 8.06 7.18 8.12
DO (mg/L)	7.5 77 8.2 8.0 7.6 7.7 8.1	DO (mg/L) 7.4 79 8.6 7.4 7.6 8.0 8.0
Cond. (jimhos-cin)		Cond. (µmhos-cm) 197 197 199 200 204 204 204
Temp (°C)	24.4 24.6 25.8 25.1 25.8 25,2 25.0	Tomp (°C) 25.5 24.3 25.5 25.0 25.0 25.0
pH	803 819 18.21 801 18.14 1807 800	PH 8.06 8.13 3.05 8.03 18.4 1812 12.00
DO (mg/L)	83 K4 7.8 83 B0 82 7.5	DO (mg/L) 80 8.2 8.1 8.3 26 34 7.8
Temp (*C)	25.0 25.5 W9 04.0 25.1 250 25.U	Temp (°C) 25.0 25.5 24.9 24.0 25.1 250 35.0
Congentration	1 = "	Concontration 2/33 and 1/
Concentration Day	25,001	Concentration 2(7)) 2 3 4 5 6 7
	Jnitial .	[pila]
ρН	822 5.21 8.16 8.19 8.00 7.98 8.19	рн 8.18 4.25 3.19 4.16
OO (mg/L) Cond. (junhor-em	7.5 7.8 8.3 1.4 7.6 7.4 8.0	DO (mg/L) 77 7.9 8.2 7.4 Cond. (µmhos-cm) 194 197 197 197
Temp (*C)	1 198 206 202 203 205 206 205 24.0 24.6 25.5 25.1 25.4 25.1 26.1	Tamp (°C) 04. D 24.2 25.5 25.2
<u> </u>	final	Final
pH pH	804 8.14 8.22 8.02 8.15 8.07 7.97	pH 8.\0 8.\2 8.\5 DO (mg/L) 8.2 82 8.\
DO (mg/L) Temp (°C)	7.9 5.3 7.9 8.4 8.3 8.1 7.3 25.0 25.5 24.4 24.0 25.1 25.0 25.0	DO (mg/L) 8.2 92 8.\ Tomp (°C) 25.0 25.5 24.9 24.0
1.510p (G)	27.0 27.0 27.0 2.0	10111) 0/ 100000 = 7,0 3 1 2 1 2 1
·		0 1 2 3 4 5 6 7
Animal Source/Date	Rocolvod: Internal N/A	Analysis: Initial: Sis me me Rig AH AW mc
/ milli comcer.sate	·	Final AW INC 186 Ah) AW AW SD
Animal Age at Initia	tion: C24 hr3	Final: AW MC RG AW AW AW SD
Comments:		
00.05	a)29/04	The shall
QC Check:	- An -1-161	Final Review: BCS 3/30/04

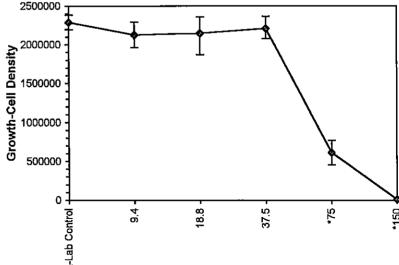
Copper (II) Chloride Reference Toxicant Control Chart - Ceriodaphnia dubia 7-Day Survival

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
05/07/02	47.6766	75.7132	46.4802	17.2473	104.9462	134.1792
08/06/02	100.0000	75,7132	46.4802	17.2473	104.9462	134.1792
09/10/02	127.8699	75.7132	46.4802	17.2473	104.9462	134.1792
10/08/02	118.0938	75.7132	46.4802	17.2473	104.9462	134.1792
12/10/02	80.9976	75.7132	46.4802	17.2473	104.9462	134.1792
01/07/03	125.1388	75.7132	46.4802	17.2473	104.9462	134.1792
01/28/03	70,7107	75,7132	46,4802	17.2473	104.9462	134.1792
02/04/03	80.9921	75.7132	46.4802	17.2473	104.9462	134.1792
02/12/03	45.5731	75.7132	46.4802	17.2473	104.9462	134.1792
02/25/03	63.1922	75.7132	46.4802	17.2473	104.9462	! !
03/04/03	40.1284	75,7132	46.4802	17.2473	104.9462	I I
03/18/03		75.7132	46,4802	17.2473	104.9462	
04/08/03		75.7132	46.4802	17.2473	104.9462	
04/15/03		75.7132	46,4802	17.2473	104.9462	134.1792
05/13/03		75.7132	46,4802	17.2473	104.9462	
08/12/03	1	75.7132	46.4802	17.2473	104.9462	1
09/03/03		75.7132	46,4802	17.2473	104.9462	
09/09/03		75.7132	46.4802	17.2473	104.9462	1
11/12/03		75.7132	1	17.2473	104.9462	
02/24/04		75.7132		17.2473	104.9462	134.1792
03/18/04				17.2473	104.9462	134.1792

Copper (II) Chloride Reference Toxicant Control Chart - Ceriodaphnia dubia Three Brood Reproduction

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
04/02/02	118.3415	83.2815	55.3098	27.3380	111.2532	139.2250
05/07/02	80.2169	83.2815	55.3098	27.3380	111.2532	139.2250
08/06/02	108.4936	83.2815	55.3098	27.3380	111.2532	139.2250
09/10/02		83.2815	55.3098	27.3380	111.2532	139.2250
12/10/02	l	83.2815	55.3098	27.3380	111.2532	139.2250
01/07/03	! !	83.2815	55,3098	27.3380	111.2532	139.2250
01/28/03	1 . 1	83.2815	55,3098	27.3380	111.2532	139.2250
02/04/03		83.2815	55.3098	27.3380	111.2532	139.2250
02/12/03	1 1111111	83.2815		27.3380	111.2532	139.2250
02/25/03		83,2815	1	27.3380	111.2532	139.2250
03/04/03	1 - 1	83.2815	55.3098	27.3380	111.2532	139.2250
03/18/03		83.2815	55.3098	27,3380	111.2532	
04/08/03			55,3098	27.3380	111.2532	
04/15/03		83.2815	55,3098	27.3380	111.2532	139.2250
05/13/03	1	_	_	27.3380	111.2532	139.2250
08/12/03		_	55,3098	27.3380	111.2532	
09/03/03	1		55.3098	27.3380	111.2532	139.2250
09/09/03	I	l	1	27.3380	111.2532	139.2250
11/12/03	1	1	i .	27.3380	111.2532	139.2250
02/24/04	1		1	I	111.2532	139.2250
03/18/04			k	27.3380	111,2532	139.2250

Phytoplankton Test-Growth-Cell Density										
Start Date:	03/18/2004		Test ID:	040318SCRT	•	Sample ID:	REF-Ref Toxicant			
End Date:	03/22/2004		Lab ID:	AEESD-AMEC	Bioassay SD	Sample Type:	CUCL-Copper chloride			
Sample Date:			Protocol	EPAF 02-EPA	Freshwater C	Test Species:	SC-Selenastrum capricornutum			
Comments:						-	•			
Conc-ug/L	1	2	3	4		•				


L-Lab Control 2196000 2271000 2312000 2386000
9.4 2028000 1962000 2233000 2291000
18.8 1875000 2364000 2294000 2079000
37.5 2081000 2371000 2081000 2318000
75 455000 499000 772000 730000
150 12000 14000 17000 12000

Transform: Untransformed				Rank	1-Tailed						
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Mean	N-Mean
L-Lab Control	2291250	1.0000	2291250	2196000	2386000	3.463	4			2291250	0.0000
9.4	2128500	0.9290	2128500	1962000	2291000	7.436	4	13.00	10.00	2128500	0.0710
18.8	2153000	0.9397	2153000	1875000	2364000	10.287	4	15.00	10.00	2153000	0.0603
37.5	2212750	0.9657	2212750	2081000	2371000	6.944	4	16.00	10,00	2212750	0.0343
*75	614000	0.2680	614000	455000	772000	26.080	4	10.00	10.00	614000	0.7320
*150	13750	0.0060	13750	12000	17000	17.185	4	10.00	10.00	13750	0.9940

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)					0.95609	0.884	-0.2024	-0.8289
Bartlett's Test indicates unequal variances (p = 5.34E-04)					21.9552	15.0863		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	37.5	75	53.033		_			

			Ма	ximum Likeliho	od-Probi	t				
Parameter	Value	SE	95% Fiducial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	8.09217	3.07174	2.07156 14.1128	0	1.82651	7.81472	0.61	1.79862	0.12358	6
Intercept	-9.5547	5.71609	-20.758 1.64882							
TSCR				050000						
Point	Probits	ug/L	95% Fiducial Limits	²⁵⁰⁰⁰⁰⁰ T			_	T		
FC01	2 674	32 4443	3 1151 46 1873	2~	T		1			

Point	Probits	ug/L	95% Fidu	cial Limits
EC01	2.674	32.4443	3.1151	46.1873
EC05	3.355	39.3871	6.62171	51.7952
EC10	3.718	43,6767	9.88794	55.1152
EC15	3,964	46.8318	12.9501	57.5172
EC20	4.158	49.5011	16,0363	59.5403
EC25	4.326	51.9121	19.2506	61.3754
EC40	4.747	58.521	30.3388	66.6159
EC50	5.000	62.8955	39.5456	70.5874
EC60	5.253	67.5969	50.5786	76.2268
EC75	5.674	76.2027	67.1139	98.2653
EC80	5.842	79.9142	71.2736	114.5
EC85	6.036	84.4691	75.1311	139.238
EC90	6.282	90.5709	79.3218	180.252
EC95	6.645	100.435	85.1012	266.966
EC99	7.326	121.927	96,0111	564.072

Fluorometric & Microscopic Determination of Cell Density Turner Fluorometer Model TD-700

	Test Species: S. Capricornutum
Client: Internal	Test Date: 3/18/04
Sample ID: CuCla-	Start/End Times: 100 1530
Test No: 040318SCRT	Analyst: _ATT

Random Number	Dilution	■ NO. 1	Cell Density (microscopic) (cells/ml *10*)
Biank	NA	0	
Cal Check 1 (NEW, Solid, Effluent Blanks)		0, 2.65	
29		0.14	
30		4. 99	<u></u>
30 31 32		23. 44	
33		23.71	<u> </u>
33		22.33	
33 31		0.12	
35		20.81	<u> </u>
2/2		22.94	<u> </u>
31 38		20.81	<u> </u>
38		22.91	
39		23.12	
40		21.96	
Cal Check 2 (NEW, Solid, Effluent Blanks)		0,2.65	
41		23.86	
42		22.71	
43		23.19	
44		7.30	
49		0.12	
46		18.75	
41		19.62	
45		4.55	<u> </u>
49		7.72	
90		20.28	
51		20.79	
52		0.17	
Cal Check 3 (NEW, Solid, Effluent Blanks)		0,2.65	

Comments:				
QC Check:	8th 3/23/04	Final Review: 🔨	<u>3<5</u>	3120/04

			_
Test: PY-Phytoplankton Te		Test ID: 040318SCRT	
Species: SC-Selenastrum		Protocol: EPAF 02-EPA FW Chronic	
Sample ID: REF-Ref Toxic		Sample Type: CUCL-Copper chloride	
Start Date: 03/18/2004	End Date: 03/22/2004	Lab ID: AEESD-AMEC Bioassay SD	_
0.0.7.2.0.7.2.7.2.7.2.7.2.7.2.7.2.7.2.7.	<u> </u>	Ohlassahuila	

		00,10	-	Cell Density	Absorbance		Chlorophyll a	
Pos	ID	Rep	Group	10^6 cell/mL	OD/cm	Biomass mg/L	mg/m^3	Notes
40	1	1	L-Lab Control			<u> </u>		
42	2	2	L-Lab Control				<u>.</u>	
39	3	3	L-Lab Control		·		_	<u></u>
41	4	4	L-Lab Control					<u></u>
50_	5	1	9.4					
47	6	2	9.4					
33	7	3	9.4			<u> </u>		
38	8	4	9.4			<u> </u>		<u></u>
46	တ	1	18.8			<u> </u>		
31	10_	2	18.8			<u> </u>		
36	11	3_	18.8			 		
51	12	4	18.8					
35	13	1	37.5	<u> </u>		<u> </u>		
32	14	2	37.5					·
37	15	3	37.5	<u></u>		ļ	<u> </u>	
43	16	4	37.5					
48	17	1	75					
30	18	2	75			<u> </u>	ļ	
49	19	3	75			<u> </u>	<u> </u>	
44	20	4	75				<u></u>	
45	21	1_	150		<u> </u>			
29	22	2	150					ļ
52	23	3	150					
34	24	4	150					

Comments:

&C:nc

Client :	'IRS, Intern	Lal		Species: 5	o capricornut n
Sample ID:	River lock (asi	no, Cucl	2 Т	est Date: 🧵	
Test No:	0403-130, 040	3185CPLT		Analyst:_	9 181
Source/Date Stoc			In-house c	ulture	• 9
Stock Cell Density	/ Measurements:	10.74			•
		40.64 39.91	Mear	n: <u>40-31</u>	
		40-02			
(mean no. * 100,0	000)/(500,000) = x (dilutio	40 - 22 on factor):		8.062	1 pt sole = 20 1.062 pt NEN =
Prepare inoculum 500,000 cells/ml.	according to the dilution	n factor. This yi	elds a solution with	n the desired (cell density of
Example: (35	* 100,000)/(500,000) =	7 (e.g. 25 ml \$	Sele stock + 150 m	n NEW)	
Inoculate 1 ml into Flasks should cor	o 3 initial count flasks contain a final density of 10	ntaining 50 ml o ,000 cells/ml ±	of NEW, stir and co	ount on the he	emacytometer.
Inoculum Cell De	nsity Confirmation Coun	ts: _ _	10,000	Mean:	10,000
Test Initiation Tiπ	ne: <u>!60:</u>	<u>5</u> = 1530			
Test Termination	Time: 4150	d 1530			
Comments:					
QC Check:	NH 3/22			Final Review:	7xs 3130/04

Water Quality Measurements Algal Growth inhibition

Test Species: S. Capricorn utvm

Test Date: 3/18/04

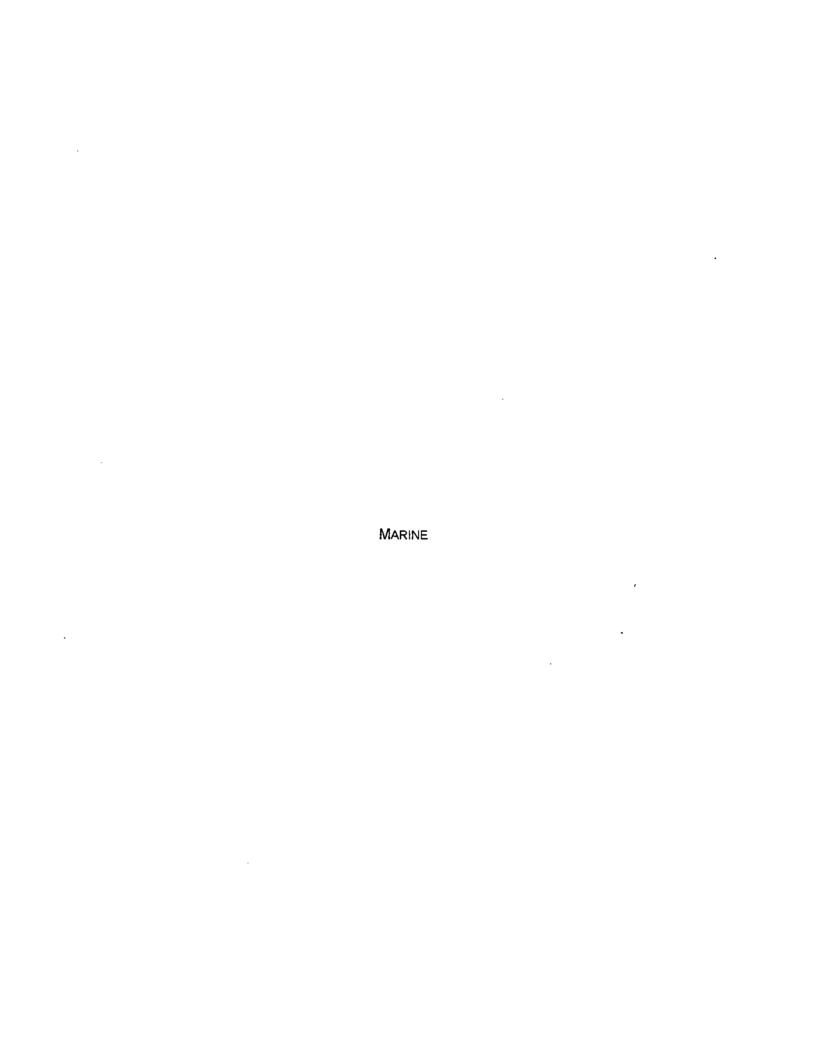
Start/End Times: 1605 /

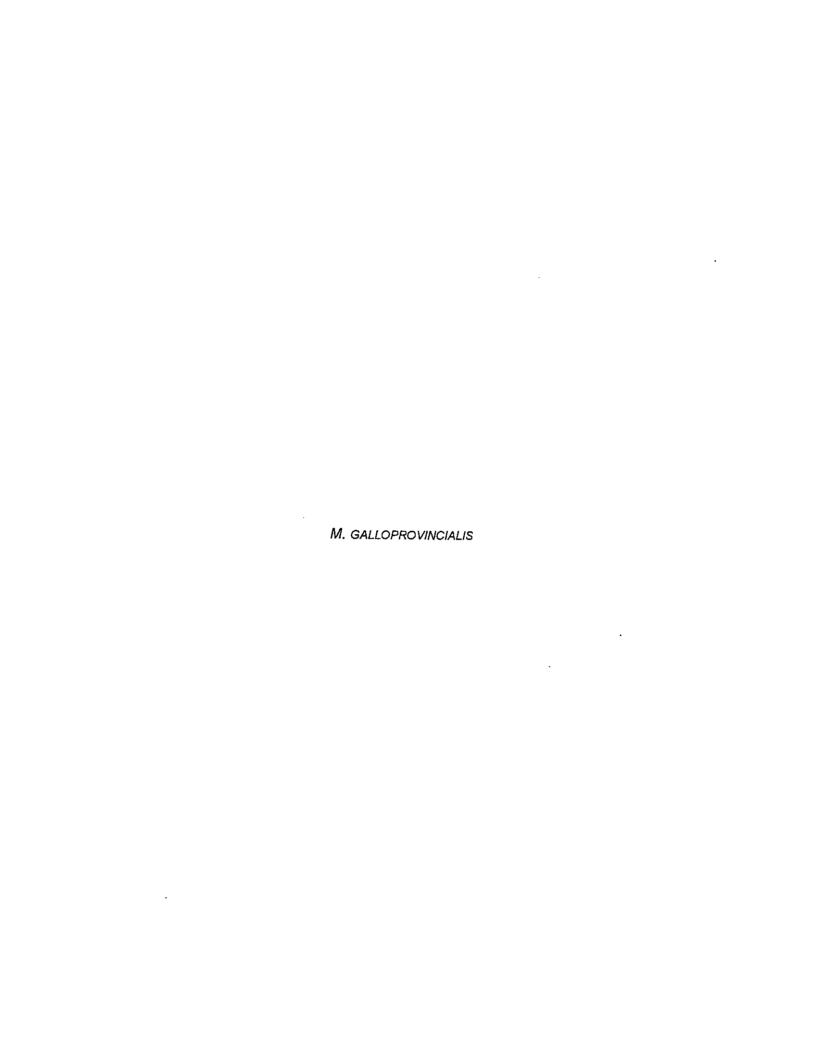
Client:

Sample ID:


Test No:

		Initial R	eadings		Final R	eadings
Concentration (M)	D.O. (mg/L)	Conductivity (umhos-cm)	Alkalinity (mg/L)	Hardness (mg/L)	D.O. (mg/L)	Conductivity (umhos-cm)
Lab control	7. 3	93.1	(l	15	9.9	112.8
9.4	7.3	92.2	10	14	9.9	87.1
18.81	7.3	91.8			9.9	906.1
31.5	7.3	91.8	12	15	a .a	85.9
15	7.5	91.5			9.1	89.3
160	7.4	90.9	10	13	8.8	91.1


		0 Hour	24 Hour	48 Hour	72 Hour	96 Hour
pH/Temperature (°C):	control	7.58 /24.9	7.13/298	1.41/247	8.71/25.6	8.93/26.1
•	9.4	753/247	7.4-127.4	7.41 24.3	907/25.9	8.86/262
pH/Temperature (°C):		173/41		22.0	1,,	1 7 /
pH/Temperature (°C):	18.8	137 200	70827.4	<u> </u>	9.04 (25.9	8.88 /26.3
pH/Temperature (°C):	31.9	7.44/25.3	6.99/27.2	7.37 242	9.141260	8.90/24.2
pH/Temperature (°C):	19	734/249	7.00/27.4		8,3265,9	8.20/24.2
•	150		696/275	7.21 24,3	7.86/26.0	7.82/4.2
pH/Temperature (°C):	150	1.54 24.0	0.101	1.51 251/4	,	(1.5 / 54, -
pH/Temperature (°C):						


Comments:			·
QC Check:	9904 - 3/23/04	Final Review:	BC9 3130104

Copper (II) Chloride Reference Toxicant Control Chart - Selenastrum capricornutum 96-hour Growth

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
12/18/03	59.4301	62.6160	55.6573	48,6986	69.5747	76.5334
02/03/04	74,5147	62.6160	55.6573	48,6986	69.5747	76.5334
02/10/04	65.1499	62,6160	55.6573	48.6986	69.5747	76.5334
02/16/04	60.8128	62.6160	55.6573	48.6986	69.5747	76.5334
02/24/04	53.6442	62.6160	55,6573	48.6986	69.5747	76.5334
03/18/04	62.1443	62.6160	55.6573	48.6986	69.5747	76.5334

Start Date: 03/19/2004 Test ID: 040319mgrt Sample ID: Ref Toxicant										
				•	•	•				
End Date:	03/21/2004				MEC Bioassay SD		Copper chloride			
Sample Date:			Protocol:	ASTM 93		Test Species:	MG-Mytilis galloprovincialis			
Comments:										
Conc-ug/L	1	2	3	4	5					
L-Lab Control	0.9011	0.9011	0.9200	0.8600	0.9400					
2.5	0.9400	0.9200	0.9300	0.9000	0.9300					
5	0.8900	0.9400	0.9200	0.9100	0.8900					
10	0.7100	0.5200	0.6735	0.6100	0.6100					
20	0.0000	0.0000	0.0000	0.0000	0.0000		•			
40	0.0000	0.0227	0.0000	0.0000	0.0000					

		_	Tra	ansform:	Arcsin So	uare Roo	t	Rank	1-Tailed	Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N.	Sum	Critical	Resp	Number
L-Lab Control	0.9044	1.0000	1.2593	1.1873	1.3233	3.978	5			46	482
2.5	0.9240	1.0216	1.2925	1.2490	1.3233	2.165	5	32.00	16.00	38	500
5	0.9100	1.0061	1.2678	1.2327	1.3233	3.006	5	28.00	16.00	45	500
*10	0.6247	0.6907	0.9125	0.8054	1.0021	8.225	5	15.00	16.00	187	498
*20	0.0000	0.0000	0.0525	0.0500	0.0574	6.609	5	15.00	16.00	459	459
*40	0.0045	0.0050	0.0795	0.0522	0.1513	51.731	5	15.00	16.00	366	368

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distrib	ution (p >	0.01)		0.95985	0.9	-0.0653	1.11206
Bartlett's Test indicates unequal	/ariances (p = 1.63E	-03)		19.3834	15.0863		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	5	10	7.07107					

			Ma	ximum Likeliho	od-Probi	t				
Parameter	Value	SE	95% Fiducial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	iter
Slope	8.37421	23.4348	-66.206 82.9542	0.09544	5825.26	7.81472	0.0E+00	1.0518	0.11941	5
Intercept	-3.808	24.7807	-82.671 75.0555							
TSCR	0.08585	0.32371	-0.9443 1.11602	4						
Point	Probits	ug/L	95% Fiducial Limits	1 1						
EC01	2,674	5.94296		0.9						
EC05	3.355	7.16776		0.8						
EC10	3.718	7.92076		0.7 Page 0.7				┯-		
EC15	3.964	8.473		200				7		
EC20	4.158	8.93924		7				\mathbf{N}		
EC25	4.326	9.35963		Proportion 0.5				-\		
EC40	4.747	10.5087		5 0.4						
EC50	5.000	11.2668		0 0.3				\		
EC60	5.253	12.0797		<u>د</u> _{0.2}				\		- 1
EC75	5.674	13.5627		3					\	
EC80	5.842	14.2005		0.1 🛔					\	
EC85	6.036	14.9819		o 1	1				->-	——♦
EC90	6.282	16.0265		<u>it</u> ro	2.5	ιΩ		ę.	* 20	4
EC95	6.645	17.7101		Co.					·	-
EC99	7.326	21.36		L-Lab Control						
Significant he	terogeneity	/ detected	(p = 0.00E+00)	<u> </u>						

Test: BV-Bivalve Larval Survival and Development Test

Species: MG-Mytilis galloprovincialis

Sample ID: Ref Toxicant Start Date: 03/19/2004 End Date: 03/21/2004 Test ID: 040319mgrt

Protocol: ASTM 93

Sample Type: Copper chloride

Lab ID: AEESD-AMEC Bioassay SD

Start	Date.	03/18	/2004 =	nd Date. 03/2	1/2004	Lab ID. AEE	SD-AMEC BIO	assay SD
				Initial	Final	Total	Number	
Pos	ID	Rep		Density	Density	Counted	Normal	Notes
141	21	1	20			100	0	
142	18	3	10			98	66	
143	27	2	40	-		88	2	
144	5	5	L-Lab Control			100	94	
145	13	3	5			100	92	
146	7	2	2.5			100	92	- " -
147	9	4	2.5			100	90	
148	14	4	5			100	91	
149	11	1	5			100	89	
150	1	1	L-Lab Control			91	82	
151	17	2	10			100	52	
152	22	2_	20			83	0	
153	10	5	2.5			100	93	
154	15	5	5			100	89	
155	25	5	20			100	0	
156	28	3	40			81	0	
157	20	5	10			100	61	
158	3	3	L-Lab Control			100	92	
159	23	3	20			76	0	
160	8	3	2.5			100	93	
161	2	2	L-Lab Control			91	82	
162	16	1	10			100	71	
163	6	1	2.5			100	94	
164	30	5	40.0			44	0	
165	4	4	L-Lab Control			100	86	
166	24	4	20			100	0	
167	19	4	10			100	61	
168	29	4	40			92	0	
169	26	1	40			63	0	
170	12	2	5			100	94	
Com			•		11/4	•		

Comments: doct a entry OP De

Reviewed by: 4 5/75/04

Tes	st: BV-	Bivalve	Larval Surviva	I and Developn	nent Test	Test ID: 040317mgrt			
			tilis galloprovin	•		Protocol: AS	TM 83 93	,	
		-	Ref Toxicant		21		e: CUCL-Cop		
			7	End Date: 03/	19/2004	Lab ID: AEE	SD-AMEC Bio	passay SD	
		T		Initial	Final	Total	Number		

Pos ID Rep Group Density Density Counted Normal Notes 141	Otali	Dute.	<u> </u>	72007	1-4:-1			N	
141	_			_	Initial	Final	Total	Number	Notes
142		ם	Rep	Group	Density	Density			
143					;				
144				.*					nc
145									uc
146								94	
148			<u> </u>						
148	146					<u> </u>	100	92	
148	147						100	90_	
151	148	ļ					100	91	
151	149						001	ጽ፝	
151	150						91	82	
152	151						100	52	
153	152						83	0	
154	153				[100	93	
155	154	-				ŀ		ଟବ୍	
156	155						1		
157	156			1				0	
158	157		Ī		"		100		
159	158						100	92	
160 100 93 161 91 82 162 100 71 163 100 94 164 94 50 165 100 86 166 100 6 167 160 61 168 92 6	159			•				0	
161 91 82 162 100 71 163 100 94 164 94 51 165 100 86 166 100 6 167 160 61 168 92 6	160								T
162 100 71 163 100 94 164 94 65 165 100 86 166 100 6 167 160 61 168 92 6	161						91	82	
163 100 94 -1 164 94 0 51 165 100 86 1 166 100 6 1 167 160 61 1 168 92 6 1							100	71	
164	163							94	1
165 100 86 166 167 167 168 92 0		 						Y	(ac)
166 100 6 167 160 6 168 92 0		i							1
167 160 Le l 168 92 0			†	1				8	<u> </u>
168 92 6									
			1		<u> </u>			0	
169 63 6		 	†	 	-				
170 100 94		1	ſ	 					1

Comments:

Reviewed by: 9/19/64

Test:	Test: BV-Bivalve Larval Survival and Development Test						Test ID: 0403 7√mgrt				
Speci	es: M	G-Myt	ilis galloproviñc	ialis		Protocol: AS	TM 87				
Samp	ole ID:	REF.	Ref Toxicant	ana .	2.1	Sample Type: CUCL-Copper chloride					
Start	Date:	03/12	<i>)</i> 2004 E	<i>ង/্ম</i> in <u>d</u> Date: 03/1	9/2004	Lab ID: AEESD-AMEC Bioassay SD					
				Initial	Final	Total	Number				
Pos	ID	Rep	Group	Density	Density	Counted	Normal	Notes			
150	1	1	L-Lab Control								
161	2	2	L-Lab Control								
158	3	3	L-Lab Control								
165	4	4	L-Lab Control								
144	5	5	L-Lab Controi								
163	6	1	2.5								
146	7	2	2.5		l						
160	8	3	2.5								
147	9	4	2.5								
153	10	5	2.5								
149	11	1	5								
170	12	2	5								
145	13	3	5								
148	14	4	5								
154	15	5	5								
162	16	1	10								
151	17	2	10								
142	18	3	10 H								
167	19	4	10								
157	20	5	10								
141	21	1	20								
450	-00	_	00				1				

Comments:

5

& CFAH

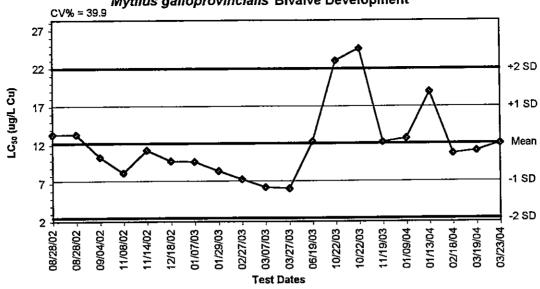
20

Reviewed by: Bes 5/25/01

Bivalve Development Bioassay Worksheet

Client:	City of Branquent	vra (refest)	Start Date/Time:	3/19/04	<u> 163</u> 2
Test No.:	0403-106-10	9,122 124,	End Date/Time:	3/21/04	1700
Test Species:	M. salloprovincialis	<u>040319MERI</u>	Date Received:	3/19/04	
Sample Type:	30ml Shell Vials	Watter eff	eds ratio		
Test Chamber Ty	pe and Sample Volume:	loml ve	dune		
Spawn Initiation 1	Fime: <u>13,7-0</u>				
Number of Spaw	mers: Male	Female			
Spawn Condition	: good				
Fertilization Time	14:40				
Egg Stock Densit	ty Calculation:				
Eggs Counted (x)): ZZ Z8 Z6 Z1 Z7 31 Z8 Z5 Z9 Z5	• • · ·			
Mea	n 27.0 26,6	Overall Mean:	268		
9	Mean: <u>768</u> x 42 =		·		
	tock - 1176 eggs/ml	Stock Dilution F			
Percent Division	Upon Inoculation: _96				
Time of Inoculation	on: <u>1630</u>				
Comments:		· · · · · · · · · · · · · · · · · · ·	AMEC Bioassay L	ahoraton	
D 4 MT 1	D/H 5/1/04		5550 Morehouse D San Diego, CA 92	Drive, Suite B	

AMEC Earth & Environmental
Bioassay Laboratory
5550 Morehouse Dr. Suite B
San Diego, CA 92121


Physical and Chemical Measurements of Test Solutions Salt Water Bioassays

Client:	Internal CuClz	_ Analyst:	J12
Contact:		Test Start:	7/19/04
Test No.:	D40319MERT	Test End:	3/21/04
		Date Collected:	3/19/04

		DO			pН			Salinity			Temp	···
Sample ID or Conc. 75/L		(mg/L)			(pH units			(ppt)		1	°C	
or Conc. PIL	0	24	48	0	24	48	0	24	48	0	24	48
LC	817	941	7.9	8.09	8-09	802	34	33.7	34.3	14.8	14.6	14.9
7,7	8,6	9.1	7.9	8.07	30.8	803	34	33,9	4344	14.8	14.6	14.9
6.5	8.5	9,2	7.69	8.07	8-05	404	34	34.0	34.4	14.8	14,5	15.0
lo	8.5	9.2	7.9	8.07	8.05	8.02	34	34.2	34.5	14.8	34.4	15-1
	8.5	4.2	8.0	8.08	8.05	8.02	34	34,2	31.6	14.8	14,4	15-1
40	8,5	9.2	8.0	8.08	8.05	9.04	34	34,1	34.4	14,8	щи	15-1
	· - ··											
					<u> </u>							
												
L].						

Comments:			
QA Check:	MC 4/21/04	,	

Copper (II) Chloride Reference Toxicant Control Chart - Mytilus galloprovincialis Bivalve Development

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
08/28/02	13.3760	12.2174	7.3379	2.4584	17.0969	21.9764
08/28/02	13,3760	12.2174	7.3379	2.4584	17.0969	21.9764
09/04/02	10.4338	12.2174	7.3379	2.4584	17.0969	21.9764
11/08/02	8.3754	12.2174	7.3379	2.4584	17.0969	21.9764
11/14/02	11.3155	12.2174	7.3379	2.4584	17.0969	21.9764
12/18/02	9.9361	12.2174	7.3379	2.4584	17.0969	21.9764
01/07/03	9.8373	12.2174	7.3379	2.4584	17.0969	21.9764
01/29/03	8.6253	12.2174	7,3379	2.4584	17.0969	21.9764
02/27/03	7.5397	12.2174	7.3379	2.4584	17.0969	21.9764
03/07/03	6.5174	12.2174	7.3379	2.4584	17.0969	21.9764
03/27/03	6.3338	12.2174	7.3379	2.4584	17.0969	21.9764
06/19/03	12,4539	12.2174	7.3379	2.4584	17.0969	21.9764
10/22/03	23.0103	12.2174	7.3379	2.4584	17.0969	21.9764
10/22/03	24.5820	12.2174	7.3379	2.4584	17.0969	21.9764
11/19/03	12.3871	12.2174	7.3379	2.4584	17.0969	21.9764
01/09/04	12.8695	12.2174	7.3379	2.4584	17.0969	21.9764
01/13/04	18.9772	12.2174	7.3379	2.4584	17.0969	21.9764
02/18/04	10.9125	12.2174	7.3379	2.4584	17.0969	21.9764
03/19/04	11.2668	12.2174	7,3379	2.4584	17.0969	21.9764
03/23/04		12.2174	7.3379	2.4584	17.0969	21.9764

			Lai	rval Fish C	rowth and Surviv	al Test-7 Day Su	ırvival
Start Date:	03/17/2004		Test ID:	040317aa	rt	Sample ID:	Ref Toxicant
End Date:	03/24/2004		Lab ID:	AEESD-A	MEC Bioassay SD	Sample Type:	Copper chloride
Sample Date:			Protocol:	EPAM 91-	EPA Marine	Test Species:	AA-Atherinops affinis
Comments:							
Conc-ug/L	1	2	3	4	5		
Lab Control	1.0000	1.0000	1.0000	1.0000	1.0000	·	
25	1.0000	0.4000	0.8000	1.0000	1.0000		
50	0.8000	1.0000	1.0000	1.0000	1.0000		
100	1.0000	0.8000	1.0000	0.8000	1.0000		
200	0.6000	0.2000	0.4000	0.6000	0.0000		
400	0.0000	0.0000	0.0000	0.0000	0.0000		

Consuell Mo	· -	-	Transform: Arcsin Square Root			t	Rank	1-Tailed	Number	Total	
Conc-ug/L	Mean	N-Mean	Mean	Min	Max.	CV%	N	Sum	Critical	Resp	Number
Lab Control	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	5			0	25
25	0.8400	0.8400	1.1655	0.6847	1.3453	24.700	5	22.50	16.00	4	25
50	0.9600	0.9600	1.2977	1.1071	1.3453	8.207	5	25.00	16.00	1	25
100	0.9200	0.9200	1.2500	1.1071	1.3453	10.434	5	22.50	. 16.00	2	25
*200	0.3600	0.3600	0.6292	0.2255	0.8861	45.332	5	15.00	16.00	16	25
*400	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	5	15.00	16.00	25	25

Auxiliary Tests	-				Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non	-normal dis	stribution	(p <= 0.01)		0.88262	0.9	-1.194	2.37572
Equality of variance cannot be co	nfirmed							
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	100	200	141.421					

				Ma	aximum	Likeliho	od-Probit	:				
Parameter	Value	SE	95% Fidu	icial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	2.55071	1.25655	-1.4482	6.54962		0	30.9393	7.81472	8.8E-07	2,1631	0.39205	5
Intercept	-0.5174	2.68233	-9.0538	8.01896								
TSCR												
Point	Probits	ug/L	95% Fidu	icial Limits	1			A		1		
EC01	2.674	17.8263	İ		0.9	1	<u> </u>			1		
EC05	3.355	32.9791			0.8	4	Y	T		Τ/		
EC10	3.718	45.7795	i		= 0.7	3						
EC15	3.964	57.1175	ı		Š	3				/		
EC20	4.158	68.0997	i		€ 0.6	1]			\	\ T	
EC25	4.326	79.1897			5 0.5	1						
EC40	4 747	115.818	i		ਲੇ 0.4	4	Т				N	

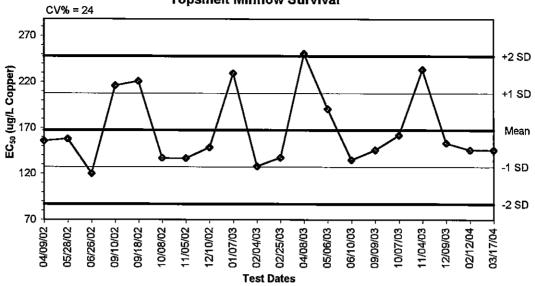
EC50 5.000 145.58 EC60 5.253 182.989 EC75 5.674 267.629 EC80 5.842 311.213 EC85 6.036 371.051 EC90 6.282 462.947 6.645 642.633 EC95 EC99 7.326 1188.89 Significant heterogeneity detected (p = 8.75E-07)

			La	rval Fish C	Frowth and Surviv	/al Test-7 Day G	rowth
Start Date:	03/17/2004		Test ID:	040317aa	rt	Sample ID:	Ref Toxicant
End Date:	03/24/2004		Lab ID:	AEESD-A	MEC Bioassay SD	Sample Type:	Copper chloride
Sample Date:			Protocol:	EPAM 91-	EPA Marine	Test Species:	AA-Atherinops affinis
Comments:							
Conc-ug/L	1	2	3	4	5		
Lab Control	1.0380	1.0760	1.2100	1.3460	1.3140		
25	1.0560	0.5040	0.9660	1.1760	1.1280		
50	0.8600	0.8360	1.0420	1.1080	1.2220		
100	0.7800	0.6980	1.0400	1.1360	1.1440		
200	0.4660	0.2720	0.4660	0.5960	0.0000		
400	0.0000	0.0000	0.0000	0.0000	0.0000		

			•	Transforn	n: Untran	sformed		Rank	1-Tailed		
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Mean	N-Mean
Lab Control	1.1968	1.0000	1.1968	1.0380	1.3460	11.516	5			1.1968	0.0000
25	0.9660	0.8072	0.9660	0.5040	1.1760	27.964	5	20.00	16.00	0.9660	0.1928
50	1.0136	0.8469	1.0136	0.8360	1.2220	16.232	5	21.00	16.00	1.0136	0.1531
100	0.9596	0.8018	0,9596	0.6980	1.1440	21.627	5	20.00	16.00	0.9596	0.1982
*200	0,3600	0.3008	0.3600	0.0000	0.5960	64.477	5	15.00	16.00	0.3600	0.6992
*400	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	5	15.00	16.00	0.0000	1.0000

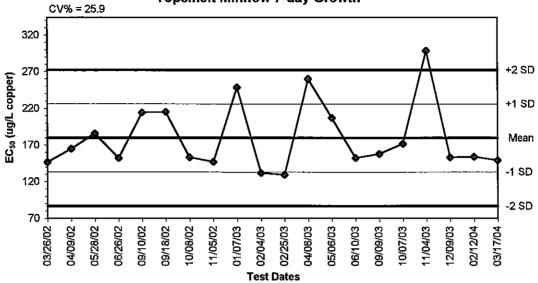
Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distrib	ution (p >	0.01)		0.92638	0.9	-0.9178	0.55374
Equality of variance cannot be co	nfirmed							
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TÜ				
Steel's Many-One Rank Test	100	200	141.421					

				Ma	ximum	Likeliho	od-Probit	<u> </u>	_			
Parameter	Value	SE	95% Fidu	cial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	4.00168	1.02056	2.00138	6.00199		0	7.21701	7.81472	0.07	2.17359	0.24989	15
Intercept	-3.698	2.22636	-8.0617	0.66563								
TSCR					1.4							
Point	Probits	ug/L	95% Fidu	cial Limits	1,4	-						
EC01	2.674	39.1066	9,9346	63.0511	1.2			т				
EC05	3.355	57.8831	21.4973	82.8927			T	ĺ		Т		
EC10	3.718	71.341	32.2903	96.3572	1	•				1		
EC15	3.964	82.1472	42.3351	107.046	ŧ	}	T T			*		- 1
EC20	4.158	91.8915	52.319	116.791	Growth 80	1		Т-				1
EC25	4.326	101.167	62.4991	126.342			ł			Τ /		
EC40	4.747	128,909	94.9142	158.739	€ 0.6	1					N T	
EC50	5.000	149.139	117.532	189.084	7 D	1	Т.					
EC60	5.253	172.545	140.091	233.991	0.4	•					X	
EC75	5.674	219.859	176.121	355,132		1						- 1
EC80	5.842	242.052	190.548	424.183	0.2							\
EC85	6.036	270.764	207.913	524.17								V
EC90	6.282	311.778	230.992	687.179	0		35.	- 09		-	-	•
EC95	6.645	384.266	268.529	1032,12		Ě	Ö	ดัง		6	•200	400
EC99	7.326	568.767	353.052	2233.28	•	ab Control					-	-
•					•	<u>e</u>						


Test Species: A-aff.n.S Client Name: Test No.: Sample ID: Survival on Test Day: pan wt. pan + fish Percent Conc. Rep. LU9/L) Surviva 1 4 . **5**-1 0 2 6 7 (g) (g) 100 100 € 0.0 3168 0.03644 16 а 5 4 <u>80 100 8</u> 003760 ь 5 3.03244 5 3 0.03422 C 00 C.C 3070 Z 5 0.03489 d 2010 0-03370 5 5 0.03998 4 80 ho е 5 ч K 0.03527 57 <u>듯</u> 0.03965 25 5 5 а 0.03437 100 Ż b 5 2 40 0.03666 10.03414 4 4 0.03588 Ч C l) ц 4 90 4 0.0 3105 0.03984 ď 5 00 0.63396 0.03867 e 5 5 5 5 5 100 <u>0.03203</u> ζ H 0.13866 5 5 ч 14 80 50 а 5 0.03436 3 0.03672 b 5 5 5 5 100 0.03254 0.03877 5 5 5 5 5 5 ¢ 5 loo 0.03356 5 0.03766 ď 5 5 5 0.03212 5 5 100 2 003966 5 5 100 003355 204051 5 5 5 100 а 160 0.03661 4 0.03871 b ァ 5 4 ч 4 BO <u>ი.იშ522</u> 0.03897 5 5 5 έ 5 โขก ¢ 5 0.03777 4 d 4 0.03279 4 ч 80 O.C 2711 0.03756 5 5 е 5 5 5 100 P8/E 0.0 0.03550 Ц 60 2,20 5 3 0.53317 ь 003545 ì 20 0.03403 5 2 003783 4 C 2 2 2 40 6.03550 ď 5 4 3 3 3 3 60 0.03/67 3 10.03369 2 2 е 0 D 400 а 5 Z 0 _ Ω b _ 0 Ω C 5 O D d _ b 2 2 e 2 8-33496 а b d Tech Initials RUMÍ SH mc mc Weight Data: Date/Time In: 3/24/04 /1300 Feeding Times (day): 6 0700 0930 0545 0830 Date/Time out: 3/26/04/1030 0812 Oven Temp (°C): Tech Initials: QC Check: RG Stasloy AMEC Earth and Environmental Bioassay Laboratory 5550 Morehouse Dr., Suite B San Diego, CA 92121

Commonts:

Raw Datasheet Water Quality Measurements Marine Chronic Bioassay

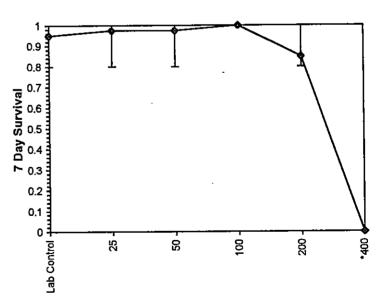

Client:	Internal	Test Species:		finis				
Sample ID:	Cu Ref tox	Test Date:	3-17-	04				
Test No:	040317 AART	Start/End Times:	1600/1	500				
Concentration	LC	Concentration	100				 -	
Day	0 1 2 3 4 5 6 7	Day	0 1 1	2 3 10i	4 lial		6	
all	S.00 7.48 8.00 8.02 B.07 8 00 B.02	рН			8.05 0			
ρΗ DO (mg/L)	7.6 7.9 8.2 8.3 7.6 8.3 80	DO (mg/L)	7.8 1.9	8.3 8.3	79 0		76	
Salinity (ppt)	299 301 295 299 297 30.0293	Salinity (ppt)	294 29.7 2	19.2 20.0	24.2 2	9519	\ <u>\</u>	\$ \$\frac{2}{2} \cdot \cd
Tomp (°C)	202 4.2 17.3 20.0 20.1 19.5	Tomp (°C)	1197141	FI. 2 70.0	nal			m:~(**
	Final 17.98 7.83 7.82 7.85 1.85	pH	7.86	182 7.80	7.80 1.		70 3	
pH	7.98 7.83 7.78 7.93 7.92 7.8 1.89	DO (mg/L)	7.3	7.2	6.26	<u>کا 2 د</u>	9 (0.0
DO (mg/L) Temp (°C)	20-2 20.4 20.3 20.3 20.2 20.5 20.6	Temp (*C)	20,2	20.4 <u>20-2</u>	20.0	<u> </u>	0.42	20.5
Tump (C)								
Concontration	25 eg/m1	Concontration	200					
	0 1 2 3 4 5 6 7	Day	0 1	2 3	4	5]	6	7
Day	Initial	<u></u>	7.79 7.43	1.98 8.06	llal	8.05 7.	99 1	
рН	BUZ 7.45 7.97 9.04 8.05 B.04 8.00	pH DO (mg/L)		8.3 6.3			3.2	
DO (mg/L)	7.7 79 84 83 74 83 81	DO (mg/L) Salinity (ppt)	29.1 24.5	289 14			7.4	
Satinity (ppt)	29.6 30.0 29.4 29.7 29.5 50.0 79.9	Tomp ("C)		19,2 70.0			20	
Temp ("C)	200 9.2 19.2 200 20.1 19.4 17.0		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Б	nal	- 63 1-		**************************************
рН	7.86 7.82 7.77 7.79 7.77 7.69 7.81	pH	KSSSSSSSSS	782 7.82	7.87	6.3 6	7.74	9,2
DO (mg/L)	7.1 7.0 6.9 6.1 6.0 5.8 5.8	DO (mg/L)	— ::::::::::::::::::::::::::::::::::::	7.2 7.4 20.4 20.2		6.3 <u>k</u>	0.2	20.0
Tomp (°C)	20.2 20.4 20.3 20.1 20.1 20.3 20.6	Tomp (°C)	20.3	20.4 20.7	100.4	<u> </u>	<u> </u>	
Concontration	156	Concontration	400					
	0 1 2 3 4 5 6 7	Day	0 1	2 3	4	5	6	<u>7</u>
Day	ln(la)		Inco (30)		11ial 8.04 8	2	794	erin erin erin erin erin erin erin erin
рН	3.007.44 7.59 8101 B.05 8.05 \$00	pH DO (mg/l)	749 7.93	8.3 8.2		83 8	<i>51</i>	
DO (mg/L)	78 78 8.4 8.3 9.0 8.2 8.1	DO (mg/L) Salinity (ppt)		28.4 288		29.7 2	19.4	Ž. Š
Salinity (ppt)	79.6 299 29.3 29.6 29.4 29.4 29.7 199 19.2 19.1 20.0 20.4 19.5 19.0	Temp (°C)	9.7 190	19.3 20.0		19.4 6	901	9) 💥
Tomp (°C)	19.9 M.2 17.1 200 20.419.519.0			ř	<u> nal</u>			
pH	1.86 7.82 7.77 7.80 7.78 770 7.80	pH_	7:84	नुश्री १,४५	7.88	7.83 6.7 6		788 67
DO (mg/L)	7.2 71 69 6.3 6.1 54 6.0	DO (mg/L)		7.3 7.7		20.1		20.4
Temp (°C)	20.2 20.4 20.2 20.0 20.1 204 20.6	Tomp (°C)	26.3	20. 20 20-2	114.7		·07C	
			01	2 _ 3_	4	5	6	7
	Recoived: ABS 3-13-04	Analysts: initia	al: PW SH	ne ne	RK	ele 1	AW	
Animal Source/Date		Fina	SH	me 5H	.44	AHY	4W	WC
Animal Ago at Initia	Non: 14 days old	Fills	nts Secondary		,			

Copper (II) Chloride Reference Toxicant Control Chart -Topsmelt Minnow Survival

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
04/09/02	155.7269	167.4193	127.2519	87.0845	207.5867	247.7541
05/28/02	157.6964	167.4193	127.2519	87.0845	207.5867	247.7541
06/26/02	120.1115	167.4193	127.2519	87.0845	207.5867	247.7541
09/10/02	215.6806	167.4193	127.2519	87.0845	207.5867	247,7541
09/18/02	220.6823	167.4193	127.2519	87.0845	207.5867	247.7541
10/08/02	136.8843	167.4193	127.2519	87.0845	207.5867	247.7541
11/05/02	136.6628	167.4193	127.2519	87.0845	207.5867	247.7541
12/10/02	148.5918	167.4193	127.2519	87.0845	207.5867	247.7541
01/07/03	229.3396	167.4193	127.2519	87.0845	207.5867	247.7541
02/04/03	128,1337	167.4193	127.2519	87.0845	207.5867	247.7541
02/25/03	137.4615	167.4193	127.2519	87.0845	207.5867	247.7541
04/08/03	250.5491	167.4193	127.2519	87.0845	207.5867	247.7541
05/06/03	190.5418	167.4193	127.2519	87.0845	207.5867	247.7541
06/10/03	134.8645	167.4193	127.2519	87.0845	207.5867	247.7541
09/09/03	145.6062	167.4193	127.2519	87.0845	207.5867	247.7541
10/07/03	161.8443	167.4193	127.2519	87.0845	207.5867	247.7541
11/04/03	233,4041	167.4193	127.2519	87.0845	207.5867	247.7541
12/09/03	153.2281	167.4193	127.2519	87.0845	207.5867	247.7541
02/12/04	145.7969	167.4193	127.2519	87.0845	207.5867	247.7541
03/17/04	145.5798	167.4193	127.2519	87.0845	207.5867	247.7541

Copper (II) Chloride Reference Toxicant Control Chart -Topsmelt Minnow 7-day Growth

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
03/26/02	146.4188	179.4787	133.0621	86.6454	225.8954	272.3120
04/09/02	164.6897	179.4787	133.0621	86.6454	225.8954	272.3120
05/28/02	185.3288	179.4787	133.0621	86.6454	225.8954	272.3120
06/26/02	152.2438	179.4787	133.0621	86.6454	225.8954	272,3120
09/10/02	214.0064	179.4787	133.0621	86.6454	225.8954	272.3120
09/18/02	215.0769	179.4787	133.0621	86.6454	225.8954	272.3120
10/08/02	152.7364	179.4787	133,0621	86.6454	225.8954	272.3120
11/05/02	146.7005	179.4787	133.0621	86.6454	225.8954	272.3120
01/07/03	248.4452	179.4787	133.0621	86.6454	225.8954	272.3120
02/04/03	131.7939	179.4787	133.0621	86.6454	225.8954	272.3120
02/25/03	129.1648	179.4787	133.0621	86.6454	225.8954	272.3120
04/08/03	260.1567	179.4787	133.0621	86.6454	225.8954	272.3120
05/06/03	206.8016	179.4787	133.0621	86.6454	225.8954	272.3120
06/10/03	152.1667	179.4787	133.0621	86.6454	225.8954	272.3120
09/09/03	157.5385	179.4787	133.0621	86.6454	225.8954	272.3120
10/07/03	171.5624	179.4787	133.0621	86.6454	225.8954	272.3120
11/04/03	298.7089	179.4787	133.0621	86.6454	225.8954	272.3120
12/09/03	153.0860	179.4787	133.0621	86.6454	225.8954	272.3120
02/12/04	153.8089	179.4787	133.0621	86.6454	225.8954	272.3120
03/17/04	149,1393	179,4787	133.0621	86.6454	225.8954	272.3120

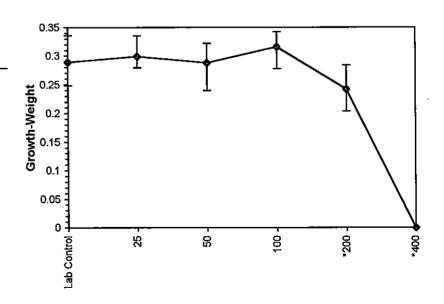

A. BAHIA

						,	ndity Test-		
Start Date:	04/27/2004		Test ID:	040427my	rt		Sample ID):	Ref Toxicant
End Date:	05/04/2004		Lab ID:	AEESD-AI	MEC Bioa	ssay SD	Sample Ty	ype:	Copper chloride
Sample Date: Comments:			Protocol:	EPAM 87-	EPA Mari	ne	Test Spec		MY-Mysidopsis bahia
Conc-ug/L	1	2	3	4	5	6	7	8	
Lab Control	1.0000	1.0000	1.0000	1.0000	0.8000	1.0000	1.0000	0.8000)
25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.8000)
50	1.0000	1.0000	1.0000	1.0000	1.0000	1,0000	0.8000	1.0000)
100	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000)
200	0.8000	0.8000	1.0000	0.8000	0.8000	0.8000	1.0000	0.8000)
400	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000)

			Tra	ansform:	Arcsin So	uare Root	t .	Rank	1-Tailed	Isot	onic
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	_ Sum _	Critical	Mean	N-Mean
Lab Control	0.9500	1.0000	1,2857	1.1071	1.3453	8.574	8			0.9750	1.0000
25	0.9750	1.0263	1.3155	1.1071	1,3453	6.400	8	72.00	46.00	0.9750	1.0000
50	0.9750	1.0263	1.3155	1.1071	1.3453	6.400	8	72.00	46.00	0.9750	1.0000
100	1.0000	1.0526	1.3453	1.3453	1.3453	0.000	8	76.00	46.00	0.9750	1.0000
200	0.8500	0.8947	1.1667	1.1071	1.3453	9,449	8	52.00	46.00	0.8500	0.8718
*400	0.0000		0.2255	0.2255	0.2255	0.000	8	36.00	46.00	0.0000	0.0000

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	-normal di	stribution	(p <= 0,01)		0.82906	0.929	-0.907	2.68803
Equality of variance cannot be co	nfirmed							
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU		<u> </u>		
Steel's Many-One Rank Test	200	400	282.843					

				Linea	r Interpola	ation (200 Res	amples)
Point	ug/L	SD	95%	CL	Skew		
IC05	139.00	16.25	120.00	187.48	1.7130		
IC10	178.00	17.31	152.67	209.08	0.3611		
IC15	205.00	10.15	183.32	219.69	-0.4564	1 1	
IC20	216.47	7.13	205.00	230.30	0.3023	0.9	
IC25	227.94	6.68	217.19	240.90	0.3023	, d	1
IC40	262.35	5.34	253.75	272.72	0.3023	0.8	_
IC50	285.29	4.45	278.13	293.94	0.3023	 0.7 	

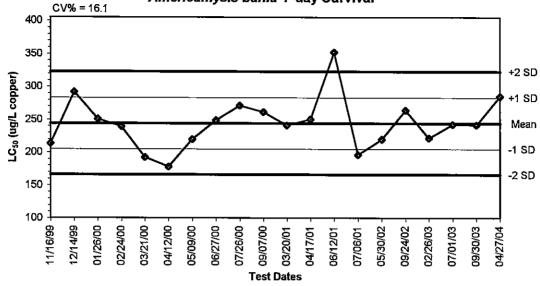

			Mysid	Survival,	Growth a	nd Fecu	ndity Test-	Growth-	Weight
Start Date:	04/27/2004		Test ID:	040427my	⁄rt		Sample ID):	Ref Toxicant
End Date:	05/04/2004		Lab ID:	AEESD-A	MEC Bioa	ssay SD	Sample Ty	уре:	Copper chloride
Sample Date:			Protocol:	EPAW 95	-EPA Wes	st Coast	Test Spec	ies:	AM-Americamysis bahia
Comments:									
Conc-ug/L	1	2	3	4	5	6	7	8	
Lab Control	0.3240	0.3100	0.3360	0.2520	0.2480	0.2680	0.2900	0.2840	
25	0.2920	0.2900	0.2940	0.3360	0.3040	0.2800	0.3060	0.2920	
50	0.3080	0.3000	0.2980	0.3220	0.2400	0.2400	0.2940	0.3020	
100	0.3160	0.2780	0.3140	0,3420	0.3260	0.3160	0.3180	0,3180	
200	0.2060	0.2180	0.2440	0,2040	0.2820	0.2640	0.2840	0.2340	
400	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

-				ransforn	n: Untran	sformed		Rank	1-Tailed		
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Mean	N-Mean
Lab Control	0.2890	1.0000	0.2890	0.2480	0.3360	11.244	8			0,2890	0.0000
25	0.2993	1.0355	0.2993	0.2800	0.3360	5.659	8	76.00	46.00	0.2993	-0.0355
50	0.2880	0.9965	0.2880	0.2400	0.3220	10.694	8	67.00	46.00	0.2880	0.0035
100	0.3160	1.0934	0.3160	0.2780	0.3420	5.651	8	84.00	46.00	0.3160	-0.0934
*200	0.2420	0.8374	0.2420	0.2040	0.2840	13.282	8	44.50	46.00	0.2420	0.1626
*400	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	8	36.00	46.00	0.0000	1.0000

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribi	ution (p >	0.01)		0.94035	0.929	-0.1816	-0.0659
Equality of variance cannot be co	nfirmed							
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	100	200	141.421					

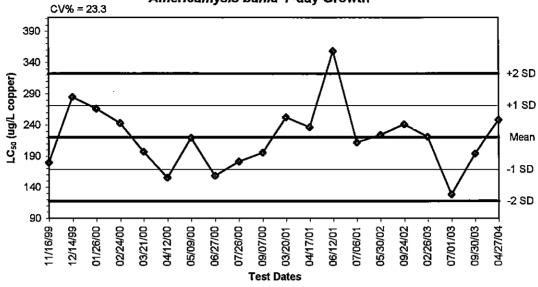
Trimmed Spearman-Karber

Trim Level	EC50	95%	CL	
0.0%	248.27	204.99	300.68	
5.0%	253.31	203.30	315.62	
10.0%	257.46	196.26	337.75	
20.0%	261.02	225.73	301.84	
Auto-0.0%	248.27	204.99	300,68	



,										Λ			
										<i>F</i> .			
							Т	est Sp	ecies: _	X b	ahia_		
		1								`			
Client Name:	_	<u>Int</u>	erno	4				Test	Date: _	4.27	<u>'(XU</u>		
		1	كريد ا					Tes	t No	$\Delta J \Delta U \Delta U$	7 Myrt		
Sample ID:			كس	2				162		<u> </u>	entruli I-		
				9	urvival	on Tes	t Day:		 -T	Percent	pan wt.	pan + mysid	
Conc.	Rep.	0	1	2	3	4	5.	6	7	Survival	(g)	(g) MT	
(AZUGIS)	a	5_	5	5	5	5	5	5	5	100	0.03971		0.04133
<u> </u>		5	3	5	5	5	5	5	2	100	0.03908	0+ 04452 -	0.04063
	C	5	5	5	5	5	5_	5	5	100	0.03491	2-344/2-	0,0 3159
 -	-d	_ 2 5	5	5	5	5	5	5	5	100	0.03469	0.03595	
	u	5	5	5	5	5	3	40	4	86_	0.03665	0.03789	
	f	5	5_	5	5	5	5	5	5	100	0.04044	0.04178	}
	g	5	3	5	5	\$	3	5	5	iW	0.04035	0.04180	
	h	5	4	4	4	4	4	4	ч	80	0.03907	0.04049	
15	a	5	5	5	5	5	5	5	5	(2)	0.03901	0.04047]
- KD	b	5	5	5	5	5	5		5	100	0,03865	0.0400]
	C	5	5	5	5	5	5	5	5	(00	0.02434	0.03581	
	d	5	5	5	5	5	5	5	5_	_i(X5	0.03525	0.03693	
	e	5	5	5	5	ີ	5	5	5	100	0.03686	0.03036	
	f	5	5	<u> </u>	010	5	5	5	5	100	0.03902	0.04042	
· · · · · · · · · · · · · · · · · · ·		5	5	3	2	7.0	5	5	Ś	100	0.03756	0.03909	1
	g h	5	5	4	4	7 4	Ц	प	n	80	0.03757	0.04260	1
	 	_			5	5	5	.5	5	(00)	0.04118	0.04110	1
50_	a b	5	5	5	5	5	5	5	5	100	0.04182	0.04332	1
				5	5	5	5	5	5	(08)	0.04255	0.04404	1
	d	5	5	5	5	5_	3	5	٠, د	100	0.03961	0.04451	1
	 -	5				5		5	5	100	0.04343	0.04613	1
	e f	5	5	5	5	5	5	5	5	100	2.54484	0.05014	7
		5	4	4	5 4	4	4	4	1 4	86	0.04879	0.04739	7
	g	5	5	5	5	5	5		5	100	0.041000	0.03888	1
100	h	5_						5	5	1/50	0.05124	0.04282	ī
100	<u>a</u>	5	5	5_	5	5	5	5		100	0.04552	0.04691	1
	b	-5-	5	5	<u> </u>	5	5	5	5	100	0.04178	0.0 43.35	1
	C	5			5	5	5455	5	5	100	0.835 94	0.03765	†
	d	5	5	5	5	5	=-	5	5	100	0.04482		1
	e	<u> </u>	5	5_	5	5	12	5	5	100	0.04498	0.04656	1
	f	5		5	5	5	12		<u>5</u>	100	0.04642		1
	<u> </u>	5	3	5	5		5	5	5	100	0.04338	0.04497	┪
	l h	3		5	5	5		RG	+	(00]: [<u>U</u> (/- <u>J</u> 25	0.5.77	_
Tech Initials		Ry/mT	<u> 55</u>	RG	SH	SH	4/	1 19	42		Weig	ht Data:	
<u> </u>	,	_	•	4	^	3	4	5	6		_	: <u>5-4-54/143</u>	
Feeding Time	s (day)	1	0	1	2		T	7	$\overline{}$: <u>5-5-01/143</u>	
				0830		030	0880	1030			Oven Temp (°C)		
			1545	1540	1202	।इ५५	1130	1015	1530				
											rech initiais	· mt	_
_											OC Chack	· In Ellala	ı.j
Comments:						_				•	Einal Pavious	:: <u>UC 5/6/04</u> :: <u>BCS 512</u>	$\frac{r}{\epsilon}$) ab
											Lillat Meview	· 200 710	<u> </u>

										Α-			
							T	est Sp	ecies:	A. N. 60	ı	<u>ua</u>	
		,		i						4-27			
Client Name:			Mern	<u>cal</u>				rest	Date: _	4,774	<u>'U</u>	<u> </u>	
Sample ID:		<u> </u>	<u> </u>	7				Tes	st No.: _	04041	7	neight	
Conc.	Rep.		1				st Day:			Percent		pan wt.	pan + mysid
(Majle)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1	2	3	4	. 5	-6	7	Survival	-	(g)	(g)
200	a	5_	5	5	5	4	4	4	4	<u></u>	4:	0.04600	0,54703
	ь	5	4	4	4	4	4	.у 5	4	86	- 22	0.04/058	0.04767
	c d	5	5	5	5	5	5	7	5	100	- 2	0.04227	0.04741
	e	5	3	5		4	4	4	4	80 80		0,04808	504949
	f	5	3	5	5	4	4	7	<u>н</u>	\$0	- *	004108	5.046.20
		5	5	3	5	5	5	\$	5	100	╣.	0 0479V	0.04820 0.04938
	g h	5	9	y V	4	4	4	¥	4	86	4	0,04240	0.04257
/ I mb		 			1 -	-	_	<u> </u>	-	6	4:	Fig 100.	0.01357
400	a b	5	4	0	<u> </u>	_	_		-	_	┪	·-····	-
	C	5 /	254	600		-	 -	_	-	6	1		
	d		3	0	 	-	-	-	_	6	┪		1
	-	5	3	2	-	-			_	_ 6	1		
-	e f	5	4	i	0	_	-	-		6	٦.		
	g	5	3	ì	0	-	-				╡		
	h	25	H	5	<u>-</u>	-	1	-	l 1	<u> </u>	٦,	-	1
	a	 	٦	 	-	-			-		┥		
	b	1	<u> </u>	1	 	 					\dashv		
	C	 	<u> </u>	1			<u> </u>	 			┪		
 -	d	 -	 -	 	 		1	 			∃ :		
 	e		1	1	i –	-	 	1	 		4	·	,
	f	 	 	 -	 		Ì	-	-		٦.	ļ 	
	g	1	 	 				 			٦.	<u> </u>	
	h										٦.		
	a					1		 			٦.	,	
	b	╁	 	 	 	1					7		
<u> </u>	c	<u> </u>		1	1	l l	1	 			٦,		
	d		1	 	 	 		<u> </u>			7		
•	е			1		1					7		1
	f	 	†	 	 	1	†				7		
	g	1	1			1		 			٦:		
	h	 	1	 -	1	1		i	1		7		
Tech Initials	'	RELIET	SD	RY	SH	5#	AH	RG	51+				
							•	1					nt Data:
Feeding Time	s (day)	:	0	1	2	3	4	5	6			Date/Time in:	<u>5-4-04/143</u> 0
				0830	0812	0.8/0	OBIO	1030	0550			Date/Time out:	5-5-64/1430
			1545	1540	1505	1645	1130	1815	1530		O	ven Temp (°C):	59%
				-	-	-	-			•			in
Comments:												QC Check:	116 5/6/64 865 5/25/04
												Final Review:	865 5125104


Comments:

Copper (II) Chloride Reference Toxicant Control Chart Americamysis bahia 7-day Survival

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
11/16/99	213.4836	244.1365	204.9079	165.6793	283.3651	322.5937
12/14/99	291.6667	244.1365	204.9079	165.6793	283.3651	322.5937
01/26/00	250.8225	244.1365	204.9079	165.6793	283,3651	322.5937
02/24/00	239.3480	244.1365	204.9079	165,6793	283.3651	322.5937
03/21/00	192.2609	244.1365	204.9079	165.6793	283.3651	322.5937
04/12/00	178.0284	244.1365	204.9079	165.6793	283.3651	322.5937
05/09/00	219.8663	244.1365	204.9079	165.6793	283.3651	322.5937
06/27/00	248.8758	244.1365	204.9079	165.6793	283.3651	322.5937
07/26/00	271.1359	244.1365	204.9079	165.6793	283.3651	322.5937
09/07/00	261.6690	244.1365	204.9079	165.6793	283.3651	322,5937
03/20/01	241.0452	244.1365	204.9079	165,6793	283.3651	322.5937
04/17/01	250.3929	244.1365	204.9079	165,6793	283.3651	322.5937
06/12/01	352.2854	244.1365	204.9079	165.6793	283.3651	322,5937
07/06/01	196.0457	244.1365	204.9079	165.6793	283.3651	322.5937
05/30/02	219.6604	244.1365	204.9079	165.6793	283.3651	322.5937
09/24/02	264.5316	244.1365	204.9079	165.6793	283.3651	322.5937
02/26/03	222.0363	244.1365	204.9079	165.6793	283.3651	322.5937
07/01/03	242.4652	244.1365	204.9079	165.6793	283.3651	322.5937
09/30/03	241.8166	244.1365	204.9079	165.6793	283.3651	322.5937
04/27/04	_ 285.2941	244.1365	204.9079	165.6793	283.3651	322.5937

Copper (II) Chloride Reference Toxicant Control Chart -*Americamysis bahia* 7-day Growth

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
11/16/99	179.7699	219.8767	168.6346	117.3925	271.1188	322.3609
12/14/99	284.9703	219.8767	168.6346	117.3925	271.1188	322.3609
01/26/00	266.2640	219.8767	168.6346	117.3925	271.1188	322.3609
02/24/00	242.9445	219.8767	168.6346	117.3925	271.1188	322.3609
03/21/00	197.3648	219.8767	168.6346	117.3925	271.1188	322.3609
04/12/00	155.3798	219.8767	168.6346	117.3925	271.1188	322.3609
05/09/00	219.4263	219.8767	168.6346	117.3925	271.1188	322.3609
06/27/00	158.5119	219.8767	168.6346	117.3925	271.1188	322.3609
07/26/00	181.1420	219.8767	168.6346	117.3925	271.1188	322.3609
09/07/00	195.4682	219.8767	168.6346	117.3925	271.1188	322.3609
03/20/01	252.1328	219.8767	168.6346	117.3925	271.1188	322.3609
04/17/01	236.2576	219.8767	168.6346	117.3925	271.1188	322.3609
06/12/01	358.3176	219.8767	168.6346	117.3925	271.1188	322.3609
07/06/01	211.7674	219.8767	168.6346	117.3925	271.1188	322,3609
05/30/02	224.4369	219.8767	168.6346	117.3925	271.1188	322,3609
09/24/02	241.1025	219.8767	168.6346	117.3925	271.1188	322.3609
02/26/03	221.3585	219.8767	168.6346	117.3925	271.1188	322.3609
07/01/03	128.5058	219.8767	168.6346	117.3925	271.1188	322.3609
09/30/03	194.1426	219.8767	168.6346	117.3925	271.1188	322.3609
04/27/04	248.2701	219.8767	168.6346	117.3925	271.1188	322.3609

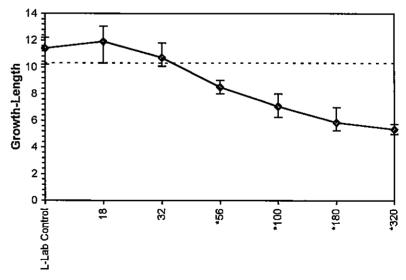
M. PYRIFERA

		ľ	Macrocyst	tis Germin	ation and Growth	Test-Proportion	n Germinated
Start Date:	03/16/2004		Test ID:	040316m	ort	Sample ID:	Ref Toxicant
End Date:	03/18/2004	}	Lab ID:	AEESD-A	MEC Bioassay SD	Sample Type:	Copper chloride
Sample Date:			Protocol:	MBP 90-A	inderson et al.	Test Species:	MP-Macrocystis pyrifera
Comments:							, ,,
Conc-ug/L	1	2	3	4	5		
L-Lab Control	0.9500	0.9400	0,9600	0.9400	0.9300		•
18	0.9200	0.9400	0.8900	0.9800	0.9700		
32	0.9100	0.9400	0.9400	0.8800	0.9400		
56	0.7600	0.8300	0.8900	0.7900	0.9400		
100	0.5900	0.5700	0.3900	0.5000	0.5400		
180	0.1900	0.1700	0.1500	0.3600	0.1100		
320	0.1100	0.0400	0.0400	0.0600	0.0500		

			Tra	ansform:	Arcsin So	uare Roo	t		1-Tailed		Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
L-Lab Control	0.9440	1.0000	1.3329	1.3030	1.3694	1.899	5				28	500
18	0.9400	0.9958	1.3331	1.2327	1.4289	6.024	5	-0.005	2.409	0.1205	30	500
32	0.9220	0.9767	1.2906	1.2171	1.3233	3.720	5	0.845	2.409	0.1205	39	500
*56	0.8420	0.8919	1.1711	1.0588	1.3233	9.162	5	3.234	2.409	0.1205	79	500
*100	0.5180	0.5487	0.8034	0.6745	0.8759	9.921	5	10,584	2.409	0.1205	241	500
*180	0.1960	0.2076	0.4511	0.3381	0.6435	25.599	5	17.626	2.409	0.1205	402	500
*320	0.0600	0.0636	0.2428	0.2014	0.3381	23.331	5	21.790	2.409	0.1205	470	500

Auxiliary Tests				-	Statistic		Critical	-	Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distrib	ution (p >	0.01)		0.97159		0.91		0.5251	0.59012
Bartlett's Test indicates equal var	iances (p =	= 0.16)	_		9.25319		16.8119			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TŲ	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	32	56	42,332		0.06751	0.07148	1.02405	0.00626	1.8E-20	6, 28

•				Ma	ximum Likeli	hood-Probi	t				
Parameter	Value	SE	95% Fidu	icial Limits	Contro	ol Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	3.65289	0.15388	3.35128	3.9545	0.056	6.60491	9.48773	0.16	2.04999	0.27376	3
Intercept	-2.4884	0.32356	-3.1225	-1.8542							
TSCR	0.0552	0.00682	0.04183	0.06857							
Point	Probits	ug/L	95% Fidu	icial Limits	1 🚛		_				
EC01	2.674	25.8902	22.1633	29.5713	0.9	I		<u></u> j	. 	<i></i> .	
EC05	3.355	39.783	35.3065	44.0897	Germinated 0.5 0.0 0.0 0.5 0.0 0.5 0.0 0.5 0.5 0.5			7			1
EC10	3.718	50.0212	45.2187	54.5948	E 0.7			/			
EC15	3.964	58.379	53.4064	63.0961	Ē			`			
EC20	4.158	66.0066	60.9311	70.8192	i o.o				\ T		
EC25	4.326	73.34	68.1965	78.2281	9 0.5				•		
EC40	4.747	95.6381	90.33	100.799	. <u>5</u> 0.4 1				Τ/		
EC50	5.000	112,198	106.653	117.755	Proportion 0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2					\ T	
EC60	5.253	131.626	125.519	138.008	8.3						
EC75	5.674	171.645	163.249	181.104							
EC80	5.842	190.715	180.768	202,204	0.1					Τ,	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
EC85	6.036	215,633	203.327	230,203	o 1		. , 	-		т	——‡
EC90	6.282	251,663	235.43	271.375	<u>0</u>	9	32	*56	*100	180	*320
EC95	6.645	316.428	292.034	346.957	jo			•	₹	÷-	ţ,
EC99	7.326	486.226	436.123	551.808	-Lab Control						
					<u> </u>						


			Macro	cystis Ge	rmination and Gre	owth Test-Growt	h-Length
Start Date:	03/16/2004		Test ID:	040316mp	ort	Sample ID:	Ref Toxicant
End Date:	03/18/2004	ļ	Lab ID:	AEESD-A	MEC Bioassay SD	Sample Type:	Copper chloride
Sample Date:			Protocol:	MBP 90-A	nderson et al.	Test Species:	MP-Macrocystis pyrifera
Comments:						•	
Conc-ug/L	1	2	3	4	5		
L-Lab Control	12.250	11.750	10.250	10.750	12.250		
18	12.000	13.000	11.000	13.000	10.250		
32	11.750	10.000	10,250	10.500	10.750		
56	8.250	9.000	8.250	8.000	9.000		
100	8.000	7,000	6.250	7.000	7.000		
180	5.250	5.250	5.750	6.000	7.000		
320	5.500	5.250	5,750	5.250	5.000		

		_		Transforn	n: Untran:	sformed			1-Tailed			
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	_ t-Stat	Critical	MSD	Mean	N-Mean
L-Lab Control	11.450	1.0000	11.450	10.250	12.250	7.933	5				11.450	0.0000
18	11.850	1.0349	11.850	10.250	13.000	10.292	5	-0.839	2.409	1.148	11.850	-0.0349
32	10.650	0.9301	10.650	10.000	11.750	6.342	5	1.679	2.409	1.148	10.650	0.0699
*56	8.500	0.7424	8.500	8.000	9.000	5.502	5	6.190	2.409	1.148	8,500	0.2576
*100	7.050	0.6157	7.050	6.250	8.000	8.830	5	9.232	2.409	1.148	7.050	0.3843
*180	5.850	0.5109	5.850	5.250	7.000	12.312	5	11.750	2.409	1.148	5.850	0.4891
*320	5.350	0.4672	5.350	5.000	5.750	5.328	5	12.799	2.409	1.148	5.350	0.5328

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates non	mal distrib	ution (p >	0.01)		0.96621		0.91		-0.0139	-0.2587
Bartlett's Test indicates equal vari	iances (p =	= 0.22)			8.22913		16.8119			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	32	56	42.332		1.14791	0.10025	36.1577	0.56786	5.0E-15	6, 28

-	Maximum Likelihood-Probit													
Parameter	Value	SE	95% Fiducial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter				
Slope	1.4269	0.50192	0.44314 2.41066	0	1.50237	9.48773	0.83	2.32529	0.70082	6				
Intercept	1.68204	1.07308	-0.4212 3.78527											
TOOD	1.00201	1.07 000	-0.4212 0.70027											

1301				
Point	Probits	ug/L	95% Fidu	ıcial Limits
EC01	2,674	4.95379	0.00334	19.9675
EC05	3,355	14.8779	0.1116	39.4993
EC10	3.718	26.7394	0.71288	57.7786
EC15	3.964	39.7132	2.45005	75.9319
EC20	4.158	54.3829	6.40166	96.3239
EC25	4.326	71.2183	14.1597	121.746
EC40	4.747	140.52	71.8914	319.804
EC50	5.000	211.489	123.81	882.276
EC60	5.253	318.301	178.388	2909.33
EC75	5.674	628.033	290.069	23862.2
EC80	5.842	822.454	346.343	55870.9
EC85	6.036	1126.26	423.63	151402
EC90	6.282	1672.72	543.031	533470
EC95	6.645	3006.3	779.635	3471999
EC99	7.326	9028.95	1520.08	1.2E+08

Test: MC-Macrocystis Germination and Growth Test

Species: MP-Macrocystis pyrifera Sample ID: REF-Ref Toxicant

Test ID: 040316mprt

Protocol: MBP 90-Anderson et al. Sample Type: CUCL-Copper chloride

Start			Kei Toxicani Ionna F	nd Date: 0	3/18/2004			Lab ID:	AEESI	D-AME	C Bioas	say SC	· ·				
Start	Date.	03/10	2004	Total	Number	<u>-</u> T	Ī	T	ľ	_						Cal	
Pos	ID	Rep	Group	Counted	Germ	L1	L2	L3	L4_	L5	L6	L7	L8	<u>L9</u>	L10	Factor	Notes
141	15		32	100	94	7	4	4	5	5	3	3	4	4	4	2,5	
142	17		56	100	83	4	3 _	5	2	4	3	3	5	3	4	2.5	
143	10	5	18	100	97	3	5_	5 _	5	4	5	3	4	4	3	2.5	
144	27	2	180	100	17	2	3	2	2	2	2	2	1	2	3	2.5	
145	22	2	100	100	57	2	2_	4	3	4	3	4	2	_2	2	2.5	
146	24	4	100	100	50	3	4	2	2	2	2	2	4	_ 3	4	2.5	
147	14	4	32	100	88	3	4	5	5	4_	4	5	3_	5_	4	2.5	
148	19	4	56	100	79	4	3	2	3	3	4	4	3	2	4_	2.5	
149	4	4	L-Lab Control	100	94	4	4	3	6	4	6	4	3	5	4_	2.5	
150	30	5	180	100	11	2	2	4	3	3	5	2	2_	2_	3_	2.5	
151	1	1	L-Lab Control	100	95	5	4	7 _	6_	4	4	5	5	4	5	2.5	<u> </u>
152	9	4	18	100	98	6	3	5	6	7	5	_6	5	4	5	2.5	
153	20	5	56	100	94	4	2	5	3	4	3_	5_	3	3	4	2.5	
154	26	1	180	100	19	2	2	2	3	2	2	_ 2	2	2	2	2.5	
155	23	3	100	100	39	3	2	2	3 _	4	2	2	2	3	2	2.5	
156	3	3	L-Lab Control	100	96	5	5	3 _	2	4	5	_ 5	4	5	3	2.5	
157	13	3	32	100	94	4	5	4	4	4	3	5	3	5	4	2.5	
158	32	2	320	100	4	2	2	2	2	_ 2	2	3	2	2	2	2.5	
159	6	1	18	100	92	7	5	5	3	3	5	3	7	4	6	2.5	
160	31	1	320	100	11	3	2	2	2	2	3_	2	2	2	2	2.5	<u> </u>
161	12	2	32	100	94	4	3	3	3	4	5	5	4	5	4_	2.5	<u> </u>
162	28	3	180	100	15	3	2	2	2	2	3	2	2	3	2	2.5	
163	11	1	32	100	91	6	3	5	5	_4	4	5	4	7	4	2.5	
164	7	2	18.0	100	94	4	7	6	6	6	5	4	5	5	4	2.5	
165	29	4	180	100	36	3	2	2	2	2	2	2	2	3	4	2.5	<u> </u>
166	18	3	56	100	89	4_	4	5	2_	2_	4	3_	4_	2_	3	2.5	
167	2	2	L-Lab Control	100	94	5	5	5	4	6	2	4_	4_	6	6	2.5	
168	21	1	100	100	59	2	3	4	2	2	4	3	4_	4	4	2.5	
169	34	4	320	100	6	2	2	2	2	2	2	3	2	2	2	2.5	
170	25	5	100	100	54	3	5	2	2	2	3	3	3	2	3	2.5	<u> </u>
171	8	3	18	100	89	5	5	4	4	4	5	4	5	4	4	2.5	ļ
172	5	5	L-Lab Control	100	93	3	5	4	4	6	5	4	4_	7_	7	2.5	
173	35	5	320	100	5	2	2	2	2	2	2	2	2	2	2	2.5	<u></u>
174	16	1	56	100	76	3	3	3	4	3	2	4	3	5	3	2.5	1 100 00
175		3	320	100	4	2	3	3	2	2	3	2	2	2	2	2.5	data entry QC

Comments:

Test ID: 040316mprt Test: MC-Macrocystis Germination and Growth Test Protocol: MBP 90-Anderson et al. Species: MP-Macrocystis pyrifera Sample Type: CUCL-Copper chloride Sample ID: REF-Ref Toxicant Lab ID: AEESD-AMEC Bioassay SD End Date: 03/18/2004 Start Date: 03/16/2004 Cal Total Number L10 Factor Notes L5 L6 L7 L8 L9 L4 L2 L3 Germ L1 Pos ID Rep Group Counted AΉ 2,5 £ 7_ > j 支 Э Z ij ə E-0 4. प IJ Э え る Z <u>7</u> V ٤/ < ٦-``` QUŽ > ᅎ $\overline{\Delta}$ ~ Ż ュ य ゝ Э > **a** Tί u ヹ ゔ $\overline{\mathcal{F}}$ u 4. जय lo (0 Ì Y ч ン D. Ч u _ ψ シ Ч u S Э-Э-U Ч ч <u> 93</u> U

Comments:

Ц

ユ

J

ろ

Test: MC-Macrocystis Germination and Growth Test

Species: MP-Macrocystis pyrifera

Sample ID: REF-Ref Toxicant Start Date: 03/16/2004

Test ID: 040316mprt

Protocol: MBP 90-Anderson et al. Sample Type: CUCL-Copper chloride

Lab ID: AEESD-AMEC Bioassav SD

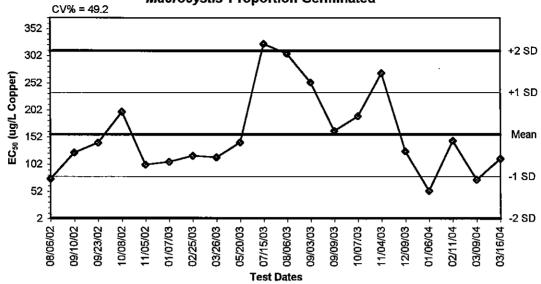
Start I		03/16		End Date: 0	3/18/2004			Lab ID:	AEES	D-AME	C Bioas	say St	<u> </u>				
				Total	Number	Ť,		ĺ				1	- 1			Cal	1
Pos	ID	Rep	Group	Counted	Germ	L1	L2	L3	L4	L5	L6	L7	L8	L <u>9</u>	L10	Factor	Notes
151	1		L-Lab Control														
167	2		L-Lab Control														
156	3		L-Lab Control														
149	4	4	L-Lab Control														
172	5	5	L-Lab Control														
159	6		18														
164	7		18													<u> </u>	
171	8		18	<u> </u>										<u> </u>	<u> </u>		
152	9		18											<u> </u>	<u> </u>		<u> </u>
143	10	5	18					<u> </u>						ļ	ļ	ļ	
163	11	1	32							<u> </u>			<u> </u>	<u> </u>	 		
161	12	2	32						L	L			<u> </u>	<u> </u>			
157	13	3	32				ļ				ļ				ļ <u> </u>	<u> </u>	
147	14	4_	32		<u> </u>		L	<u> </u>					<u> </u>	-	 		-
141	15	5	32				<u> </u>	<u> </u>						 			
174	16	1	56		<u> </u>	<u> </u>		<u> </u>	<u> </u>				 	 	<u> </u>		
142	17	2	56	<u> </u>			ļ	ļ		ļ	ļ		 	 -	 		
166	18	3	56				<u> </u>			<u> </u>		<u> </u>	ļ	 	 	ļ	
148	19	4_	56		<u> </u>	<u> </u>		<u> </u>	<u> </u>			<u> </u>	<u> </u>	 - -	<u> </u>	 	
153	20	5	56				<u> </u>	<u> </u>	 _				<u> </u>	 	├		
168	21	1	100			<u> </u>	<u> </u>	<u> </u>		<u> </u>	ļ	<u> </u>	├-	├		<u> </u>	
145	22	2	100			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>	↓	 	}	 	
155	23	3	100			<u> </u>	<u> </u>	<u> </u>			 	<u> </u>	 - -	 -	 	 	
146	24	4	100		<u> </u>	ļ	<u> </u>	 	<u> </u>	<u> </u>		 	 	 -	 - -		
170	25	5	100	<u> </u>	<u> </u>	ļ. <u> </u>	<u> </u>	<u> </u>			<u> </u>	 	├ -	1	1	<u> </u>	
154	26	1_1_	180		<u></u>	Ļ		↓			├	 	 		 -	 	
144	27	2	180			<u> </u>			<u> </u>	<u> </u>	ļ. -	<u> </u>	<u> </u>			 -	
162	28	3	180		ļ	<u> </u>	↓ _		<u> </u>	↓	└ ─	├	├ -	 	├	 	-
165	29	4	180		<u> </u>	<u> </u>	└	<u> </u>	<u> </u>	├	├	 	 	——	 -	 -	
150	30	5	180		<u> </u>	<u> </u>	 - -	<u> </u>		 -	 -	 - -	├	 		 	
160	31	1	320		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 - -	├	 - -	 -	 	 	├	
158	32	2	320					↓	! —	ļ	ļ	↓	 	 	-	 	· · · · · · · · · · · · · · · · · · ·
175	33	3	320		1	<u> </u>		<u> </u>	ļ	ļ	<u> </u>	 	 	╄——	4	 	
169	34	4	320		<u> </u>	ļ	 -		 	 -	├	 -	 -	 	┼	 -	
173	35	5	320		<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u></u>		<u> </u>	Щ.			 _	<u></u>

Comments:

QC:MC

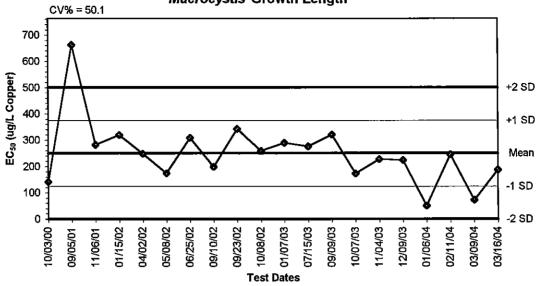
Kelp Spore Germination Bioassay Worksheet

Client: Internal-CuClz	Start/End Dates: 3.16.64 / 3.18.64
Test No.: C40311amprt	Start/End Times: 1(c 20 / 12:45
lest wo	Test Species: Macrocystis pyrifera
Date Collected: Ketp Collector: Collection Location: A H JR La Talla (ave	
Conditions (weather, etc.): Fragy, woderate	surge, 10-15 ft visibility
Dilution Water Source (Client I:):	Scripp peir
Dilution Water Source (Client II:):	
Dilution Water Source (Client III:):	<u> </u>
Dilution Water Source (Reference Toxicant):	
Time of Initial Rinsing and Dessication : Time of Rinsing and Transfer to Release Beakers: Conditions of Zoospore Density and Motility (beaker 1):	(keep kelp from each collecting bag separated) (keep kelp from each collecting bag separated)
Time of Blade Removal From Release Beaker 1/Beaker 2 (if neede	d):
Time of blade Norman Talk Norman	
Density Counts (target = 90): 46 65 49	
Mean $508 \cdot 10,000 = 508,000$ spores per ml (Density	of Spore Release)
(225,000 spores/container)/(density of spore release) = 1.44 m In cases of a spore release = 900,000 spores/ml, the volume is 0.2	5 ml
If density > 900,000 spores/ml, calculate a dilution factor, x, and cre	este a new spore stock of 300,000 ochain, and 500 other
Density of spore release * 0.25 ml = 1 container	spores =(x) 225,000 spores
Example: 980,000 * 0.25 / 225,000 = 1.09 (100 ml stock + 9 ml sw)
In cases of a spore release from 450,000 to 899,000 spores/ml, the and MBP required volume of no greater than 1% of the total test so required limit of 0.3 ml in order to achieve the desired spore densit	e volume added should not exceed 0.5 ml. (This volume exceeds the EPA olution volume. However, it may sometimes be necessary to exceed the y).
If the density of spore release is < 450,000 spores/ml, check the d	ensity of the spores in the second release beaker.
700	t inoculated: 0.5mL
Comments: 24hr & check - 90/1	germination
	AMEC Earth & Environmental
<u> </u>	Bioassay Laboratory 5550 Morehouse Drive, Suite B
CC Check: AH 4/19/04 Final Reviews	11C 5/6/4 San Diego, CA 92121


AMEC Earth and Environmental Bioassay Laboratory 5550 Morehouse Dr. Suite B San Diego, CA 92121 Raw Datasheet Water Quality Measurements Marine Chronic Bioassay

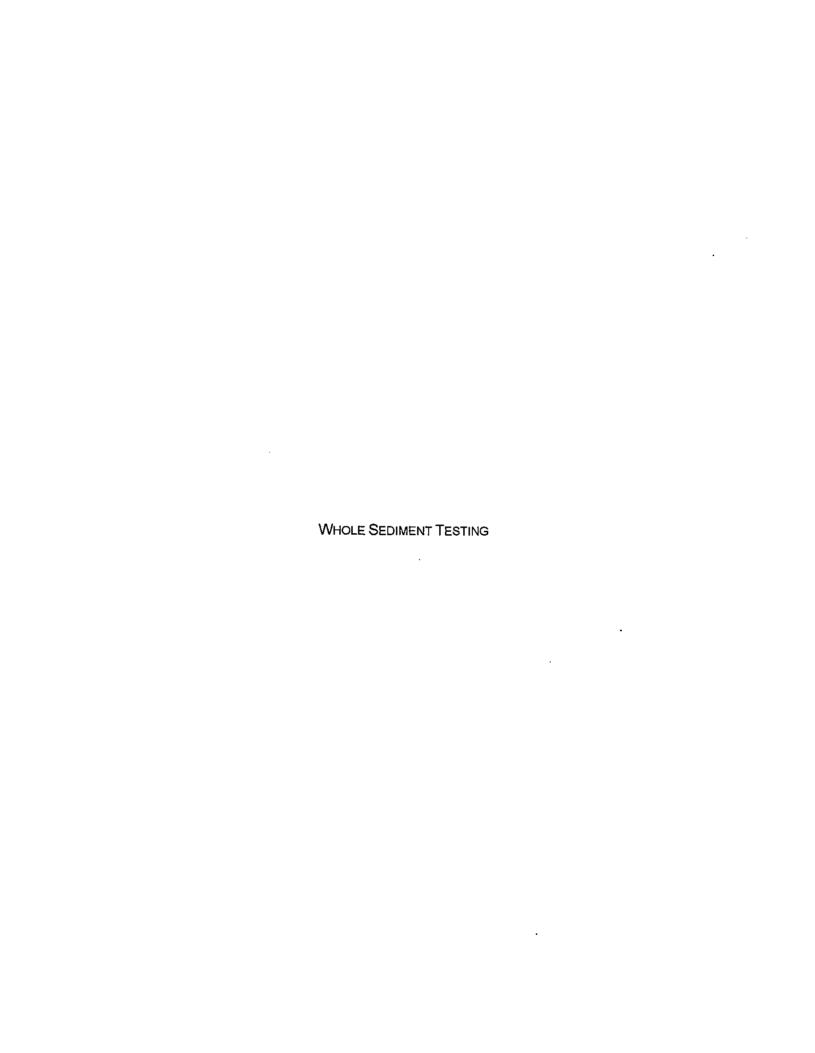
Client :	Internal	Test Species:	Macrocystis pyrifera
	QuC 17	Start/End Dates: _	3.16.04 / 3.18-04
<u>-</u>	C403ilcmprt	Start/End Times:_	1670 112:45
Analyst:		Test Type: _	Kelp Spore Germination and Growth

1	<u>-</u>	itial Reading	s	Final Readings			
Concentration (tale)	D.O. (mg/L)	pH (pH units)	Salinity (ppt)	D.O. (mg/L)	PH (etinu Hq)	Salinity (ppt)	
LC	9.3	7.93	33,9	7.1	7.95	33.9	
18	9.2	7.96	33.6	71	7.97	33.7	
32	9.2	7.97	34.0	7.1	7.98	341	
56	9.2	7.99	33.9	7.1	7.99	34.1	
100	9.2	8.00	34.0	7.2	7.98	340	
180	9.1	8.00	33.7	7.2	7.97	33.8	
320	9.2	8.00	33.3	7.2	7.97	33.2	


Comments:		 			×
OC Check:	AH 4/13/04		Final Review:	B(5	5/25/04

Copper (II) Chloride Reference Toxicant Control Chart - Macrocystis Proportion Germinated

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
08/06/02	75.4805	156.8042	79.6740	2.5439	233.9343	311.0644
09/10/02	123.3843	156.8042	79.6740	2.5439	233.9343	311.0644
09/23/02	141.3703	156.8042	79.6740	2.5439	233.9343	311.0644
10/08/02	198.6329	156.8042	79.6740	2.5439	233.9343	311.0644
11/05/02	101.1197	156.8042	79.6740	2.5439	233.9343	311.0644
01/07/03	106.2387	156.8042	79.6740	2.5439	233.9343	311.0644
02/25/03	117.3051	156.8042	79.6740	2.5439	233.9343	311.0644
03/26/03	114.8662	156.8042	79.6740	2.5439	233.9343	311.0644
05/20/03	141.9516	156.8042	79,6740	2,5439	233.9343	311.0644
07/15/03	323.8930	156.8042	79.6740	2.5439	233.9343	311.0644
08/06/03	305.9332	156.8042	79.6740	2.5439	233.9343	311.0644
09/03/03	252.7375	156.8042	79.6740	2.5439	233.9343	311.0644
09/09/03	163.1480	156.8042	79.6740	2.5439	233.9343	311.0644
10/07/03	190.3937	156.8042	79.6740	2.5439	233.9343	311.0644
11/04/03	269.9014	156.8042	79.6740	2.5439	233.9343	311.0644
12/09/03	125.8502	156.8042	79.6740	2.5439	233.9343	311.0644
01/06/04	53.0995	156.8042	79.6740	2.5439	233.9343	311.0644
02/11/04	145.1928	156.8042	79.6740	2.5439	233.9343	311.0644
03/09/04	73.3866	156.8042	79.6740	2.5439	233.9343	311.0644
03/16/04	112.1983	156.8042	79.6740	2,5439	233,9343	311.0644


Copper (II) Chloride Reference Toxicant Control Chart -*Macrocystis* Growth Length

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
10/03/00	141.5059	249.9288	124.6556	0.0000	375.2020	500.4752
09/05/01	663.2167	249.9288	124.6556	0.0000	375.2020	500.4752
11/06/01	281.3892	249.9288	124.6556	0,0000	375.2020	500.4752
01/15/02	319.8081	249.9288	124.6556	0.0000	375.2020	500.4752
04/02/02	247.5000	249.9288	124.6556	0.0000	375.2020	500.4752
05/08/02	174.5946	249.9288	124.6556	0.0000	375.2020	500.4752
06/25/02	308.1103	249.9288	124,6556	0.0000	375.2020	500.4752
09/10/02	198.1026	249.9288	124.6556	0.0000	375.2020	500.4752
09/23/02	341.7486	249.9288	124.6556	0.0000	375.2020	500.4752
10/08/02	258.3333	249.9288	124.6556	0.0000	375.2020	500.4752
01/07/03	288.9512	249.9288	124.6556	0.0000	375.2020	500.4752
07/15/03	275.5769	249.9288	124.6556	0.0000	375.2020	500.4752
09/09/03	320.0000	249.9288	124,6556	0.0000	375.2020	500.4752
10/07/03	172.6531	249.9288	124.6556	0.0000	375.2020	500.4752
11/04/03	227.8947	249.9288	124.6556	0.0000	375.2020	500.4752
12/09/03	223.1507	249.9288	124.6556	0.0000	375.2020	500.4752
01/06/04	50,7317	249.9288	124.6556	0.0000	375.2020	500.4752
02/11/04	246.0484	249.9288	124.6556	0.0000	375.2020	500.4752
03/09/04	72,2609	249,9288	124.6556	0.0000	375.2020	500.4752
03/16/04	187.0000	249.9288	124.6556	0.0000	375.2020	500.4752

APPENDIX D

TOXICITY STATISTICAL ANALYSIS SUMMARIES & RAW DATA

Appendix Table D-1. Non-parametric ANOVA Summary Results City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 24 March 2004 Test Species: *Eohaustorius estuarius*

Parameter	Value
Table Analyzed	
Amphipod Survival	
Kruskal-Wallis test	
P value	0.0011
Exact or approximate P value?	Gaussian Approximation
P value summary	**
Do the medians vary signif. (P < 0.05)	Yes
Number of groups	11
Kruskal-Wallis statistic	29.44

Test Initiation Date: 23 March 2004 Test Species: *Mytilus galloprovincialis*

Parameter	Value
Table Analyzed	
Bivalve Effective Survival	
Kruskal-Wallis test	
P value	0.0638
Exact or approximate P value?	Gaussian Approximation
P value summary	ns
Do the medians vary signif. (P < 0.05)	No
Number of groups	[11
Kruskal-Wallis statistic	17.51

Appendix Table D-1 (Cont.). ANOVA Summary Results City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 08 April 2004
Test Species: *Mytilus galloprovincialis -* SITE B-1 RETEST

Parameter	Value			
Table Analyzed				-
Bivalve Effective Survival				
One-way analysis of variance				
P value	 	0.0068		
P value summary	**			
Are means signif. different? (P < 0.05)	Yes	_		
Number of groups		3		
F		7.77		
R squared		0.5643		
Bartlett's test for equal variances Bartlett's statistic (corrected) P value P value summary Do the variances differ signif. (P < 0.05)	ns No	1.8 0.4065		
ANOVA Table	ss	df		MS
Treatment (between columns)		0.2018	2	0.1009
Residual (within columns)		0.1558	12	0.01298
Total		0.3576	14	

Appendix Table D-2. Summary of Whole Sediment t-test p values City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event Test Initiation Dates: 23-24 March 2004

Test Site	Amphipod Survival	Bivalve Survival	Bivalve Normality	Bivalve Effective Survival
A-1	0.0045ª	0.0497	0.1360	0.3420
A-2	0.1875°	0.1296	0.0596	0.0110
A-3	0.2238	0.3425 ^a	0.0750	0.1469
B-1	0.0864ª	0.0239	0.3815	0.0520
B-2	0.2860 ^a	0.0505	0.1851	0.0627
B-3	0.0044 ^a	0.1470 ^a	0.0288 ^a	0.0215
B-4	0.2577	0.2695	0.1844	0.1790
C-1	0.1683 ^a	0.0608	0.1039	0.0289
C-2	0.0091 ^a	0.4615	0.1110	0.1890
C-3	0.0022ª	0.2653	0.2748	0.2136

Bold indicates a statistically significant decrease compared to the sediment control (one-tailed t-test, p ≤ 0.05)

^a - indicates Welch's correction applied due to unequal variances

Appendix Table D-2 (Cont.). Summary of Whole Sediment t-test p values City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event Test Initiation Dates: 23-24 March 2004

Test Site	Bivalve	Bivalve	Bivalve
	Survival	Normality	Effective Survival
B-1	0.0128	0.0596	0.0048

Bold indicates a statistically significant decrease compared to the sediment control (one-tailed t-test, $p \le 0.05$)

Appendix Table D-3. Summary of Pearson Correlations between Grain Size, TOC and Amphipod Survival

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 24 March 2004 Test Species: Eohaustorius estuarius

Grain Size (% fine) vs:	Amphipod Survival
p- value	0.512
N	10
r²	0.056
Significance?	NO

Grain Size (% sand) vs:	Amphipod Survival
p- value	0.0189 10 0.518
Significance?	YES

Grain Size (% gravel) vs:	Amphipod Survival
p- value N	0.0176 10
r ² Significance?	0.526 YES

TØC (mg/kg) vs. :	Amphipod Survival
p- value	0.944
N	10
r ²	0.001
Significance?	NO

Appendix Table D-4. Summary of Pearson Correlations between Trace Metal Concentrations and Amphipod Survival

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 24 March 2004 Test Species: *Eohaustorius estuarius*

Copper (mg/kg) vs. :	Amphipod Survival
p- value N	0.379 10
r ² Significance?	0.098 NO

Amphipod Survival
0.089 10
0.319 NO

Zinc (mg/kg) vs. :	Amphipod Survival
p- value	0.226
N	10
r²	0.177
Significance?	NO

10-Day Sediment Survival Data · AMEC Bioassay Laboratory

Client:	Buenaventura	·	·
Project ID:	Souta Clare	a Ziver Estvay	<u>/</u>
Test Date:	4.3.04		<u> </u>
Test Organism:	E estuarius		

	Random Number	Time	Number Alive	QA Check	Tech Initials
			19		JR
 -		7280	19		
] -	3		20		
[-		 			
-	7	 	20 17		[-
-	6	 	19		
-	<i>\begin{align*} \begin{align*} \</i>	 	20		
i l		 	19		
· "	9	 	130	-	
<u> </u> -		 	70		
<u> </u>	11	 	130		
1	15		19	.	
	13		140		
	14		14 1		
 		 	17	···········	
Air turned of for an	16	· · · · · · · · · · · · · · · · · · ·	70		
indetermined amt.	17	<u> </u>	200		
Air turned of for an indetermined amt. If time day 5.	18		18		
,	19		19		
			17	<u> </u>	
	21		17		
	22	 	19		
	23		130		
	24	 	150		
llarger grain size	25	1	19		
-	26		70		
	77	1	170		
	7.8		186		
	29	 	70		
	30		19		
	31	<u> </u>	15 (4)	<u> </u>	
	32	 	18 @		1 1
	33	 	19		
	34		150	 	
	31		19		 \

AMEC Bioassay Laboratory - 5550 Morehouse Dr., Suite B. San Diego, CA 92121.

QA Check: Final Review:

10-Day Sediment Survival Data AMEC Bioassay Laboratory

Client:	Brenaventura	
Project ID:	Souter classic?	Tuer Estuary
Test Date:	4/3/04	
Test Organism:	E estuaring	<u> </u>

Random		Number	QA	Tech
Number	Time	Alive	Check_	Initials
76	1050	19		٧̈́
<i>პ</i> ን		19		<u> </u>
34		17		
39		20		
40		190		
41	·	130		
42		18		<u> </u>
43		17		
44		70	· · · · · · · · · · · · · · · · · · ·	
45		18		<u> </u>
46		19		
47		150		<u> </u>
48		700		
45		70		
70		160		1
σ1		18		
52		16 (9)		 _ _ _ _
47		170		·
54		70		
77	<u> </u>	70		<u> </u>
6س		19	ļ <u> </u>	
イフ		20	<u> </u>	
78		70	<u> </u>	
15		15		 \
60		160		
 			 	 -
		<u> </u>	ļ	
			· ·	-
				<u> </u>
	· · · · · ·	_	<u> </u>	
			ļ	
			ļ	
			 	<u> </u>
				

AMEC Bioassay Laboratory - 5550 Morehouse Dr., Suite B. San Diego, CA 92121.

QA Check: sue 4/1/04
Final Review: BCS 5/25/04

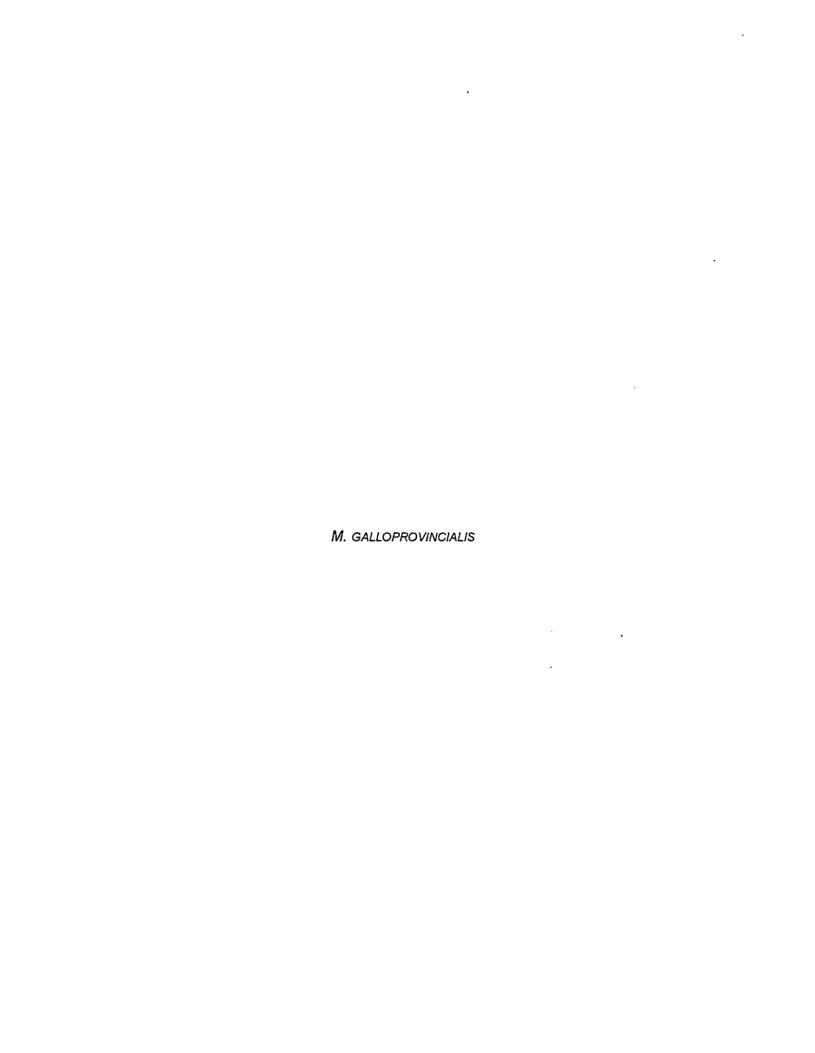
Ten-Day Amphipod Bioassay - Ogden Bioassay Laboratory Day Ten Emergence Data

Client: City of Burewatera

Date: 식/3/04

Test Species: Echarstorio's

	Random	Number	Comments/
	Number	Emerged Alice	Observations
Surragily	El Control	<u>Zo</u>	
1	Mucoma Control	19	
1	A-1	16	
\ \	A-Z A-3	19	
1		17	
1	B-1 B-2	20	
}	B-3	17	
- 1	R-4	19	
	Č-1	Zo	
1	C-2	14	
\checkmark	c-3	18	
	<u> </u>		· · · · · · · · · · · · · · · · · · ·
			
			····
	-		
		· · · · · · · · · · · · · · · · · · ·	·
	<u> </u>		
			· · · · · · · · · · · · · · · · · · ·
		<u> </u>	
			
	<u> </u>	<u> </u>	
		Onder P	inassay Lahoratory - 5550 Morehouse Dr. Suite B. San Diego, CA 92121


Ogden Bioassay Laboratory - 5550 Morehouse Dr., Suite B. San Diego, CA 92121.

QA Review/Date: Final Review/Date:

10 417104 305 5125 164

City of Buenaventura Whole Sediment Amphipod Test Eohaustorius estuarius

CONTROL	Α					Rand#
	, ,	19		B-2	Α	21
Water only	В	54			В	51
	С	49			С	3
	D	8			D	33
	E	7			Е	48
	Surr				Surr	
CONTROL	Α	57		B-3	Α	31
Sed.	В	30			В	11
	С	12			С	14
	D	26			D	40
	E	25			E	41
	Surr				Surr	
A-1	Α	38		B-4	Α	43
	В	59			В	37
	С	22			С	55
	D	20			D	35
	Ε	42			E	4
	Surr				Surr	
A-2	Α	44	1	C-1	Α	17
	В	46			В	32
	С	16			С	6
	D	15			D	9
	E	45			E	34
	Surr				Surr	
A-3	Α	18		C-2	Α	28
	В	1			В	27
	С	29			С	13
	D	36			D	52
	E	39			E	2
	Surr		_		Surr	'

Appendix Table D-5. Summary of Pearson Correlations between Grain Size, TOC and Bivalve Results

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 23 March 2004 Test Species: *Mytilus galloprovincialis*

Grain Size (% fine) vs:	Survival	Normailty	Effective Survival
p- value	0.7549	0.3927	0.9953
N	10	10	10
r ²	0.013	0.093	<0.001
Significance?	NO	NO	NO

Grain Size (% sand) vs:	Survival	Normailty	Effective Survival
p- value	0.988	0.846	0.994
N	10	10	10
r²	<0.001	0.005	<0.001
Significance?	NO	NO	NO

Grain Size (% gravel) vs:	Survival	Normailty	Effective Survival
p- value	0.936	0.554	0.813
N	10	10	10
r ²	0.001	0.046	0.007
Significance?	NO	NO	NO

TOC (mg/kg) vs. :	Survival	Normailty	Effective Survival
p- value	0.844	0.285	0.561
N	10	10	10
r²	0.005	0.141	0.044
Significance?	NO	NO	NO

Appendix Table D-6. Summary of Pearson Correlations between Trace Metals and Bivalve Results

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Date: 23 March 2004 Test Species: *Mytilus galloprovincialis*

Copper (mg/kg) vs. :	Survival	Normailty	Effective Survival
p- value	0.481	0.500	0.445
N	10	10	10
r²	0.064	0.059	0.075
Significance?	NO	NO	NO

Nickel (mg/kg) vs. :	Survival	Normailty	Effective Survival
p- value	0.716	0.829	0.794
N	10	10	10
r ²	0.017	0.006	0.009
Significance?	NO	NO	NO

Zinc (mg/kg) vs. :	Survival	Normailty	Effective Survival
p- value	0.487	0.306	0.399
N	10	10	10
r²	0.062	0.130	0.090
Significance?	NO	NO	NO

Bivalve Embryo Development Score Sheet AMEC Bioassay Laboratory

Client: City & Brenaver	المرسد Site ID:	Work	Sadnes	
Test Species: M. galloon incidies	Project ID:	•		
Analyst:	Date:		3,25.09	
<u> </u>		49/3		

Random No.	Number Normal	Total Number	Comments/ Observations
31	۵۱	103	AH
32	55	77	1
33	64	81	
34	62	70	
35	5	82	
36	43	79	
37	52-	46	<i>b</i>
38	45	49	55
39	3 <u>\$</u>	54_	
40	43	<u>50</u>	
41	03	78	
42	40	_52	
43	. 40	69	
44	52	44	
45	57	<u> </u>	
46	46	510	
47	47	<u>iq8</u>	
48	57	68	
49	73	100	
50	57	09	
51	s 31 5k	59	JWJ
52	26	44	
53	30	58	
54	49	75	
55	32	51	1
56	24	44	V
57	(e) 10 to 33	(eg 33-66 65	lg
58	39 29	65	RG
59	29	60	RG
60	18	40	267

AMEC Bioassay Laboratory - 5550 Morehouse Dr., Suite B. San Diego, CA 92121.

QA Check: <u>110 **5**|5|04</u> Final Review: <u>BCS</u> 5|25|04

TØA- 96 B- 124 C- 124 D- 139 E-109

Bivalve Embryo Development Score Sheet AMEC Bioassay Laboratory

Client: City of Buerray	situa Site ID: Whole Sedment
Test Species: m. aculo privi cla	Respect ID:
Analyst:	Date: 3.25.04

	Number	Total	
Random No.	Normal	Number	Comments/ Observations
1	3 5	43	5)
2	42	47	
3	48	62	
4	(1) the	558 55	
5	= 4238	S038 42	V
6	44 960 1	61-35-4	THE RIG
7	mg/675	mc 7596	mc
8	70	89	me
9	me 43	57	mC
10	34	45	si)
11	55	ر) في	MV
12	5134	66 95	JR.
13	6251	-66 N	
14	51	60	
15	56	81	
16	52	68	
17	67	87	
18	70	86	
19	56	93	
20	2.5	30	
21	70	81	l V
22	46	53	5)
23	39	50	
24	59	70	
25	59	550.08	
26	48	59	
27	51	43	
28	58	74	
29	43	55	
30	_33_	56	

AMEC Bioassay Laboratory - 5550 Morehouse Dr., Suite B. San Diego, CA 92121.

QA Check: 165/04

Final Review: BCS 5/25/04

City of Buenaventura Whole Sediment Bivalve Test *Mytilus galloprovincialis*

Site	Rep	Rand#	Site	Rep	Rand#
CONTROL	Α	19	B-2	A	21
Water Only	В	54		В	51
	С	49		С	3
	D	8		D	33
	E	7		E	48
CONTROL	Α	57	B-3	Α	31
Sed. Cont.	В	30		В	11
	С	12		С	14
	D	26		D	40
	Е	25		E	41
A-1	Α	38	B-4	Á	43
	В	59		В	37
	С	22		С	5 5
	D	20		D	35
	E	42		E	4
A-2	Α	44	C-1	Α	17
	В	46		В	32
	С	16		С	6
	D	15		D	9
	E	45		E	34
A-3	Ä	18	C-2	Α	28
	В	1		В	27
	С	29		С	13
	D	36		D	52
	E	39		E	2
B-1	Α	10	C-3	A	50
	В	56		В	53
	С	58		С	47
	D	5		D	23
	E	60		E	24

Bivalve Development Bioassay Worksheet

Client: Svenaventura + SPAWAR Test No.: M. galloprovincialis	Start Date/Time:	3/23/04
Test Species: 4 and 4 and 4 and 4	End Date/Time: Date Received:	3/25/04
Test Species: <u>M. gallo provincialis</u>	Date Neceived.	-0/20/04
Sample Type: <u>Whole dedinant (Buera</u>	untura),	
Test Chamber Type and Sample Volume: 1L glass	jour, lone:	shellible
Spawn Initiation Time: <u>1145</u>		
Male Female Number of Spawners: 10 8		
Spawn Condition: 500 b		
Fertilization Time: 1415		
Egg Stock Density Calculation:		
$ \begin{array}{c c} \hline 96 \\ \hline 98 \\ \hline 121 \end{array} $	dilution 106.5	
Mean: $161_0.5 \times 42 = 4.473 \text{ eggs/ml}$		
Initial Stock - 44730 eggs/ml = 2.03 Inoculum Stock - 72000 eggs/ml		
Percent Division Upon Inoculation: 80%		
Time of Inoculation: <u>143</u>		
Comments:	AMEC Bioassay La 5550 Morehouse Di San Diego, CA 921	rive, Suite B
Reviewed/ Date: <u>MC 4/8/4</u>	(858) 458-9044	

Bivalve Embryo Development Score Sheet AMEC Bioassay Laboratory

Client: BuenavenTuva	Site ID: B-1 (retest)
Test Species: MGT1/15 3-PQ.	Project ID:
Analyst: 74	Date: 5/8/04

Random No.	Number Normal	Number Abnormal	Total Number	Comments/ Observations
/A	100	NA ~	109	
2.A	83		98	
3A	91		102	
AA	65		73	
5A	100		109	
6A	80		93	
7A	96		110	
84	100		118	
9A	55		79	
10A	13		99	
LIA	65		80	<u>.</u>
12A	124		146	
13A	82 84		100	
14A			93	
15A	93		104	
		·		
IB	94		93	
2B	81		93	
38	98		116	
AB	86		100	
53	91		97	
63	100		115	
73	100		119	
9 B	85		103	
ÅB	77		97	
10B	57		76	

AMEC Bioassay Laboratory - 5550 Morehouse Dr., Suite B. San Diego, CA 92121.

QA Check:	Bcs	5/24/04	
Final Review:	ANA	5/25/04	

Bivalve Embryo Development Score Sheet AMEC Bioassay Laboratory

Client:	Byena Histor entura	Site ID:	B-1 (refest)	
Test Species:	MyTilVEXDE.	Project ID:		_
Analyst:	TA	Date:	5/8/04	_

Random No.	Number Normal	Number Abnormal	Total Number	Comments/ Observations
11B	77		91	
12B	100		108	
13B	86		16°3 207 107	
14B	75 83		95	
ISB	83		91	
TØ-1			162	
-2			161	
-3			146	
-4			135	
-5			171	
	<u>-</u>			<u> </u>
				······································
		······		· · · · · · · · · · · · · · · · · · ·
				
··				
	<u> </u>		<u>-</u>	
				<u> </u>
	<u> </u>			

AMEC Bioassay Laboratory - 5550 Morehouse Dr., Suite B. San Diego, CA 92121.

QA Check:	Bis	5/24/04	
Final Review:	* AM	5/25/04	_

City of Buenaventura Whole Sediment Bivalve Confirmation Retest Mytilus galloprovincialis

Test Date: 5/7/04

Site	Rep	Rand#
CONTROL	A	13
Water Only	В	8
	С	2
	D	5
	_ E	3
CONTROL	Ā	6
Sed. Cont.	В	1
	С	15
	D	7
	E	12
B-1	Α	14
	В	10
	С	4
	D	9
	E	11

Bivalve Development Bioassay Worksheet

Test No.: 040	WARTIE, Juenaventura 5-019 gallopraincialis	Start Date/Time: End Date/Time: Date Received:	5/8/04 1300,1330 -5/8/04 -5/8/04
Sample Type:	C18 Flution, Whole	Sediment	
Test Chamber Type and	Sample Volume:	I viels, 16 6	lass Jas
Spawn Initiation Time:	0945		
Number of Spawners:	Male Female		
Spawn Condition:	weste		
Fertilization Time:	1136		
Egg Stock Density Calcu	ulation:		
Eggs Counted (x): 51 52 46 53 Mean 52	42 3 47 1 46 2 53 1 54	50.6	
Mean: _	50.6x 42 = 2125 eggs/ml		
Initial Stock Inoculum Stock -			
Percent Division Upon Inc	oculation: 85/.	201 208 212	188 221
Time of Inoculation: <u>13</u>	<u>00</u>	792 792 7 : 201	209 2016 2026 Mean = 201.8
Comments:	innoculated@1330 13ml of 8500 eggs/ml stxk(~ 25000 eggs/ml)	AMEC Bioassay Labo 5550 Morehouse Drive San Diego, CA 92121	stock= 8475.6 Tratory e, Suite B
Reviewed/ Date:	4 5/7904 001 - 5.507 JR	(858) 458-9044	

Appendix Table D-7. Summary of Ambient Water t-test p Values for Freshwater Species City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event Test Initiation Date: 17 March 2004

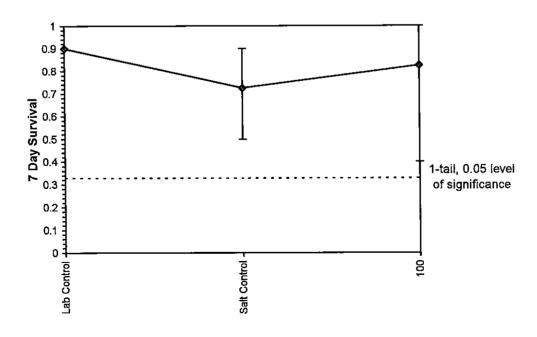
T 469-	Fathead	Minnow	Wat	er Flea	Algal
Test Site	Survival	Growth	Survival	Reproduction	Cell Density
A-2	0.2961	0.3280	0.3367	0.7019	0.0119
B-1	0.1141	0.0847 ^a	0.1717 ^a	0.1301	0.0120
B-3	b	b	b	1.0000	<0.0001
C-3	0.3652	0.0148	0.2780	0.2229	0.0048 ^a

Bold indicates a statistically significant decrease compared to the salt control ($p \le 0.05$)

^a - indicates Welch's correction applied due to unequal variances

^b - No comparisons made due to greater toxicity on the salt controls.

P. PROMELAS

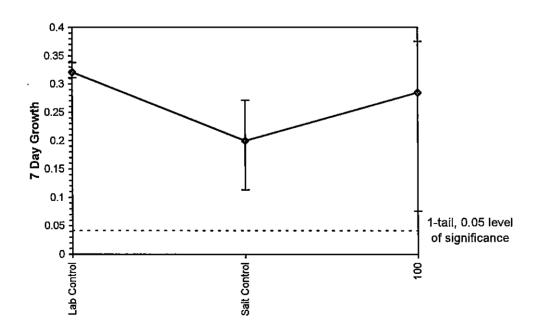

Larval Fish Growth and Survival Test-7 Day Survival							
Start Date:	03/17/2004		Test ID:	0403-110		Sample ID:	City of Buenaventura
End Date:	03/24/2004		Lab ID:	AEESD-AMEC	C Bioassay SD	Sample Type:	Ambient water
Sample Date:	03/16/2004		Protocol:	EPAF 94-EPA	Freshwater C	Test Species:	PP-Pimephales promelas
Comments:	A-2						
Conc-%	1	2	3	4			
Lab Control	0.9000	0.9000	0.9000	0.9000			
Salt Control	0.6000	0.9000	0.5000	0.9000			
100	0.4000	1.0000	1.0000	0.9000			

		· ·	Transform: Arcsin Square Root						1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Lab Control	0.9000	1.2414	1.2490	1.2490	1.2490	0.000	4			
Salt Control	0.7250	1.0000	1.0424	0.7854	1.2490	23.229	4			
100	0.8250	1.1379	1.1894	0.6847	1.4120	29.017	4	-0.698	1.943	0.4096

(All data compared against salt control)

h ann ann han a na ann ann ann ann						
Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.82531		0.749		-0.9916	-0.2668
F-Test indicates equal variances (p = 0.58)	2.0318		47.4683			
The control means are not significantly different (p = 0.14)	1.70691		2.44691			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	0.39611	0.5311	0.04325	0.08888	0.51154	1, 6

Dose-Response Plot

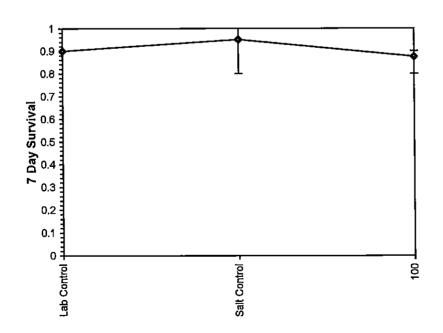

Larval Fish Growth and Survival Test-7 Day Growth											
Start Date:	03/17/2004		Test ID:	0403-110	Sample ID:	City of Buenaventura					
End Date:	03/24/2004		Lab ID:	AEESD-AMEC Bioassa	ay SD Sample Type:	Ambient water					
Sample Date:	03/16/2004		Protocol:	EPAF 94-EPA Freshwa	ater C Test Species:	PP-Pimephales promelas					
Comments:	A-2										
Conc-%	1	2	3	4							
Lab Control	0.3380	0.3240	0.3120	0.3110							
Salt Control	0.1500	0.2660	0.1140	0.2720							
100	0.0760	0.3140	0.3750	0.3750							

			Transform: Untransformed					1-Tailed	-	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Lab Control	0.3213	1,6022	0.3213	0.3110	0.3380	3,932	4			
Salt Control	0.2005	1.0000	0.2005	0.1140	0.2720	40.144	4			
100	0.2850	1.4214	0.2850	0.0760	0.3750	49.919	4	-1.034	1.943	0.1588

(All data compared against salt control)

(<u>' '''</u>	7					
Auxiliary Tests	Statistic	•	Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.84407		0.749		-1.2088	0.71378
F-Test indicates equal variances (p = 0.37)	3.12436		47.4683			
The control means are significantly different (p = 0.03)	2.96416		2.44691			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	0.15882	0.7921	0.01428	0.01336	0.34105	1, 6

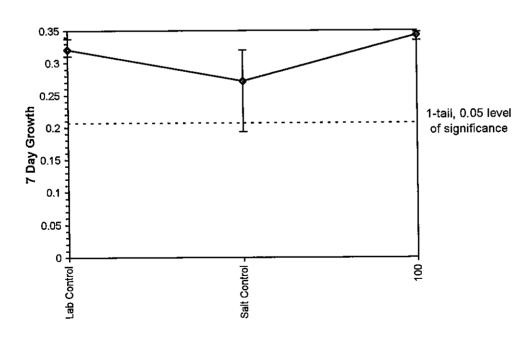
Dose-Response Plot



Larval Fish Growth and Survival Test-7 Day Survival											
Start Date:	03/17/2004		Test ID:	0403-111		Sample ID:	City of Buenaventura				
End Date:	03/24/2004		Lab ID:	AEESD-AMEC Bioass	say SD	Sample Type:	Ambient water				
Sample Date:	03/16/2004		Protocol:	EPAF 94-EPA Freshv	vater C	Test Species:	PP-Pimephales promelas				
Comments:	B-1		_								
Conc-%	1	2	3	4							
Lab Control	0.9000	0.9000	0.9000	0.9000							
Salt Control	1.0000	1.0000	1.0000	0.8000							
100	0.9000	0.9000	0.8000	0.9000							

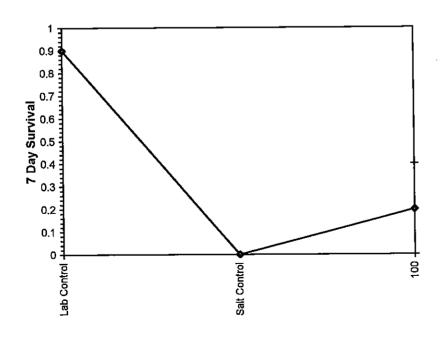
<u> </u>	·		Tra	ansform:	Arcsin Sc	uare Roo	t	Rank	1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N _	Sum	Crit <u>ical</u>	
Lab Control	0.9000	0.9474	1.2490	1.2490	1.2490	0.000	4			
Salt Control	0.9500	1,0000	1.3358	1.1071	1.4120	11.411	4			
100	0.8750	0.9211	1.2136	1.1071	1.2490	5.846	4	13.50	11.00	

/,				
Auxiliary Tests	Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)	0.73338	0.749	-1.6707	2.03146
F-Test indicates equal variances (p = 0.24)	4.6161	47.4683		
The control means are not significantly different (p = 0.30)	1.13825	2.44691		
Hypothesis Test (1-tail, 0.05)				


Wilcoxon Two-Sample Test indicates no significant differences

Larval Fish Growth and Survival Test-7 Day Growth											
Start Date:	03/17/2004		Test ID:	0403-111	<u> </u>	Sample ID:	City of Buenaventura				
End Date:	03/24/2004		Lab ID:	AEESD-AMI	EC Bioassay SD	Sample Type:	Ambient water				
Sample Date:	03/16/2004		Protocol:	EPAF 94-EF	PA Freshwater C	Test Species:	PP-Pimephales promelas				
Comments:	B-1										
Conc-%	1	2	3	4							
Lab Control	0.3380	0.3240	0.3120	0.3110							
Salt Control	0.3200	0.2860	0.2890	0.1930							
100	0.3480	0.3430	0.3470	0.3350							

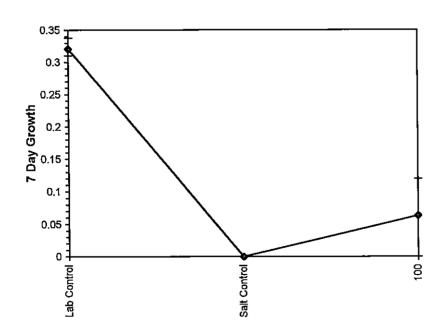
				Transforn	n: Untran	sformed			1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Lab Control	0.3213	1.1811	0.3213	0.3110	0.3380	3.932	4			
Salt Control	0.2720	1.0000	0.2720	0.1930	0.3200	20.170	4			
100	0.3433	1.2619	0.3433	0.3350	0.3480	1.721	4	-2.582	2.353	0.0649


// // dd:g combain agains i = 11 - 12 - 13						
Auxiliary Tests	Statistic	_	Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.83603		0.749		-1.516	4.03634
F-Test indicates unequal variances (p = 4.15E-03)	86.2053		47.4683			
The control means are not significantly different (p = 0.13)	1.74959		2.44691			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Heteroscedastic t Test indicates no significant differences	0.06493	0.23871	0.01015	0.00152	0.04163	1, 6

Larval Fish Growth and Survival Test-7 Day Survival											
Start Date:	03/17/2004			0403-112	ICO Diagram CD	Sample ID:	City of Buenaventura Ambient water				
End Date: Sample Date:	03/24/2004				IEC Bioassay SD PA Freshwater C		PP-Pimephales promelas				
Comments:	B-3	•	1 1010001.								
Conc-%	1	2	3	4							
Lab Control	0.9000	0.9000	0,9000	0.9000							
Salt Control	0.0000	0.0000	0.0000	0.0000							
100	0.4000	0.3000	0.1000	0.0000							

			Tra	nsform:	Arcsin So	uare Roo	t	<u>_</u>	1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Lab Control	0.9000		1.2490	1.2490	1.2490	0.000	4			
Salt Control	0.0000		0.1588	0,1588	0.1588	0.000	4			
100	0.2000		0.4362	0.1588	0.6847	54.954	4	-2.315	2.353	0.2821

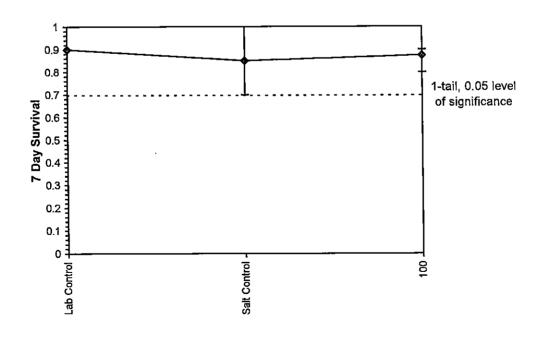
Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.9276		0.749		-0.2248	0.94081
Equality of variance cannot be confirmed						
The control means are significantly different (p = 4.02E-59)	1.1E+10		2.44691			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	<u>df</u>
Heteroscedastic t Test indicates no significant differences	0.00988	0.39502	0.15395	0.02873	0.05988	1, 6



Larval Fish Growth and Survival Test-7 Day Growth											
Start Date:	03/17/2004		Test ID:	0403-112		Sample ID:	City of Buenaventura				
End Date:	03/24/2004		Lab ID:	AEESD-AME	C Bioassay SD	Sample Type:	Ambient water				
Sample Date:	03/16/2004		Protocol:	EPAF 94-EPA	A Freshwater C	Test Species:	PP-Pimephales promelas				
Comments:	B-3										
Conc-%	1	2	3	4							
Lab Control	0.3380	0.3240	0.3120	0,3110							
Salt Control	0.0000	0.0000	0.0000	0.0000							
100	0.1200	0.0990	0.0350	0.0000							

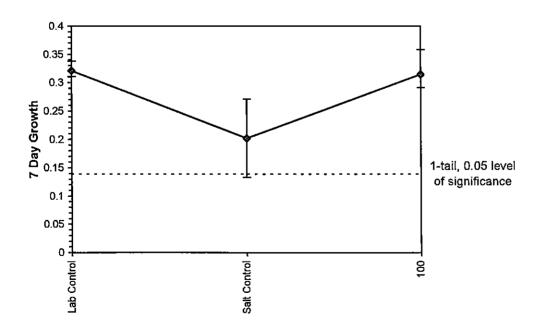
				Transforn	n: Untran	sformed		Rank	1-Tailed	_
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	
Lab Control	0.3213		0.3213	0,3110	0.3380	3.932	4			
Sait Control	0.0000		0.0000	0.0000	0.0000	0.000	4			
100	0.0635		0.0635	0.0000	0.1200	87.667	4	24.00	11.00	

0.92777	0.749	-0.2129	0.67786
50.8604	2.44691		


Hypothesis Test (1-tail, 0.05)
Wilcoxon Two-Sample Test indicates no significant differences

_	•		Laı	val Fish G	owth and Surviv	al Test-7 Day S	urvival
Start Date:	03/17/2004		Test ID:	0403-113		Sample ID:	City of Buenaventura
End Date:	03/24/2004		Lab ID:	AEESD-AM	IEC Bioassay SD	Sample Type:	Ambient water
Sample Date:	03/16/2004	ļ.	Protocol:	EPAF 94-E	PA Freshwater C	Test Species:	PP-Pimephales promelas
Comments:	C-3						
Conc-%	1	2	3	4			
Lab Control	0.9000	0.9000	0.9000	0.900			
Salt Control	0.7000	0.8000	0.9000	1.0000			
100	0.8000	0.9000	0.9000	0.9000			

			Tra	ansform:	Arcsin Sc	uare Roo	t		1-Tailed	-
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Lab Control	0.9000	1.0588	1.2490	1.2490	1.2490	0.000	4			
Salt Control	0.8500	1.0000	1.1898	0.9912	1.4120	15.281	4			
100	0.8750	1.0294	1.2136	1.1071	1.2490	5.846	4	-0.243	1.943	0.1896

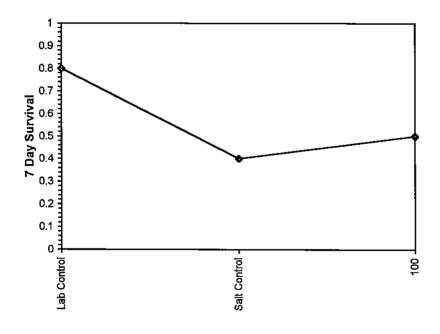

(All data compared against sait semine	·/					
Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.9397		0.749		0.1547	0.48587
F-Test indicates equal variances (p = 0.16)	6.56777		47.4683			
The control means are not significantly different (p = 0.54)	0.65122		2.44691			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	0.1535	0.17812	0.00113	0.01905	0.81598	1, 6

			La	rval Fish Gr	owth and Surviv	/ai Test-7 Day (Growth
Start Date:	03/17/2004		Test ID:	0403-113		Sample ID:	City of Buenaventura
End Date:	03/24/2004		Lab ID:	AEESD-AME	EC Bioassay SD	Sample Type:	Ambient water
Sample Date:	03/16/2004		Protocol:	EPAF 94-EF	A Freshwater C	Test Species:	PP-Pimephales promelas
Comments:	C-3						
Conc-%	1	2	3	4			-
Lab Control	0.3380	0.3240	0.3120	0.3110	_		
Salt Control	0.1330	0.2140	0.1900	0.2710			
100	0.2940	0.2910	0.3120	0.3580			

		_	•	Transforn	n: Untran	sformed		_	1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Lab Control	0.3213	1.5903	0.3213	0.3110	0.3380	3.932	4			
Salt Control	0.2020	1.0000	0.2020	0.1330	0.2710	28.309	4			•
100	0.3138	1.5532	0.3138	0.2910	0.3580	9.856	4	-3.438	1.943	0.0632

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.96873		0.749		0.16595	0.28679
F-Test indicates equal variances (p = 0.34)	3.41961		47.4683			
The control means are significantly different (p = 6.56E-03)	4.07256		2.44691			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	0.06316	0.31269	0.02498	0.00211	0.01384	1, 6

						٦	rest S	Speci	es:	7. pro	ml	14	<u>S</u>			
									_	7/17/01	4					
()	Oi	. <i>01</i> //11	vent	ura Zena			Te	est Da	ate: _	731110	1					
Client Name:	Di	NON IA	<u>VC1 \1</u>	<u> </u>												
	_		ı î	70	-E31	-van/	-	Test l	/o.:_(0403-11	401	Ш.	112-11-	<u> </u>		
Sample ID:	7	ator (lava	_ 12-, 0-0		$-\ell$					1005E			pan +	fich	
					est Day					Percent	4	Þ	an wt.	· .	1	
Conc.	lep.	w +5 - 1 - 1	4 7 16 9		3 7		5	6	7	Survival			(g)	(g)		
(100/-)								7	9	90%	- 657 F		4282	004	300	
LabControl	<u>a</u>		·——	10 10 1 9	—— }			a	q	90			4182	004	386	
	<u>b</u>	1	Ļ——————	4 9			1	9]	9	90	− -∵		4074	0.045		
<u></u>		<u>, ~ — — </u>		10 V		7 4	λL	a	9	<u>96</u>	- No. 1	_	4295	0.03		
	d		· <u> </u>	9 8			Ú l	4	4	40			355\	1 1 1		
100 1. A-2	a b	10-1	`~	10			16	10	10	100	-[数]		4538 °	0.04		
\		(0)		10 1		0	_	10	10	100 40	-	_	4125	0.04		
 	d	10	io	10 1	0	0	'''	9	9	90	-	_	4205	0.04	553	
1 1901	a		9	9 0	i I	9	9	9	9	90	-	_	3946	0.0	1289	
B-1 100.1	- <u>-</u> -	10	10	9	1	-I <u>I</u>	9	9	9	80_			4046	1204	13 <u>87</u>	
	- - -	10	16	0	8	8	8	8	8	90		1.	2719	00	3054	
\ -	d	10	9	<u> </u>	9	9 +	9-1	9_	4	46_		·	0.3434	0.03	554	
13-31001	a	10	10	(0)	9	3	_5	5	3	30			03335	0.03	434	
1001	ь	D	10		** - +	10	7-1	5_	1	10			0 3241	0.0	3276	
	С	10	10		8	3	0		 _	0		0		_	= . 20	l
	d	10	70	7	}+	4	8	8	8	80_		ما	03224	<u> 0.03</u>	3518	1
6-32 1001	а	10	10	1 1	9	-9-1	-a -	4	9	90		10	14PIE 0,	0.0	3485	1
	b	10	10_			10	10	9	19	90]3	٥	03401	0.03	3713 3695	-{
	C	10	10_	10	10-	- 0	ίΟ	a	9	90		وا	.0 <u>3337</u>	0.0.	1010	1
	d	10	10	10	10						{}					1
	a	 -	 	 								£ -				1
	<u> Б</u>	 -	┼	╁┈╼┪							s	34 4				1
	C	 	 	 			<u> </u>	<u> </u>				% -		_		7
	┿		 	 				<u> </u>				考.]
	<u>a</u> b		┼	+				↓				翻				
\ <u></u> -	c	 	+			<u> </u>	<u> </u>		_}-			퐟				
	$+\frac{a}{\sigma}$	+				<u> </u>	<u> </u>					(P)				
Tech Initials		SDI	n re	AW	SH	Ra	<u>L Kb</u>	SH	SH				We	eight Ņa	ıta: ,	
Tech initials			<u> </u>			_		_	6				Date/Time	e in:3 <u>/2⁴</u>	1/04/1	<u>5</u> ∞
Feeding Time	es (da)	y):	0	1	2	3_	1000	5	8 083				ate/Time			ZIII O
, coams	•			0845	0815	_			5 124			O۷	en Temp ((°C):	<u> 59</u>	_
			<u> </u>	1300	+	1130	180		Bu 16	30			Tech init	ials:	AW	
			43	D 1590	1700	1140	1/30	08		<u>-</u>					برايد م	2/01
					~			174					QC Ch	еск: <u>//</u>	C 4/13	2104
Comments:								!' [^]				1	Final Rev	lew:/	<u>nt 57.</u>	2/04

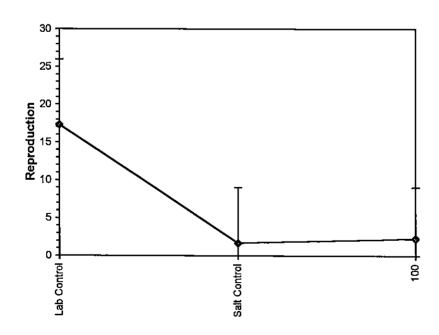

							Tes	t Spec	cies: _	Ppro	·~	relas		
Client Name	: C ₁	ty o	f B	ende	<u>wev</u>	<u>tu</u> r	a_	Test [Date: _	3).77	i ا	. 3/18	104	
Sample ID:	-	Sa	l+ (1	MH	Ols			Test	No.: _	\$040	<u>3 -</u>	~las . 3/18/ .116,111, pan wt.	112,113	
					Test [)av				Percent	Ţ.	pan wt.	pan + fish	
Conc.	Rep.	0		2		4		6	7	Survival	18	(g)	(g)	
Sc A-2	а	20	10		10	a	8	8	0	60	j.	0.02471	0.02131	
3.1 ppt	b	10	10	ю	10	10	9	9	9	96		0.03050	0.03316	
- ~1++ ·	С	10	10	10	9	છ	8	3	5	50	is:c	0.03484	0.63598	
	d	10	(O	, VO	q	q	9	9	9	90				
SC B-1	а	10	lD	10	D	(0)	Ō	10	10	100			8-63903	0.0291
1.4 ppt	ь	10	10_	10	10	6)	<u> </u>	10	10	<u> 100</u>		0.02437	0.02723	
	С	10	W	Ю	10	(0	Ю	10	10	<u> </u>	:30	0.02296	0.02585	
	d	10	(U)	10	10	(9	Ю	9	8	80	奖	0.02260	0.02453	
	а	10									鬈			
	þ	10									1	j		
	С	TR	<u> </u>						 				 	
	d	10												
SC B-3	a	10	0		<u> </u>							}	 	
14.4 ppt	b	10	Q_		-							 	 	
	С	10	0		<u> </u>		\ <u> </u>			8	13		 	1
	d	10	0			ļ.——	-	 			13	0.02375	0.62508	1
Sc (-3	а	10	10	10	9	9	7	3	7 8	89	-	0.02136	0.02350	
1.7pp+	b	10	10	10	+	10	9		9	90	慢	0.02138	D.02228	1
	C	ID.	10	10	110	10	10_	10	10	100		0.02192	0.02463	1
	d	10	D	10	10	10	10	110	10		-	JOIN EFILE	1	j
	a	 	 	├	 	├	 	+	 					1
	b	↓ -	 		+	├	 	· -	 					1
	c d	+		┼──	 	 -	 	 	 		- 45 第			7
		- 	 -	┼	+	-	 	╁╌──	 -	· ·	न <u>द</u> ्धे			
 	a b	- 	┧┈──	-	+	 	†	 	†		- 1.7 1.7 1.7	ž.]
	C	 		 	┼┈─	+	 		1]
· · · · · ·	- d	+	+	-		 	1				3.5		·	
Tech Initials		574	IAW	SH	AH	RG	HZ	Lu	me		_ ^		·	
TCOIT IIII			10.00	1-711				- 1 		_		_	ht Data:	
Feeding Time	es (dav):	0	1	2	3	4_	_5	6	-			7: 3.75.64 1	
	, J,	•	/	0815	OTOS	0430	0845	0580	0815				t: <u>3 26 04 1</u>	<u>3</u> 45
				1245	$\overline{}$	1510		1245	1145	1	Ō.	ven Temp (°C		
		_	1630		1400				1530			Tech Initial	2: <u>AD</u>	
		50	1515										مرانيمال	lat
Comments:								_				QC Chec	k: <u>UC4/13</u> 1	<u>4</u>
								_				Final Reviev	W: MT 5/5/04	_
•							_							

C. DUBIA

			Cerioda	phnia Sur	vival and	Reprodu	ıction Tes	t-7 Day	Survival	
Start Date:	03/17/200	4	Test ID:	0403-114		-	Sample ID):	City of Bu	enaventura
End Date:	03/24/200	4	Lab ID:	AEESD-AI	MEC Bioa	ssay SD	Sample Ty	ype:	Ambient w	ater
Sample Date:	03/16/200	4	Protocol:	EPAF 94-6	EPA Frest	water C	Test Spec	ies:	CD-Cerio	laphnia dubia
Comments:	A-2						·			•
Conc-%	_ 1	2	3	4	5	6	7	8	9	10
Lab Control	1.0000	0,0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Salt Control	0.0000	1.0000	0.0000	0.0000	1.0000	0.0000	0.0000	1.0000	0.0000	1.0000
100	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	0.0000	1.0000

				Not			Fisher's	1-Tailed		
Conc-%	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical		
Lab Control	0.8000	2.0000	2	8	10	10	0.2921			
Salt Control	0.4000	1.0000	6	4	10	10				
100	0.5000	1.2500	5	5	10	10	0.5000	0.0500		

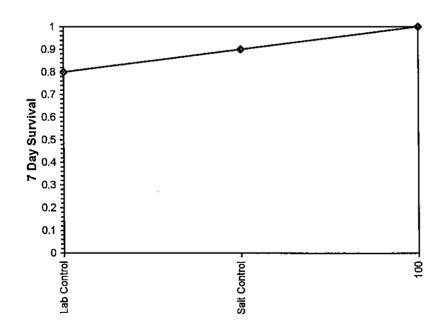
				 ,	
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	- 11
Fisher's Exact Test	100	>100		1	·



			Cerioda	phnia Su	vival and	Reprod	uction Tes	st-Repro	duction	_
Start Date:	03/17/2004		Test ID:	0403-114	_	_	Sample ID):	City of Bu	enaventura
End Date:	03/24/2004		Lab ID:	AEESD-AI	MEC Bioa	ssay SD	Sample Ty	/pe:	Ambient w	/ater
Sample Date:	03/16/2004		Protocol:	EPAF 94-1	EPA Frest	water C	Test Spec	ies:	CD-Cerioo	laphnia dubia
Comments:	A-2			_			-			•
Conc-%	1	2								
			. J	4	Ð	ь	7	8	9	10
Lab Contro	11.000	0.000	26.000	10.000	16.000	24.000	22.000	26.000	9 19.000	19.000
		0.000 3.000	26.000 0.000	10.000	16.000 5.000	24.000 0.000		26.000 0.000	`	

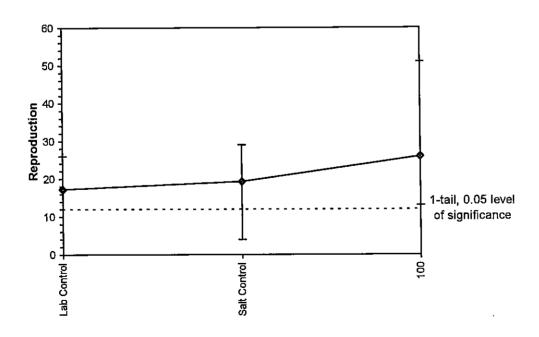
			•	Transfor	m: Untrar	sformed		Rank	1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	
Lab Control	17.300	10.1765	17.3000	0.0000	26.0000	47.903	10			
Salt Control	1.700	1.0000	1.7000	0.0000	9.0000	181.941	10			
100	2.300	1.3529	2.3000	0.0000	9.0000	164.031	10	107.00	82.00	

() (ii) data dompaida againot dali dolltiol)			
Auxiliary Tests	Statistic	Critical	Skew Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)	0.69746	0,868	1.30422 0.14037
F-Test indicates equal variances (p = 0.56)	1.4878	6.54109	
The control means are significantly different (p = 2.71E-05)	5.57696	2.10092	
Hypothesis Test (1-tail 0.05)			


Wilcoxon Two-Sample Test indicates no significant differences

			Cerioda	phnia Sur	vival and	Reprod	uction Tes	t-7 Day	Survival	
Start Date:	03/17/2004	1	Test ID:	0403-115			Sample ID);	City of Bu	enaventura
End Date:	03/24/2004	1	Lab ID:	AEESD-A	MEC Bioa	ssay SD	Sample Ty	/pe:	Ambient w	ater ater
Sample Date:	03/16/2004	1	Protocol:	EPAF 94-I	EPA Fresh	nwater C	Test Spec	ies:	CD-Cerioo	laphnia dubia
Comments:	B-1									
Conc-%	1	2	3	4	5	6	7	8	9	10
Lab Control	1.0000	0.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Salt Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000
100	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1,0000	1.0000	1.0000

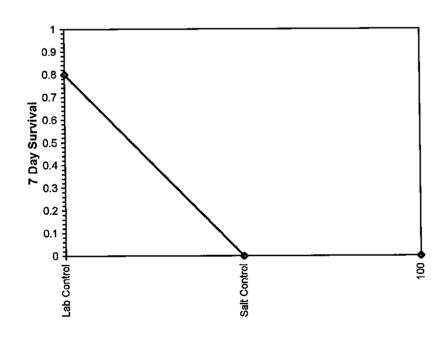
				Not			Fisher's	1-Tailed	
Conc-%	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	
Lab Control	0.8000	0.8889	2	8	10	10	0.5602		
Salt Control	0.9000	1.0000	1	9	10	10			
100	1.0000	1.1111	0	10	10	10	0.5000	0.0500	


יייי (אוז טמנו	Comparc	u agamsı	Sair com	100)	
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	100	>100		1	

.	<u> </u>	_	Cerioda	phnia Sur	vival and	Reprodu	uction Tes	t-Repro	uction	
Start Date: End Date: Sample Date: Comments:	03/17/2004 03/24/2004 03/16/2004 B-1	4	Lab ID:			ssay SD	Sample ID Sample Ty Test Spec	/pe:	Ambient w	enaventura rater aphnia dubia
Cana 0/										40
Conc-%	1	2	3	4	5	6	7	B	9	10
Lab Control	11.000	0.000	26.000	10.000	16.000	24.000	22.000	26.000	19.000	19.000
		0.000 27.000	26.000 4.000	10.000 13.000	16.000 24.000		22.000 22.000	26.000 20.000	19.000 23.000	

		-		ransforn	n: Untran	sformed		_	1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Lab Control	17.300	0.8964	17.300	0.000	26.000	47.903	10			
Salt Control	19,300	1.0000	19.300	4.000	29.000	45.041	10			
100	26.000	1.3472	26.000	13.000	51.000	39.013	10	-1.586	1.734	7.325

(All data compared againer call control	•,					
Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.94466		0.868		0.63993	1.78022
F-Test indicates equal variances (p = 0.65)	1.36156		6.54109			
The control means are not significantly different (p = 0.60)	0.5266		2.10092			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	7.32538	0.37955	224.45	89.2278	0.13014	1, 18

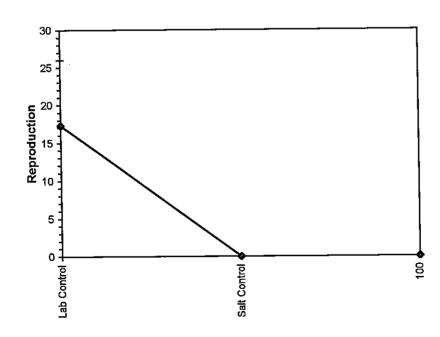


	_		Cerioda	phnia Sur	vival and	Reprodu	ction Tes	t-7 Day S	urvival	
Start Date:	03/17/2004	1	Test ID:	0403-116			Sample ID);	City of Bue	enaventura
End Date:	03/24/2004	1	Lab ID:					,	Ambient w	
Sample Date:	03/16/2004	1	Protocol:	EPAF 94-l	EPA Frest	water C	Test Spec	ies:	CD-Ceriod	aphnia dubia
Comments:	B-3							<u></u>		
Conc-%	1	2	3	4	5	6	7	8	9	
Lab Control	1.0000	0.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
								0.0000	0.0000	
Salt Control	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

-			Tra	ansform:	Arcsin So	uare Roo	t	Rank	1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	
Lab Control	0,8000		0.9425	0.5236	1.0472	23.424	10			
Salt Control	0.0000		0.5236	0.5236	0.5236	0.000	10			
100	0.0000		0.5236	0.5236	0.5236	0.000	10	105.00	82.00	

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	1	0.868		
Equality of variance cannot be confirmed				
The control means are significantly different (p = $1.13E-05$)	6	2.10092		
Live of the Took (4 toil 0.05)				

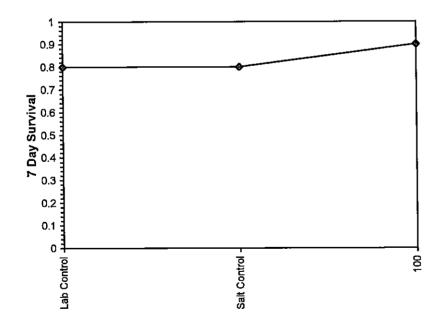
Hypothesis Test (1-tail, 0.05)
Wilcoxon Two-Sample Test indicates no significant differences



	·	<u> </u>	Cerioda	phnia Sur	rvival and	Reprod	uction Tes	t-Repro	duction	
Start Date: End Date: Sample Date: Comments:	03/17/2004 03/24/2004 03/16/2004 B-3		Lab ID:			ssay SD	Sample ID Sample Ty Test Spec	/pe:	City of Bus Ambient w CD-Ceriod	
OOHINIOINS.										
Conc-%	1	2	3	4	5	6	7	8	9	10
Conc-%	1 1 11.000	0.000	3 26,000	4 10.000	5 16.000	6 24.000	7 22.000	8 26.000	9 19.000	10 19.000
Conc-% Lab Contro Salt Contro		2 0.000 0.000	3 26,000 0.000	4 10.000 0.000	5 16.000 0.000	<u>`</u>	7 22,000 0.000	8 26,000 0.000	9 19.000 0.000	

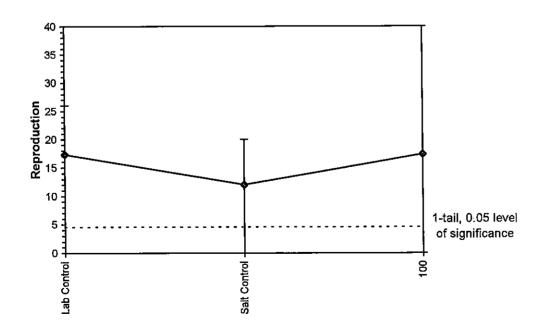
				Fransfor i	m: Untran	sformed		Rank	1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	
Lab Control	17.300		17.3000	0.0000	26.0000	47.903	10			
Salt Control	0.000		0.0000	0.0000	0.0000	0.000	10			
100	0.000		0.0000	0.0000	0.0000	0.000	10	105.00	82.00	

(All data compared to call comment				
Auxiliary Tests	Statistic	Critical	Skew	<u>Kurt</u>
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	1	0.868		
Equality of variance cannot be confirmed	0.00440	2.10092		
The control means are significantly different (p = 3.37E-06)	<u>6.60143</u>	2. 10092		
Threathasia Toot (4 tail 0.05)				


Hypothesis Test (1-tail, 0.05)
Wilcoxon Two-Sample Test indicates no significant differences

		_	Cerioda	phnia Sur	vival and	Reprod	uction Tes	t-7 Day S	Survival	
Start Date: End Date: Sample Date: Comments:	03/17/2004 03/24/2004 03/16/2004 C-3	1	Lab ID:			-	Sample ID Sample Ty Test Spec	/pe:	Ambient w	enaventura vater laphnia dubia
Conc-%	1	2	3	4	5	6	7	8	9	10
Lab Control	1.0000	0.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Salt Control	0.0000	1,0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000
100	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

				Not			Fisher's	1-Tailed	
Conc-%	Mean	N-Mean	Resp	Resp	Total	<u>N</u>	Exact P	Critical	
Lab Control	0.8000	1.0000	2	8	10	10	0.6310		
Salt Control	0.8000	1.0000	2	8	10	10			
100	0.9000	1.1250	1	9	10	10	0.5000	0.0500	


(All dat	a oomparo	<u> </u>				 	
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	_	_	
Fisher's Exact Test	100	>100		1			

			Cerioda	phnia Sui	rvival and	Reprodu	uction Tes	t-Reprod	luction	
Start Date:	03/17/2004	1	Test ID:	0403-117			Sample ID	:	City of Bu	enaventura
End Date:	03/24/2004	ļ	Lab ID:	AEESD-AI	MEC Bioa	ssay SD	Sample Ty		Ambient w	
Sample Date:	03/16/2004	1	Protocol:	EPAF 94-I	EPA Frest	water C	Test Spec	es:	CD-Ceriod	laphnia dubia
		•					·			•
Comments:	C-3	_								'
		2	3	4	5	6	7	8	9	10
Comments:	C-3 1	<u> </u>	3 26.000	·	5 16.000		7 22,000	8 26.000		·
Comments:	C-3 1 11.000	2	3	4	5	6	7	8	9	10

	_		•	Transfori	m: Untran:	sformed		_	1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Lab Control	17.300	1.4417	17.3000	0.0000	26.0000	47.903	10	<u>.</u>		
Salt Control	12,000	1.0000	12.0000	0.0000	20.0000	60.731	10			
100	17.400	1.4500	17.4000	0.0000	40.0000	65.483	10	-1.263	1.734	7.4167

/s as a mana = = = = = = = = = = = = = = = = = =						
Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.96065		0,868		0.14524	0.81408
F-Test indicates equal variances (p = 0.20)	2.44435		6.54109			
The control means are not significantly different (p = 0.15)	1.5187		2.10092			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	7.41671	0.61806	145.8	91.4667	0.22286	1, 18

Client/Sample ID:	0403 - 114,115,1	ntura/SCRE	Start Date:	3/1	7104	<u>.</u>	_						224/0	+
Test No:	0403 - 114,115,1	F11,011	Start Time:	140	ر 		_		1	End Ti	me: _	<u> 13</u>	10	
Conc. Rep	Daily Reproduction/ Sur		QC	Conc.	Rep		Daily Re	eproduc 4	tion/ S	urvival 6	7	8	Total	QC
4		6 6 6 7.4 8 8 11		2.7	1 0/	d -	-	-	_	-			8	
LU 2 0		0 10 20		B·3	2 0/	d -	-		- =		~		8	
3 3	0 0 7 7 3	- 01d - 101d	 		4 0/	7 -	-	_		~-		~	6000	
5 g	0 6 0 7 3	3 0 4 16			5 0/6 6 0/	7 -	-		-			+	- 8	
6 o	0 0 405 0	3 9 1 22	9 mc		7 0/	<u>a – </u>	 _				- 1		6	
7 O	0 0 5 5	16 24			7 o/.	d -	-				~		0	
9 0	0 0 1 0	8 10-1 19			9 0/	d -	 - 				-	 -	8	
10 0		7 0 V 19		1 - 45 - 4 - 4	10 0/	al-							<u> </u>	
Analyst SD MŢ	AH MC PG JR A													
	Deily Reproduction/ Cu	nivol	 	_ 	<u> </u>	_	Daily R	eprodu	ction/ S	urvival			T _4_1	
Conc. Rep	Daily Reproduction/ Su	Total	QC	Conc.	Rep	1 2	3	4	5	6	7	. 8.	Total	QC
1 0		0 0 1 0		C-26	1 0) o	010	-	~				8	_
12 0/d	*	 		129	 		8-	-5' 3	2	9	<u> </u>	_	2 5	
3 0	0 0 0 0 0	0 0 7 8	1			2 0	10	3	4	6	15 7	-	22	
4 0		0 4 4 9	 		5 6	0 0	7	ў. У	Ò	(I	144		40	
6 0/d		6			6 (0 0	0	4	9	8	<u> </u>	=	21	
7 0		0 14 6	 			0 0	0	<u>0</u>	0927	40	8 1	-	14_	7 ma
8 0/4	0 0 0 old	6 6	╂──┼				0	U U	6	2	0 1		2	T ''-
10 3	0 0 3 1	2 0 4 8	Ome		10	0 0	0	4	7	8	2 4		19	
								,					_	
O Bon	Daily Reproduction/ Su	rvival Total	QC	Conc.	Ren		Daily R		ction/ S	Surviva]		Total	QC
Conc. Rep	2 3 4 5	6 7 8		00,10.		1 2	3.9	4	5	6	<u> (m. 700)</u>	: 8		
2 1 0	0 0 0 3	9 11 18	<u> </u>	1	1							-		
B-1 2 0		0 12 23	izme		3		+					-		
3 0	0 0 9 6	15 24	10110		4					-				
5 0	0 0 0 0	13 224 51			5		<u> </u>							
6 0	0 0 7 7	B 0 4 17			7			ļ						
7 0 8 0		0 14 4 15	+		8		-							
9 0	0010				9		ļ <u>.</u>		•					
10 0	0006	7 5 V 13 16 D V 11		ENGTH OF	10									
Time Fed (day): (0	1400 (1) 1105 (2) 0946	(3) 1045 (4) 1600 (5)	1540 (6) 15	<u>60 (7)</u>		(8)	-							
Comments:						_								
QC Check: 11	c 413/04		Fina	I Review:	ΤM	515/04								

Client/Sample ID: (ity of Buena ventura) Start Date: 3/17/04 End Date: 3/24/04

Test No: 0403-114115,116,117 Start Time: 1400 End Time: 13/18

Conc.	Rep			Daily F	Reprodu	iction/ S	urvival			Total	1 00
		1	2	3	4	5	6	7	8	Total	QC
SC A-3	- 1	0	0/0	-		_	-	_		0	
3.100t	_ 2	0	0	Q	Q	0.	3	0 2		3	HAO
	3	0	٥	0	υ	6/d				5	
	4	0/0								ō	
	5	2_	Ó	0	4 "	1	0	01		5	
	6	0/0			_					ঠ	
	7_	<u> </u>	0/0		-		-	_		σ	
	8	<u> </u>	٥		0	0	0	0 -	_	O	
	9	0/d_				_~		_	1	8	
	10	<u> </u>	٥	0	¥		0	4 ~	,	9	
Analyst	- 13 D	MT	AH	mo	Q.y	JR	AW	AN		· ·	<u></u>

Conc.	Rep			Daily 1	Reprodu	ection/ S	urvival			7.4.1	4
	.,,,,		2	3	4	5	6	7	8	Total	QC
SC B-1	1	0	0	۵	1	5	Ø	13 V	<u> </u>	75	-
1.4 ppt	2	0	Ω.	0	5	Ö	lio	12-1		27	1241
	3	0	0	0	14	0	0	0 4		4	10/11
	4	0	0	6	2	0	6	5 V		13	<u> </u>
	5	0	0	5	Ð	9	9	1 4		24]
	6	_0	0	0	8)	111	0	IO V		29	
	7	0	0	O	Ö	7	8	12.10 11	•	22	
	8	0	0	0	5	6	Ö	9 4		20	
	9	Ö	0	0	1	6	0	10 4		23	
	10	Ö	Ú	6	6	0	Old			4 L	

Conc.	Rep			Daily	Reprodu	iction/ S	urvival				
	1100	1	2		4	5	6	7	8	Total	QC
SC B-3	1	0/d	-			T -			_	7	
THE POT	2	0/0	-	-	-				_	Ī	
(2.1	3	0/d	_	-	_		-	-	_		
	4	0/d	-		-		_				
	5	3/d			-	-		~			
	6	0/d			_	-	_	1	-		
	7	O/d	-		_	-	_		-		
	8	0/d	_	1	_)		_		
	9	0 /d	_	-			-		<u> </u>		
	10	0/6	_	-							

Conc.	Rep			Daily I	Reprodu	ction/ S	urvival			Total	QC
		1	1 2 3 4 5 5 7 8								
SC C-3	1	D	0	6	3	BUF	-		~	3	3
Most	2	Ø	0	0	0	1	G	27		7	MAH
	3	0	0	0	1	Ö	5	N365V		11	1
	4	0	0	_0	5	3	9	NOW WI		19	
	5	0	0	. 0	4	5	Ü	WIE ON		2.D	;
	6	Ο.	0	0	1	- 4	Ō	MY COM		17-	(
	7	2/d		_		-	_	_	_	0	
	8	O	_0	_0	2	7	(3)	8 1		15	
	9	0	b	0	0	2	6	01		8	<u> </u>
	10		Ö	0	V	6	10	2 1		20	 _

Time Fed (da	1y): (0)1400	(1) 1105	(2)0950	(3) 1050	(4) <u>ib(</u>	(5) 1600	(6) <u>14-20</u>	(7)1345	(8)	

Comments:

QC Check: 16 4/13/04

Final Review: M 5/5/04

Client/Sample ID:

Bunaventura

Start Date: 3-17-04

Test Number:

0403-114,115,116,117

Start Time: 1400

Test Species:

Brood Test Rep# Cup# Board # 1 14 2 N 3 4 5 M 6 12 JU 7 8

14

16

Verified by: MT

Comments:

QC Check: Le 4/13/04

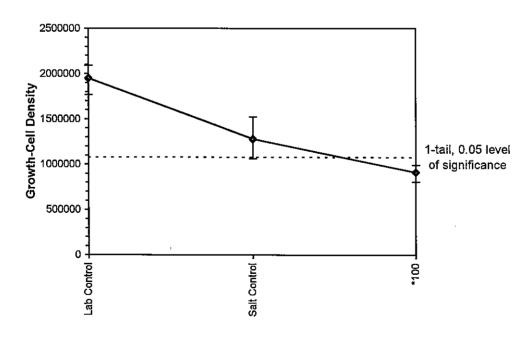
Final Review: 3/5 5/25/04

AMEC Earth & Environmental Bioassay Laboratory. 5550 Morehouse Dr., Ste. B. San Diego, CA 92121.

9

10

S. CAPRICORNUTUM


	Phytoplankton Test-Growth-Cell Density													
Start Date:	03/17/2004		Test ID:	0403-118a		Sample ID:	City of Buenaventura							
End Date:	03/21/2004		Lab ID:	AEESD-AMEC	Bioassay SD	Sample Type:	Ambient water							
Sample Date:	03/16/2004		Protocol:	EPAF 02-EPA	FW Chronic	Test Species:	SC-Selenastrum capricornutum							
Comments:	Sample A-2						•							
Conc-%	1	2	3	4										

Lab Control 1772000 2096000 2020000 1927000 Salt Control 1303000 1525000 1235000 1066000 100 993000 808000 960000 894000

				Transform: Untransformed				1-Tailed		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	_ t-Stat	Critical	MSD
Lab Control	1953750	1.5237	1953750	1772000	2096000	7.140	4			
Salt Control	1282250	1.0000	1282250	1066000	1525000	14.821	4			
*100	913750	0.7126	913750	808000	993000	8.934	4	3.563	1.943	200963

(Data compared against salt control)

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.9813		0.749		0.26865	1.04951
F-Test indicates equal variances (p = 0.20)	5.4197		47.4683			
The control means are significantly different (p = 1.26E-03)	5.69683		2.44691			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates significant differences	200963	0.15673	2.7E+11	2.1E+10	0.01188	1, 6

Test ID: 0403-118 Test: PY-Phytoplankton Test Protocol: EPAF 02-EPA FW Chronic Species: SC-Selenastrum capricornutum Sample Type: Ambient water Sample ID: City of Buenaventura Lab ID: AEESD-AMEC Bioassay SD Start Date: 03/17/2004 End Date: 03/21/2004 Cell Density Chlorophyll a Absorbance mg/m^3 OD/cm Biomass mg/L Notes Pos ID Rep Group 10^6 cell/mL 1.772 Lab Control 4 1 1 2 2 2 Lab Control 2.096 2.02 1 3 3 Lab Control 4 1.927 8 4 Lab Control Salt Control 1.303 Sait Control 1,525 Salt Control 1.235 Salt Control 1.066 0.993 6 5 1 100

Comments: Sample A-2

2

3

4

100

100 100 0.808 0.96

0.894

6

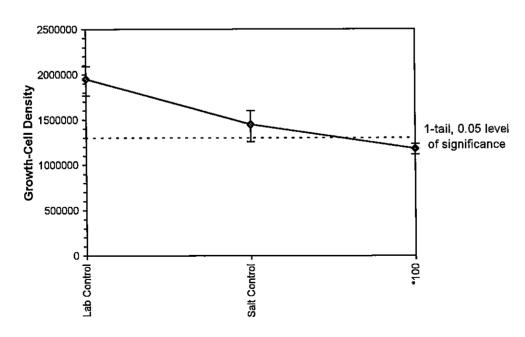
7

8

5

7

3


-	· -			Phytoplank	ton Test-Grov	wth-Cell Density	
Start Date: 0	03/17/2004		Test ID:	0403-119a		Sample ID:	City of Buenaventura
End Date: (03/21/2004		Lab ID:	AEESD-AMEC	Bioassay SD	Sample Type:	Ambient water
Sample Date: (03/16/2004		Protocol:	EPAF 02-EPA	FW Chronic	Test Species:	SC-Selenastrum capricornutum
Comments:	Sample B-1						
Conc-%	1	2	3	4			

Lab Control 1927000 2096000 1772000 2020000 Salt Control 1258000 1468000 1600000 1465000 100 1121000 1238000 1189000 1182000

				Transform: Untransformed					1-Tailed		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	
Lab Control	1953750	1.3495	1953750	1772000	2096000	7.140	4				
Salt Control	1447750	1.0000	1447750	1258000	1600000	9.760	4				
*100	1182500	0.8168	1182500	1121000	1238000	4.057	4	3.555	1.943	144978	

(Data compared against salt control)

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.92236		0.749		-0.6847	2.09469
F-Test indicates equal variances (p = 0.11)	8,67382		47.4683			
The control means are significantly different (p = 2.23E-03)	5.09697		2.44691			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates significant differences	144978	0.10014	1.4E+11	1.1E+10	0.012	1, 6

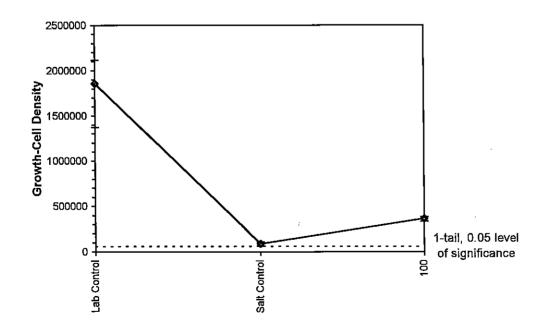
Test ID: 0403-119 Test: PY-Phytoplankton Test Species: SC-Selenastrum capricornutum Protocol: EPAF 02-EPA FW Chronic

Sample Type: Ambient water Sample ID: City of Buenaventura

Lab ID: AEESD-AMEC Bioassay SD Start Date: 03/17/2004 End Date: 03/21/2004

10.00.0	J 4.0.	00/11						
Pos	ID	Rep	Group	Cell Density 10^6 cell/mL	Absorbance OD/cm	Biomass mg/L	Chlorophyll a mg/m^3	Notes
15	1	1	Lab Control	1.927				
12	2	2	Lab Control	2.096				
9	3	3	Lab Control	1.772	_			
13	4	4	Lab Control	2.02			<u></u>	
			Salt Control	1.258				
			Salt Control	1.468				
			Salt Control	1.6				
			Salt Control	1.465				
14	5	1	100	1.121				
16	6	2	100	1.238				
11	7	3	100	1.189				
10	8	4	100	1.182			-	

Comments: Sample B-1


	Phytoplankton Test-Growth-Cell Density												
Start Date:	03/17/2004		Test ID:	0403-120a	<u>- —</u> -	Sample ID:	City of Buenaventura						
End Date:	03/21/2004		Lab ID:	AEESD-AMEC Bio	assay SD	Sample Type:	Ambient water						
Sample Date:	03/16/2004		Protocol:	EPAF 02-EPA FW	Chronic Chronic	Test Species:	SC-Selenastrum capricornutum						
Comments:	Sample B-3												
Conc-%	1	2	3	4									

Lab Control 1369000 2110000 1986000 1961000 Salt Control 81000 110000 91000 65000 100 385000 335000 364000 376000

				Transform: Untransformed				_	1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critica <u>l</u>	MSD
Lab Control	1856500	21.4006	1856500	1369000	2110000	17.854	4			
Salt Control	86750	1.0000	86750	65000	110000	21.717	4			
100	365000	4.2075	365000	335000	385000	5.965	4	-19.329	1.943	27973

(Data compared against salt control)

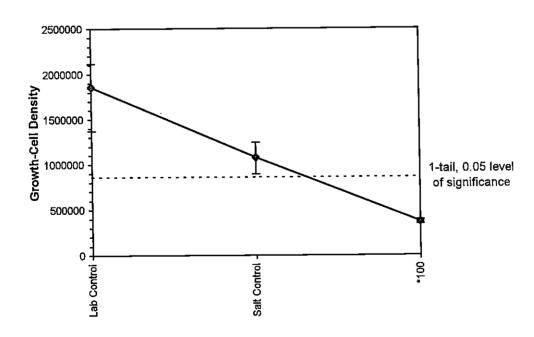
Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.9518		0.749		-0.4411	-0.8193
F-Test indicates equal variances (p = 0.82)	1.33552		47.4683			
The control means are significantly different (p = 4.02E-05)	10.6611		2.44691			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	27973	0.32246	1.5E+11	4.1E+08	1.2E-06	1, 6

Test: PY-Phytoplankton Test
Species: SC-Selenastrum capricornutum
Sample ID: City of Buenaventura

Test ID: 0403-120
Protocol: EPAF 02-EPA FW Chronic
Sample Type: Ambient water

Start Date: 03/17/2004 End Date: 03/21/2004 Lab ID: AEESD-AMEC Bioassay SD

	Date: 00, 1172001							
Pos	ID	Rep	Group	Cell Density 10^6 cell/mL	Absorbance OD/cm	Biomass mg/L	Chlorophyll a mg/m^3	Notes
21	1	1	Lab Control	1.369				
19	2	2	Lab Control	2.11	_			
20	3	3	Lab Control	1.986				
17	4	4	Lab Control	1.961				
			Salt Control	0.081				
			Salt Control	0.11				
			Sait Control	0.091				
			Salt Control	0.065				
23	5	1	100	0.385				<u>-</u> -
22	6	2	100	0.335				
24	7	3	100	0.364				
18	8	4	100	0.376				<u> </u>


Comments: Sample B-3

	_		-	Phytoplan	kton Test-Gro	wth-Cell Density	<u></u>
Start Date: End Date: Sample Date:			Lab ID:	0403-121a AEESD-AME	C Bioassay SD	Sample ID: Sample Type: Test Species:	City of Buenaventura Ambient water SC-Selenastrum capricornutum
Comments:	Sample C-	<u>,</u>	3	4			

Lab Control 1961000 1986000 1369000 2110000 Salt Control 941000 897000 1237000 1246000 100 347000 377000 393000 360000

			Transfor	m: Untran	sformed		_	1-Tailed	
Conc-% Mea	n N-Mean	Mean	Min	Max	CV%	N	t-Stat_	Critic <u>al</u>	MSD
Lab Control 1856	00 1.7186	1856500	1369000	2110000	17.854	4			
Salt Control 1080	250 1.0000	1080250	897000	1246000	17.320	4			
*100 369	250 0.3418	369250	347000	393000	5.427	4	7.557	2.353	221412

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.92729		0.749		-0.0455	-0.6374
F-Test indicates unequal variances (p = 4.09E-03)	87.1673		47.4683			
The control means are significantly different (p = 6.51E-03)	4.07883		2.44691			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Heteroscedastic t Test indicates significant differences	221412	0.20496	1E+12	1.8E+10	2.8E-04	1, 6

Test ID: 0403-121 Test: PY-Phytoplankton Test Species: SC-Selenastrum capricornutum Protocol: EPAF 02-EPA FW Chronic Sample Type: Ambient water Sample ID: City of Buenaventura Lab ID: AEESD-AMEC Bioassay SD End Date: 03/21/2004 Start Date: 03/17/2004 Chlorophyll a Cell Density Absorbance mg/m^3 Notes 10^6 cell/mL OD/cm Biomass mg/L Pos ID Rep Group 1.961 Lab Control 30 1 1 2 Lab Control 1.986 28 2 1.369 25 3 3 Lab Control 2.11 26 4 4 Lab Control Salt Control 0.942 0.897 Salt Control 1.237 Salt Control 1.246 Salt Control 0.347 31 5 100 1 100 0.377 6 2 29 27 7 3 100 0.393

Comments: Sample C-3

4

8

32

100

0.36

Test:	Test: PY-Phytoplankton Test					Test ID: 0403-118			
Speci	Species: SC-Selenastrum capricornutum					Protocol: EPAF 91			
Samp	Sample ID: BUENA-City of Buenaventura					Sample Type: OTH-Other sample type			
Start	Start Date: 03/17/2004 End Date: 03/21/2004				Lab ID: AEESD	-AMEC Bioassa	y SD		
				Cell Density	Absorbance		Chlorophyll a		
Pos	ם	Rep	Group	10^6 cell/mL	OD/cm	Biomass mg/L	mg/m^3	Notes	
1_	3	3	L-Lab Control						
2	2	2	L-Lab Control						
3	8	4	100					_	
4	1	1	L-Lab Control					-	
5	6	2	100						
6	5 5 1 100								
7 7 3 100									
8	4	4	L-Lab Control						

Comments: Sample A-2

Add salinity cont.

Test:	Test: PY-Phytoplankton Test					Test ID: 0403-119			
Speci	Species: SC-Selenastrum capricornutum					Protocol: EPAF 91			
Samp	Sample ID: BUENA-City of Buenaventura					Sample Type: OTH-Other sample type			
Start Date: 03/17/2004 End Date: 03/21/2004				2004	Lab ID: AEESD	-AMEC Bioassa	y SD		
				Cell Density	Absorbance		Chlorophyll a		
Pos	ID	Rep	Group	10^6 cell/mL	OD/cm	Biomass mg/L	mg/m^3	Notes	
45	1	1	L-Lab Control						
12	ý	2	L-Lab Control						
9	3	3	Lab Control						
13	4	4	L-Lab Control						
14	14 5 1 100								
16	6	2	100						

hare Cout. 1/A-2

> 11 7 3 100 10 8 4 100 Comments: Sample B-1

Add. Salinity Cont.

Test:	PY-PI	nytopl	ankton Test			Test ID: 0403-120				
Speci	Species: SC-Selenastrum capricornutum					Protocol: EPAF 91				
Sample ID: BUENA-City of Buenaventura					Sample Type: OTH-Other sample type					
Start Date: 03/17/2004 End Date: 03/21/2004					Lab ID: AEESD	-AMEC Bioassa	y SD			
	Cell Density Absorbance			,	Chlorophyll a					
Pos	D	Rep	Group	10^6 cell/mL	OD/cm	Biomass mg/L	mg/m^3	Notes		
21	1	1	L-Lab Control							
19	2	2	L-Lab Control							
20	3	3	L-Lab Control							
17	4	4	L-Lab Control							
23	5	1	100							
22	6	2	100							
24 7 3 100										
18	8	4	100			<u> </u>	<u> </u>			

Comments: Sample B-3

Add Salinity Cont.

Test: PY-Phytoplankton Test Test ID: 0403-121 Species: SC-Selenastrum capricornutum Protocol: EPAF 91 Sample ID: BUENA-City of Buenaventura Sample Type: OTH-Other sample type Start Date: 03/17/2004 Lab ID: AEESD-AMEC Bioassay SD End Date: 03/21/2004 Chlorophyll a Cell Density Absorbance Pos 1D Rep Group 10^6 cell/mL OD/cm Biomass mg/L mg/m^3 Notes 1 1 L-Lab Control 30 28 2 L-Lab Control 25 3 L-Lab Control 26 4 L-Lab Control 31 5 1 100 29 6 2 100 27 7 3 100

Share Cont. -1/B-3

4 Comments: Sample C2 C-3

8

Add Salinity Cont.

100

Fluorometric & Microscopic Determination of Cell Density Turner Fluorometer Model TD-700

	Test Species: S. capticornutum
Client: City of Brenaventura	Test Date: 3 17 64
Sample ID: Santa Clara Birck Estua	79Start/End Times: 1785/1630
Test No: 0403 -118 > 121	Analyst: AH

		Cell Density	Cell Density	81
Random Number	Dilution	(fluorometric)	(microscopic)	Blanks
		(cells/m) *10 ⁵)	(cells/ml *10*)	Afterabhrs
Blank	NA			A-2 7.29
Cal Check 1		0.00, 2.62, 0.18		B-1 7.29 B-3 3.78
(NEW, Solid, Effluent Blanks)		0.00, 2.62, 6.32	 	B.3 3.78
15				C-3 2.05
26				1
27		3,93		
18			-	
19		3.77		1
30				<u>}</u>
31		3.47		1
32		3.60	<u></u>	
AZ Salinity A		13.03		<u>]</u>
AZ Salinity B	-	15.25]
A-2 Salinity C		12.35		<u> </u>
A2 Salinuty D	•	10.66		
Cal Check 2		0,10, 2.62 0.32		
(NEW, Solid, Effluent Blanks)				4
B- salinity A		12.58		4
B-Salinty B		14.68	<u>'</u>	-
B1 salinity C	<u> </u>	16.00	<u> </u>	4
B- Salinity D		14.65		4
B-3 salinity A		0.81		4
B-3 calinuty At	X	1,10		
B-3 salinity C		0.91		_{
B-3 Salinum D		0.65		
C-3 Selimin A		9.42	<u> </u>	
C-3 Salinutu B		8.97		
C-3 Salinity C		12.37		j
C-3 Salinum D	<u></u>	12.46		
Cal Check 3				7
(NEW, Solid, Effluent Blanks)		<u> </u>		J

Comments:					<u></u>
QC Check:	NR	4/14/04	Final Review:	MT	

Fluorometric & Microscopic Determination of Cell Density Turner Fluorometer Model TD-700

	Test Species: S. Capricornutum
Client: City of Brenaventura	Test Date: 3/17/04
Sample ID: Santa Clara River	Estuary Start/End Times: 1735/1630
Test No: 0403-118 -> 121	Analyst: All

Random Number	Dliution	Cell Density (fluorometric) (cells/ml*10 ⁵)	Cell Density (microscopic) (cells/ml *10 ⁴)
Blank	NA		
Cal Check 1 (NEW, Solid, Effluent Blanks)	0.00, 2.62, 2537	7)	
		20.20	
2		20.96	
3		8.94	
4		7.72	
5		8.08	
9		9,93	
1	<u> </u>	9.60	
8		19.27	
9			
10		1.82	
11		11.89	
12			
Cal Check 2 (NEW, Solid, Effluent Blanks)	0.00, 2.63, 6,38	>	
13			
. 14		11.21	
15			
16		12,38	
17		19.61	
18		3,76	
19		٥١,١٥	
70		19.86	
21	† · · · · ·	13.69	
22	1	3.35	<u> </u>
24		3.85	
24		3.64	
Cal Check 3 (NEW, Solid, Effluent Blanks)			

Comments:			<u></u>	
QC Check:	ne yliglay	Final Review:	MT	

Freshwater Chronic Bioassay

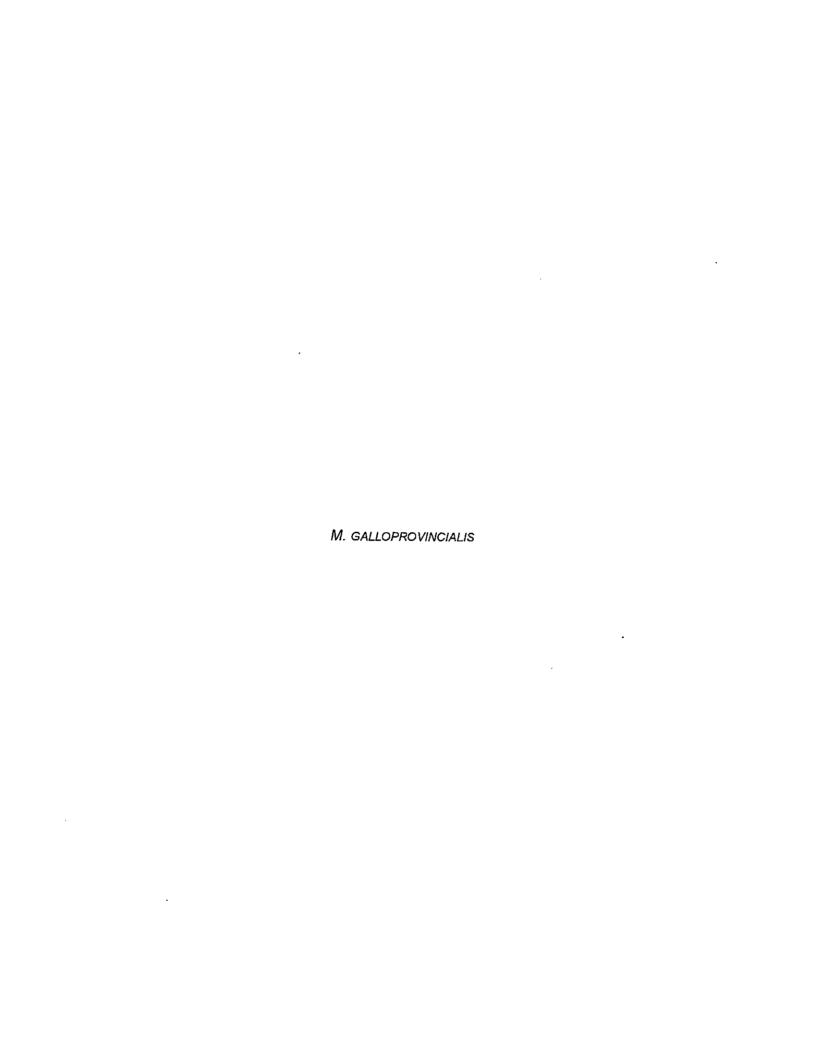
Algal Growth Inhibition Worksheet

Client :	CHY of Ba	<u>ven</u> aventura	Test Species:	S. capricornum
Sample ID:	SCRE	<u></u>	Test Date:	3/17/04
Test No:	0403-118-	9 <u>1</u> 71	Analyst:	A LA
Source/Date Stock	ι Culture Started:	in-house/	3/11/04	
Stock Cell Density	Measurements:	21.58 21.54 22.13 21.02	Меап: <u>2√ - 38</u>	
(mean no. * 100,00	00)/(500,000) = x (dilu	20 - 65 ation factor):	4.28	1 part sele = 30 m 328 part NGW = 32 98.
Prepare inoculum a 500,000 cells/ml.	according to the diluti	on factor. This yields a sol	ution with the desired	
Example: (35 '	* 100,000)/(500,000)	= 7 (e.g. 25 mł Sele stock	+ 150 ml NEW)	
		containing 50 ml of NEW, s 10,000 cells/ml ± 10%.	stir and count on the h	emacytometer.
Inoculum Cell Den	sity Confirmation Cou	Ints: [0,000]	Mean:	10,00D
Test Initiation Time	e: <u>17</u> 2	<u> </u>		
Test Termination 7	Гіте: <u>lb</u> :	<u>35</u>		
Comments:				
QC Check:	uc 4/14/04		Final Review	: 7/s 5/25/04

AMEC Earth & Environmental Bioassay Laboratory. 5550 Morehouse Dr., Ste. B. San Diego, CA 92121.

MARINE

Appendix Table D-8. Summary of Ambient Water t-test p Values for Marine Species


City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Test Initiation Dates: 17 & 19 March 2004

	Bivalve	Pacific T	opsmelt	Opposui	n Shrimp	Giant Kelp		
Test Site	Normality	Survival	Growth	Survival	Growth	Germination	Growth	
A-2	0.1699	0.1717 ^a	0.0185	0.2494	0.0037ª	0.1963	0.0079	
B-1	0.0790°	0.1717 ^a	0.0179	0.5000	0.1834 ^a	0.1373	0.2312	
B-3	0.0523	0.3110	0.0231	0.2494	0.7636°	0.1792 ^a	0.0815	
C-3	0.1087	0.0204	0.0001	0.0205ª	0.0946	0.2836	0.6459	

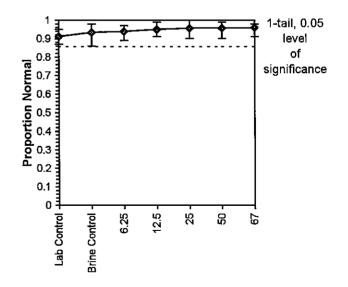
Bold indicates a statistically significant decrease compared to the salt or brine control ($p \le 0.05$)

^a - indicates Welch's correction applied due to unequal variances

Bivalve Development Bioassay Worksheet

Client:	City of Bronavent		Start Date/Time:	3/19/04	<u> 163</u> 0
Test No.:	0403-106-10	9, 122-126,	End Date/Time: Date Received:	3/21/04	1700
Test Species:	M. salloprovincialis	<u>וששויאניטרט</u>	Date Neceived.	3/11/04	
Sample Type:	30ml Shell Vials	Watter eff	Feds ratio		
Test Chamber T	ype and Sample Volume:	lo ml v	olume		
Spawn Initiation	Time: <u>13, 20</u>				
Number of Spav	wners: Male	Female			
Spawn Condition	n: <u>good</u>				
Fertilization Time	=: 14:40				
Egg Stock Dens	ity Calculation:				
Eggs Counted (>	(): 27 28 26 21 27 31 31 28 29 25				
Mea	27.0 26,6	Overall Mean	268		
	Mean: 268 x 42 =	1126 _{eggs/ml}			
	Stock - 1176 eggs/ml	Stock Dilution I			
Percent Division	Upon Inoculation:96				
Time of Inoculat	ion: <u>1630</u>				
Comments:		 	AMEC Bioassay L	ahoraton:	
			5550 Morehouse I San Diego, CA 92	Drive, Suite B	
Paviouad/ Data	· DUST 5/1/04		(858) 458-9044		

Start Date:	03/19/200			0403-106	Tur una bere	lopment Test-Propo	
		•				Sample ID:	City of Buenaventura
End Date:	03/21/200	4	Lab ID:	AMEC Bio	assay SD	Sample Type:	Ambient water
Sample Date:	03/16/200	4	Protocol:	ASTM 87		Test Species:	MG-Mytilis galloprovincialis
Comments:	Sample A	-2					
Conc-%	1	2	3	4	5		
Lab Control	0.9200	0.9500	0.8900	0.9300	0.8700		
Brine Control	0.8600	0.9100	0.9800	0.9700	0.9500		
6.25	0.9200	0.9600	0.8900	0.9600	0.9700		
12.5	0.9200	0.9900	0.9100	0.9700	0.9600		
25	1.0000	0.9900	0.9300	0.9600	0.9000		
50	0.9000	0.9400	0.9900	0.9800	0.9700		
67	0.9800	0.9600	0.9700	0.9800	0.9100		


			Tra	Transform: Arcsin Square Root					1-Tailed		Isotonic	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
Lab Control	0.9120	0.9764	1.2734	1.2019	1.3453	4.463	5					
Brine Control	0.9340	1.0000	1.3249	1.1873	1.4289	7.432	5				0.9493	1.0000
6.25	0.9400	1.0064	1.3305	1.2327	1,3967	5,198	5	-0.101	2.360	0.1316	0.9493	1.0000
12.5	0.9500	1.0171	1.3574	1.2661	1.4706	6.189	5	-0.583	2.360	0.1316	0.9493	1.0000
25	0.9560	1.0236	1.3826	1.2490	1.5208	8.182	5	-1.035	2.360	0.1316	0.9493	1.0000
50	0.9560	1.0236	1.3737	1.2490	1.4706	6.413	5	-0.876	2,360	0.1316	0.9493	1.0000
67	0.9600	1.0278	1.3780	1.2661	1.4289	4.885	5	-0.953	2.360	0.1316	0.9493	1.0000

Auxiliary Tests		Statistic		Critical		Skew	Kurt			
Shapiro-Wilk's Test indicates nor		0.94703		0.9		-0.232	-1.0828			
Bartlett's Test indicates equal var		1.46559		15.0863						
The control means are not significate	cantly diffe	rent(p = 0)	0.34)		1.01206		2.30601			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	67	>67		1.49254	0.0766	0.08142	0.00311	0,00777	0.84392	5, 24

			Line	ear Interpolation (200 Resamples)
Point	%	SD	95% CL(Exp)	Skew
IC05	>67			

ruiit	70	30	30 % CE(EXP)	SKEW
IC05	>67			
IC10	>67			
IC15	>67			
IC20	>67			
IC25	>67			
IC40	>67			
IC50	>67			
				

Comparisons made against brine control.

Test: BV-Bivalve Larval Survival and Development Test

Species: MG-Mytilis galloprovincialis

Sample ID: BUENA-City of Buenaventura

Start Date: 03/19/2004 End Date: 03/21/2004 Test ID: 0403-106

Protocol: ASTM 87

Sample Type: AMB1-Ambient water

Lab ID: AEESD-AMEC Bioassay SD

Start	art Date: 03/19/2004 End Date: 03/21/2004			21/2004	Lab ID: AEES	SD-AMEC BIO	bassay SD	
				Initial	Final	Total	Number	
Pos	ID	Rep	Group	Density	Density	Counted	Normal	Notes
	1	1	Lab Control			100	92	
	2	2	Lab Control			100	95	
	3	3	Lab Control			100	89	-
	4	4	Lab Control		-	100	93	
	5	5	Lab Control			100	87	
	6	1	Brine Control		•	100	86	
	7	2	Brine Control			100	91	
	8	3	Brine Control			100	98	***
	9	4	Brine Control			100	97	
	10	5	Brine Control			100	95	
	11	1	6.25			100	92	
	12	2	6.25			100	96	
	13	3	6.25			100	89	
	14	4	6.25			100	96	
	15	5	6.25			100	97	
	16	1	12.5			100	92	
	17	2	12.5		-	100	99	
	18	3	12.5			100	91	
	19	4	12.5			100	97	
	20	5	12.5			100	96	
	21	1	25			100	100	
	22	2	25			100	99	
	23	3	25	<u> </u>		100	93	
	24	4	25.0			100	96	
	25	5	25			100	90	
	26	1	50			100	90	
	27	2	50			100	94	
	28	_ 3	50			100	99	
	29	4	50			100	98	
	30	5	50			100	97	
	31	1	67			100	98	
	32	2	67			100	96	
	33	3	67			100	97	
	34	4	67			100	98	
	35	5	67			100	91	

Comments: Sample A-2

Test: BV-Bivalve Larval Survival and Development Test Test ID: 0403-106 Species: MG-Mytilis galloprovincialis Protocol: ASTM 87 Sample ID: BUENA-City of Buenaventura
Start Date: 03/47/2004 End Date: Sample Type: OTH-Other sample type End Date: 03/19/2004 Lab ID: AEESD-AMEC Bioassay SD Initial Final Total Number Density Pos ID Rep Group Density Counted Normal Notes MT V <u> 94</u> MT 93

Comments: Sample A-2

Test: BV-Bivalve Larval Survival and Development Test

Species: MG-Mytilis galloprovincialis

Sample ID: BUENA-City of Buenaventura

Start Date: 03/47/2004

Find Date: 03/19/2004

Lab ID: AFESD-AMEC Bioassay SD

Start	Date:	03/47	12004 E	nd Date: 03/1 Initial	<i>8</i> 1200,4	Lab ID: AEE	SD-AMEC Bio	assay SD
		254	-	Initial	Final	Total	Number	
Pos	ID	Rep	Group	Density	Density	Counted	Normal	Notes
12	1	_ 1	L-Lab Control					
_28	2	2	L-Lab Control					
13	3	3	L-Lab Control					
35	4	4	L-Lab Control					
27	5	5	L-Lab Control					
19	6	1	B-Control					
21	7	2	B-Control					
5	8	3	B-Control					
31	9	4	B-Control					
3	10	5	B-Control					
10	11	1	6.25					
20	12	2	6.25					
1	13	3	6.25					
22	14	4	6.25					
34	15	5	6.25					
17	16	1	12.5					
8	17	2	12.5					
6	18	3	12.5					
29	19	4	12.5					
23	20	5	12.5	i				
2	21	1	25				1	
9	22	2	25	<u> </u>				
18	23	3	25					
32	24	4	25					
7	25	5	25					
14	26	1	50_					
15	27	2	50			<u> </u>		
33	28	3	50					
24	29	4	50					
25	30	5	50					
4	31	1	100b					
11	32	2	100b -					
30	33	3	100b	1				
26	34	4	100b					
16	35	5	100b					

Comments: Sample A-2

DC=AH ~

Start Date:	03/19/200	4	Test ID:	0403-107		Sample ID:	City of Buenaventura
End Date:	03/21/200	4	Lab ID:	AMEC Bio	assay SD	Sample Type:	Ambient water
Sample Date:	03/16/200	4	Protocol:	ASTM 87		Test Species:	MG-Mytilis galloprovincialis
Comments:	Sample B	<u>-1</u>				·	, ,
Conc-%	1	2	3	4	5		
Lab Control	0.9600	0.9600	0.9340	0.9510	0.9541	•	
Brine Control	0.8600	0.9500	0.9700	0.9800	0.9100		
6.25	0.9802	0.9703	0.9600	0.9500	0.9700		
12.5	0.9300	0.9100	0.9802	0.9515	0.9574		
25	0.9000	0.9400	0.9200	0.9200	0.9608		
50	0.9800	0.9070	0.9900	0.9400	0.8900		
66	0.9800	0.9706	0.9910	0.9500	0.9806		

		_	Transform: Arcsin Square Root				1-Tailed	Isotonic				
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
Lab Control	0.9518	1.0191	1.3505	1.3109	1.3694	1.781	5					
Brine Control	0.9340	1.0000	1.3249	1.1873	1.4289	7.432	5				0.9501	1.0000
6.25	0.9661	1.0344	1.3877	1.3453	1.4296	2.298	5	-1.410	2.360	0.1052	0.9501	1.0000
12.5	0.9458	1.0127	1.3421	1.2661	1.4296	4.629	5	-0.386	2,360	0.1052	0.9478	0.9976
25	0.9282	0.9937	1.3024	1.2490	1.3714	3.586	5	0.504	2.360	0.1052	0.9478	0.9976
50	0.9414	1.0079	1.3433	1.2327	1.4706	7.715	5	-0.413	2.360	0.1052	0.9478	0.9976
66	0.9744	1.0433	1.4159	1.3453	1.4757	3.400	5	-2.042	2.360	0.1052	0.9478	0.9976

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distrib	ution (p >	0.01)		0.98481	•	0.9		-0.0442	-0.3354
Bartlett's Test indicates equal var		7.23693		15.0863						
The control means are not signific	cantly diffe	rent (p = 0	0.59)		0.56464		2.30601			
Hypothesis Test (1-tail, 0.05)	TU	MSDu	MSDp	MSB	MSE	F-Prob	df			
Dunnett's Test	66	>66		1.51515	0.05904	0.06276	0.00873	0.00497	0.16024	5, 24

			Line	ar interpola	tion (200 Resamples)	
Point	%	SD	95% CL(Exp)	Skew		
IC05	>66				· · · · · · · · · · · · · · · · · · ·	
IC10	>66					
IC15	>66				1	1-tail, 0.05
IC20	>66					level
IC25	>66				0.9	of
IC40	>66				ਲ 0.8 € 0.7	significance
IC50	>66		•		5 ^{0.7} 1	Significance
			_	 .	O 0.6	
					⊑ ∧ − ∃	1

Test: BV-Bivalve Larval Survival and Development Test

Species: MG-Mytilis galloprovincialis

Sample ID: BUENA-City of Buenaventura

ventura Sam

Protocol: ASTM 87 Sample Type: AMB1-Ambient water

Test ID: 0403-107

Start Date: 03/19/2004 End Date: 03/21/2004 Lab ID: AEESD-AMEC Bioassay SD

Start	Date:	03/19	/2004	End Date: 03/2	21/2004	Lab ID: AEES	SD-AMEC Bio	passay SD
				Initial	Final	Total	Number	
Pos	ID	Rep	Group	Density	Density	Counted	Normal	Notes
	1	1	Lab Control			100	96	
	2	2	Lab Control			100	96	
	_ 3	3	Lab Control	<u> </u>		106	99	
	4	4	Lab Control			102	97	
	5	5	Lab Control			109	104	
	6	1	Brine Control			100	86	
	7	2	Brine Control			100	95	
	8	3	Brine Control			100	97	
	9	4	Brine Control			100	98	
	10	5	Brine Control			100	91	
	11	1	6.25			101	99	
	12	2	6.25			101	98	1
	13	3	6.25		·	100	96	
	14	4	6.25			100	95	
	15	5	6.25			100	97	
	16	1	12.5			100	93	
	17	2	12.5			100	91	
	18	3	12.5			101	99	
	19	4	12,5			103	98	
	20	5	12.5	Î		94	90	
	21	1	25			100	90	
	22	2	25			100	94	
	23	3	25			100	92	
	24	4	25.0			100	92	
	25	5	25			102	98	
	26	1	50			100	98	
	27	2	50			86	78	
	28	3	50	1		100	99	
	29	4	50		-	100	94	1
	30	5	50		i	100	89	1
<u> </u>	31	1	66	1	i	100	98	1
	32	2	66	1	i	102	99	1
	33	3	66	1		111	110	
	34	4	66	1		100	95	
	35	5	66	 		103	101	data enjoy of after
Com			nle R-1	_1.		·		1 27-179

Comments: Sample B-1

Test: BV-Bivalve Larval Survival and Development Test
Species: MG-Mytilis galloprovincialis
Sample ID: BUENA-City of Buenaventura
Start Date: 03/47/2004
Start Date: 03/47/2004

Test ID: 0403-107
Protocol: ASTM 87
Sample Type: OTH-Other sample type
Lab ID: AEESD-AMEC Bioassay SD

Start	Date:	03/37	7,2004	End Date: 03/2	9/2004	Lab ID: AEES	SD-AMEC Bio	passay SD
		- AS	1654	Initial	Final	Total	Number	-
Pos	ID	Rep	Group	Density	Density	Counted	Normal	Notes
36				_		100	93	YR
37						101	99	
38					_	111	lio	
39		L			<u>- · - </u>	102	99	
40		_				100	96	
41						103	વેંઠ	
42						100	96	y
43						100	98	
44						106	90	
45						007	96	
46			_			10 a	98	
47						101	99	
48						109	104	1
49						100	98	YR
50						1	-	
51						101	.ବନ	YR
52						102	47	
53						103	101	+
54				_ _		j.	ĺ	_
55						100	95	YR
56						100	97	YR
57						100	99	40
58						100	95	Yr_
59						94	90	YR
60		<u> </u>				100	92	MT
61				7		100	વા	W.T
62						100	94	MT
63						100	89	MT
64						ł		-
65				_ [_	100	þ	MT
66							ļ	
67						100	97.	MX
68						100	M78 94	MT
69						~ too	- 7g	- iut
70						හිර	78	MT

Comments: Sample B-1

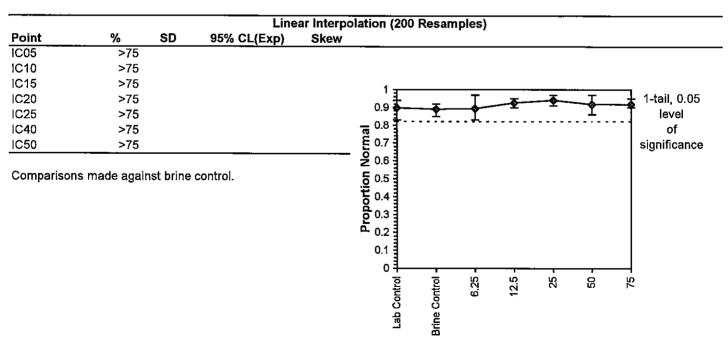
Test ID: 0403-107 Test: BV-Bivalve Larval Survival and Development Test Species: MG-Mytilis galloprovincialis Protocol: ASTM 87 Sample ID: BUENA-City of Buenaventura Start Date: 03/27/2004 End Date:

Sample Type: OTH-Other sample type enaventura 2/ End Date: 03/1/8/1/2004 Lab ID: AFESD-AMEC Bioassay SD

Start Date: 03/97/004 End Date: 03/97/004 Lab ID: AEESD-AMEC Bloassay SD	Stan	Date:	USIZI	<u>,</u> 2004 E	na Date: USI	<i>1912</i> 404	Lad ID: AEE	SD-AMEC BIO	assay SD
Pos ID Rep Group Density Density Counted Normal Notes			∞		Initial	Final	Total	Number	
40 2 2 L-Lab Control	Pos	ID	Rep					Normal	Notes
44 3 3 L-Lab Control	42	1	1	L-Lab Control					
52	40	2	2	L-Lab Control					
48 5 5 L-Lab Control	44	3	3	L-Lab Control					
64 6 1 B-Control 69 7 2 B-Control 50 8 3 B-Control 50 8 3 B-Control 51 10 5 B-Control 52 11 1 6.25 53 14 4 6.25 55 15 5 6.25 56 15 5 6.25 56 16 1 12.5 56 17 2 12.5 57 18 3 12.5 58 14 19 4 12.5 59 20 5 12.5 66 21 1 25 66 21 1 25 66 22 2 2 55 66 24 4 25 66 25 5 25 67 24 4 25 68 29 4 50 68 29 4 50 68 29 4 50 68 30 5 50 68 30 5 50 68 30 5 50 68 30 5 50 68 30 5 50	52	4	4	L-Lab Control					
69 7 2 B-Control 50 8 3 B-Control 66 9 4 B-Control 54 10 5 B-Control 7 11 1 6.25 51 12 2 6.25 45 13 3 6.25 58 14 4 6.25 56 15 5 6.25 36 16 1 12.5 61 17 2 12.5 37 18 3 12.5 41 19 4 12.5 59 20 5 12.5 65 21 1 25 60 23 3 25 60 23 3 25 67 24 4 25 68 29 4 50 68 29 4 50 68 29 4 50 68 30 5 50 68 29 4 50 68 30 5 50 68 29 4 50 66 3 30 5 50 68 29 4 50 66 3 30 5 50 68 29 4 50 68 29 4 50	48	5	5	L-Lab Control					
50 8 3 B-Control 66 9 4 B-Control 47 11 1 6.25 51 12 2 6.25 51 12 2 6.25 45 13 3 6.25 58 14 4 6.25 56 15 5 6.25 36 16 1 12.5 61 17 2 12.5 37 18 3 12.5 41 19 4 12.5 59 20 5 12.5 65 21 1 25 60 23 3 25 60 23 3 25 67 24 4 25 46 25 5 25 43 26 1 50 57 28 3 50 68 29	64	6_	1	B-Control /					
66 9 4 B-Control 54 10 5 B-Control 47 11 1 6.25 51 12 2 6.25 45 13 3 6.25 58 14 4 6.25 56 15 5 6.25 36 16 1 12.5 61 17 2 12.5 37 18 3 12.5 41 19 4 12.5 59 20 5 12.5 66 21 1 25 66 21 1 25 66 22 2 2 25 60 23 3 25 67 24 4 25 46 25 5 25 43 26 1 50 70 27 2 50 68 29 4 50 68 29 4 50 68 3 30 5 50 69 31 1 100b	69	7							
54 10 5 B*Control 47 11 1 6.25 51 12 2 6.25 45 13 3 6.25 58 14 4 6.25 56 15 5 6.25 36 16 1 12.5 61 17 2 12.5 37 18 3 12.5 41 19 4 12.5 59 20 5 12.5 65 21 1 25 60 23 3 25 67 24 4 25 46 25 5 25 43 26 1 50 70 27 2 50 57 28 3 50 68 29 4 50 63 30 5 50 49 31 1 100b	50	8	3			Ì			
47 11 1 6.25 51 12 2 6.25 45 13 3 6.25 58 14 4 6.25 56 15 5 6.25 36 16 1 12.5 37 18 3 12.5 37 18 3 12.5 41 19 4 12.5 59 20 5 12.5 65 21 1 25 60 23 3 25 67 24 4 25 46 25 5 25 43 26 1 50 70 27 2 50 57 28 3 50 68 29 4 50 63 30 5 50 49 31 1 100b	66			B-Control					
51 12 2 6.25 45 13 3 6.25 58 14 4 6.25 56 15 5 6.25 36 16 1 12.5 61 17 2 12.5 37 18 3 12.5 41 19 4 12.5 59 20 5 12.5 65 21 1 25 62 22 2 25 60 23 3 25 67 24 4 25 46 25 5 25 43 26 1 50 57 28 3 50 68 29 4 50 63 30 5 50 49 31 1 100b	54	10	5						
45 13 3 6.25 58 14 4 6.25 56 15 5 6.25 36 16 1 12.5 61 17 2 12.5 37 18 3 12.5 41 19 4 12.5 59 20 5 12.5 65 21 1 25 60 23 3 25 67 24 4 25 43 26 1 50 70 27 2 50 57 28 3 50 68 29 4 50 63 30 5 50 49 31 1 100b	47	11	1	6.25					
58 14 4 6.25 56 15 5 6.25 36 16 1 12.5 61 17 2 12.5 37 18 3 12.5 41 19 4 12.5 59 20 5 12.5 65 21 1 25 60 23 3 25 67 24 4 25 46 25 5 25 43 26 1 50 70 27 2 50 57 28 3 50 68 29 4 50 63 30 5 50 49 31 1 100b	51		2						
56 15 5 6.25 36 16 1 12.5 61 17 2 12.5 37 18 3 12.5 41 19 4 12.5 41 19 4 12.5 59 20 5 12.5 65 21 1 25 62 22 2 25 60 23 3 25 67 24 4 25 46 25 5 25 43 26 1 50 70 27 2 50 57 28 3 50 68 29 4 50 63 30 5 50 49 31 1 100b	45	13	3]	
36 16 1 12.5 61 17 2 12.5 37 18 3 12.5 41 19 4 12.5 59 20 5 12.5 65 21 1 25 62 22 2 25 60 23 3 25 67 24 4 25 46 25 5 25 43 26 1 50 70 27 2 50 57 28 3 50 63 30 5 50 49 31 1 100b	58		4_						, -
61 17 2 12.5	56	15	5						
37 18 3 12.5 41 19 4 12.5 59 20 5 12.5 65 21 1 25 62 22 2 25 60 23 3 25 67 24 4 25 46 25 5 25 43 26 1 50 70 27 2 50 57 28 3 50 63 30 5 50 49 31 1 100b	36	16	1				<u> </u>	<u> </u>	
41 19 4 12.5 (a) 59 20 5 12.5 (a) 65 21 1 25 (a) 62 22 2 25 (a) 60 23 3 25 (a) 67 24 4 25 (a) 46 25 5 25 (a) 43 26 1 50 (a) 70 27 2 50 (a) 57 28 3 50 (a) 63 30 5 50 49 31 1 100b	61	17	2_	12.5					
59 20 5 12.5 65 21 1 25 62 22 2 25 60 23 3 25 67 24 4 25 46 25 5 25 43 26 1 50 70 27 2 50 57 28 3 50 68 29 4 50 63 30 5 50 49 31 1 100b	37	18	3						
65 21 1 25 62 22 2 25 60 23 3 25 67 24 4 25 46 25 5 25 43 26 1 50 70 27 2 50 57 28 3 50 68 29 4 50 63 30 5 50 49 31 1 100b	41	19	4		3				
62 22 2 25 60 23 3 25 67 24 4 25 46 25 5 25 43 26 1 50 70 27 2 50 57 28 3 50 68 29 4 50 63 30 5 50 49 31 1 100b	59	20	5				<u> </u>		
60 23 3 25 67 24 4 25 46 25 5 25 43 26 1 50 70 27 2 50 57 28 3 50 68 29 4 50 63 30 5 50 49 31 1 100b	65					<u> </u>			
67 24 4 25 46 25 5 25 43 26 1 50 70 27 2 50 57 28 3 50 68 29 4 50 63 30 5 50 49 31 1 100b	62				<u>i</u>			<u> </u>	
46 25 5 25 43 26 1 50 70 27 2 50 57 28 3 50 68 29 4 50 63 30 5 50 49 31 1 100b			3			<u> </u>			
43 26 1 50 70 27 2 50 57 28 3 50 68 29 4 50 63 30 5 50 49 31 1 100b	67				<u> </u>				
70 27 2 50 57 28 3 50 68 29 4 50 63 30 5 50 49 31 1 100b			5			ļ·			
57 28 3 50 68 29 4 50 63 30 5 50 49 31 1 100b					<u> </u>				
68 29 4 50 63 30 5 50 49 31 1 100b							<u> </u>		
63 30 5 50 49 31 1 100b			3				1		
49 31 1 100b									
				I.				1	
30 32 2 100h				1					
	39	32	2	100b			1		
38 33 3 100b		33	3					<u> </u>	
55 34 4 100b			4					1	
53 35 5 100b	53	35	5	100b					

Comments: Sample B-1

OC=AH +


Reviewed by CS 5/25/64

Page 1

Start Date:	03/19/200		_	0403-108		lopment Test-Propo Sample ID:	City of Buenaventura			
End Date:	03/21/200	4	Lab ID:	AMEC Bio	assay SD	Sample Type:	Ambient water			
Sample Date:	03/16/200	4	Protocol:		-	Test Species:	MG-Mytilis galloprovincialis			
Comments:	Sample B	-3				•	, , ,			
Conc-%	1	2	3	4	5					
Lab Control	0.9400	0.8558	0.9300	0.9300	0.8300	-				
Brine Control	0.8500	0.9200	0.8900	0.9100	0.8800					
6.25	0.8300	0.9700	0.9100	0.8800	0.8810					
12.5	0.9200	0.9300	0.9000	0.9500	0.9300					
25	0.9255	0.9700	0.9700	0.9100	0.9300					
50	0.9700	0.8600	0.9700	0.9200	0.8700					
75	0.9000	0.9200	0.9000	0.9500	0.9200					

		_	Tra	ansform:	Arcsin Sc	uare Roo	t		1-Tailed		Isotonic	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
Lab Control	0.8972	1.0080	1.2513	1.1458	1.3233	6.514	5					
Brine Control	0,8900	1.0000	1.2346	1,1731	1.2840	3.514	5				0.9147	1.0000
6.25	0.8942	1.0047	1.2488	1.1458	1.3967	7.459	5	-0.333	2.360	0.1007	0.9147	1.0000
12.5	0.9260	1.0404	1.2969	1.2490	1.3453	2.691	5	-1.459	2.360	0.1007	0.9147	1.0000
25	0.9411	1.0574	1.3314	1.2661	1.3967	4.595	5	-2.267	2.360	0.1007	0.9147	1,0000
50	0.9180	1.0315	1.2933	1.1873	1.3967	7.834	5	-1.376	2,360	0.1007	0.9147	1.0000
75	0.9180	1.0315	1.2823	1.2490	1.3453	3.066	5	-1.117	2.360	0.1007	0.9147	1.0000

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distrib	ution (p >	0.01)		0.9703		0.9		0.42069	0.02023
Bartlett's Test indicates equal var	iances (p =	= 0.19)			7.37454		15.0863			
The control means are not significate		0.40399		2.30601						
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	75	>75		1.33333	0.07023	0.07881	0.00613	0.00456	0.2792	5, 24

Test: BV-Bivalve Larval Survival and Development Test

Species: MG-Mytilis galloprovincialis

Sample ID: BUENA-City of Buenaventura

Test ID: 0403-108 Protocol: ASTM 87

Sample Type: AMB1-Ambient water

			/2004 E	nd Date: 03/2	21/2004	Lab ID: AEES	SD-AMEC Bio	
				Initial	Final	Total	Number	
Pos	ID	Rep	Group	Density	Density	Counted	Normal	Notes
	1	1	Lab Control	Í		100	94	
	2	2	Lab Control			104	89	
	3	3	Lab Control		_	100	93	
	4	4	Lab Control			100	93	
	5	5	Lab Control			100	83	
	6	1	Brine Control			100	85	
	7	2	Brine Control			100	92	
	8	3	Brine Control			100	89	
	9	4	Brine Control			100	91	
	10	5	Brine Control			100	88	
	11	1	6.25			100	83	
	12	2	6.25			100	97	
	13	3	6.25			100	91	
	14	4	6.25			100	88	
	15	5	6.25	-	-	84	74	_
	16	1	12.5			100	92	
	17	2	12.5			100	93	
	18	_3	12.5			100	90	
	19	4	12.5			100	95	 .
	20	5	12.5			100	93	<u>-</u>
	21	1	25	,		94	87	
	22	2	25			100	97	
	23	3	25			100	97	
	24	4	25.0	_		100	91	
	25	5	25			100	93	
	26	1	50			100	97	<u>-</u>
	27	2	50			100	86	
	28	3	50			100	97	
	29	4	50			100	92	
	30	5	50			100	87	
	31	1	75			100	90	
	32	2	75			100	92	
	33	3	75			100	90	
	34	4	75			100	95	
	35	5	75			100	92	

Comments: Sample B-3

Test: BV-Bivalve Larval Survival and Development Test Test ID; 0403-108 Species: MG-Mytilis galloprovincialis Protocol: ASTM 87 Sample ID: BUENA-City of Buenaventura
Start Date: 03/17/12004 End Date: Sample Type: OTH-Other sample type End Date: 03/49/2004 Lab ID: AEESD-AMEC Bioassay SD Final Initial Total Number Pos ID Rep Density Group Density Counted Normal Notes MT Mt MT <u> 88</u> loo لمه 94 93 RG IOn MT <u> 55</u>

Comments: Sample B-3

Test: BV-Bivalve Larval Survival and Development Test

Species: MG-Mytilis galloprovincialis

Sample ID: BUENA-City of Buenaventura

Start Date: 03/14/2004

End Date: 03/14/2004

Test ID: 0403-108

Protocol: ASTM 87

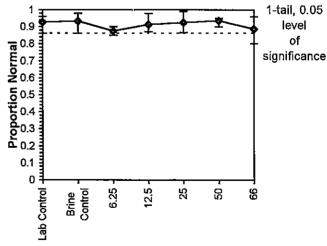
Sample Type: OTH-Other sample type

Lab ID: AEESD-AMEC Bioassay SD

Start	Date:	03/17	/2004 I	End Date: 03/2	<i>191</i> 2004	Lab ID: AEE	SD-AMEC Bid	passay SD
		æ	相	Initial	Final	Total	Number	
Pos	ID	Rep		Density	Density	Counted	Normal	Notes
83	1	1	L-Lab Control				1	- ""
74	2	2	L-Lab Control					
84	3	3	L-Lab Control					
93	4	4	L-Lab Control					
92	5	5	L-Lab Control					
100	6	1	B-Control					
72	7		B-Control -					
77	8	3	B-Control					
94	Ø	4	B-Control					
88	10	.5	B-Control					
79	11	1	6.25					
101	12	2	6.25					
105	13	3	6.25					
76	14	4	6.25					
80	15	5	6.25					
89	16	1	12.5					
95	17	2	12.5			1		
71	18	3	12.5					
99	19	4	12.5]				
90	20	5	12.5					
73	21	1	25					
91	22	2	25					
81	23	3	25					
87	24	4	25			İ	}	
102	25	5	25	}				
75	26	1	50				1_	
82	27	2	50					
98	28	3	50					
85	29	4	50					
86	30	5	50					
103	31	1	100b					
97	32	2	100b					
104	33	3	100b					
78	34	4	100b					
96	35	5	100b					

Comments: Sample B-3 C C AH

...·


Start Date:	03/19/200	4	Test ID:	0403-109		Sample ID:	City of Buenaventura
End Date:	03/21/200	4	Lab ID:	AEESD-AI	MEC Bioassay SD	Sample Type:	Ambient Water
Sample Date:	03/16/200	4	Protocol:	ASTM 87	_	Test Species:	MG-Mytilis galloprovincialis
Comments:	Sample C	-3				•	
Conc-%	1	2	3	4	5		
Lab Control	0.9600	0.9600	0.8600	0.9000	0.9600	-	
Brine Control	0.9500	0.9800	0.8600	0.9100	0.9700		
6.25	0.8900	0.9000	0.8700	0.8700	0.8500		
12.5	0.9800	0.9200	0.8700	0.9100	0.8900		
25	0.9900	0.9200	0.8667	0.8900	0.9600		
50	0.9000	0.9500	0.9500	0.9300	0.9500		
66	0.8700	0.9600	0.9000	0.9100	0.8000		

			Transform: Arcsin Square Root						1-Tailed		Isotonic	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	_ t-Stat	Critical	MSD	Mean	N-Mean
Lab Control	0.9280	0.9936	1.3089	1.1873	1.3694	6.546	5					
Brine Control	0.9340	1.0000	1.3249	1.1873	1.4289	7.432	5				0.9340	1.0000
6.25	0.8760	0.9379	1.2117	1.1731	1.2490	2.447	5	2.153	2.360	0.1240	0.9127	0.9772
12.5	0.9140	0.9786	1.2827	1.2019	1.4289	6.827	5	0.802	2.360	0.1240	0.9127	0.9772
25	0.9253	0.9907	1.3108	1.1970	1.4706	8.422	5	0.268	2.360	0.1240	0.9127	0.9772
50	0.9360	1.0021	1.3176	1.2490	1.3453	3.222	5	0.138	2.360	0.1240	0.9127	0.9772
66	0.8880	0.9507	1.2387	1.1071	1.3694	7.723	5	1.640	2.360	0.1240	0.8880	0.9507

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distrib	ution (p >	0.01)		0.97007		0.9		0.27001	-0.0673
Bartlett's Test indicates equal var	iances (p =	0.18)			7.66617		15.0863			
The control means are not signification	cantly diffe	rent(p=0)).79)		0.27287		2.30601			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	66	>66		1.51515	0.07142	0.07592	0.01073	0.0069	0.21033	5, 24

			Line	ar Interpola	tion (200 Resamples)
Point	%	SD	95% CL(Exp)	Skew	
IC05	>66				<u> </u>
IC10	>66				
IC15	>66				
IC20	>66				1
IC25	>66				0.9
IC40	>66				=08
IC50	>66				0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
			<u> </u>		<u> </u>

Comparisons made against brine control.

Test: BV-Bivalve Larval Survival and Development Test Tes

Species: MG-Mytilis galloprovincialis

Sample ID: CITY OF BU Start Date: 03/19/2004

End Date: 03/21/2004

Test ID: 0403-109 Protocol; ASTM 87

Sample Type: AMBIENT WA

Lab ID: AEESD-AMEC Bioassay SD

Pos ID Rep Group	Otalic	Date.	00/10	/2004	ind Date. 03/2	1/2004	Las ID. ACE.	SU-AIVIEC BR	Jassay OD
1					Initial	Final	Total	Number	·
2 2 Lab Control 100 96 3 3 Lab Control 100 86 4 4 Lab Control 100 90 5 5 Lab Control 100 96 6 1 Brine Control 100 95 7 2 Brine Control 100 98 8 3 Brine Control 100 91 9 4 Brine Control 100 91 10 5 Brine Control 100 97 11 1 6.25 100 89 12 2 6.25 100 89 12 2 6.25 100 89 14 4 6.25 100 87 14 4 6.25 100 87 15 5 6.25 100 85 16 1 12.5 100 98 17 2<	Pos	ם	Rep	Group	Density	Density	Counted	Normal	Notes
3 3 Lab Control 100 86 4 4 Lab Control 100 90 5 5 Lab Control 100 90 6 6 1 Brine Control 100 95 7 2 Brine Control 100 98 8 3 Brine Control 100 86 9 4 Brine Control 100 91 100 92 100 92 100 92 100 92 100 92 100 92 100 92 100 93 100 93 100 93 100 93 100 93 100 93 100 93 100 93 100 93 100 93 100 93 100 93 100 93 100 93 100 93 100 93 100 93 100 93 100 94 100 95 100 95 100 95 100 95 100 95 100 95 100 95 100 95 100 95 100 95 100 95 100 95 100 96 100 100 96 100 100 96 100 100 100 100 100 100		1	1	Lab Control			100	96	
4 4 Lab Control 100 90 5 5 Lab Control 100 96 6 1 Brine Control 100 95 7 2 Brine Control 100 98 8 3 Brine Control 100 96 9 4 Brine Control 100 91 10 5 Brine Control 100 97 11 1 6.25 100 89 12 2 6.25 100 89 12 2 6.25 100 89 12 2 6.25 100 87 14 4 6.25 100 87 14 4 6.25 100 85 16 1 12.5 100 98 17 2 12.5 100 92 18 3 12.5 100 92 20 5		2	2	Lab Control			100	96	
5 5 Lab Control 100 96 6 1 Brine Control 100 95 7 2 Brine Control 100 98 8 3 Brine Control 100 86 9 4 Brine Control 100 97 11 1 6.25 100 89 112 2 6.25 100 89 13 3 6.25 100 87 14 4 6.25 100 87 15 5 6.25 100 87 16 1 12.5 100 85 17 2 12.5 100 92 18 3 12.5 100 92 18 3 12.5 100 91 20 5 12.5 100 91 20 5 12.5 100 99 22 2 25		3	3	Lab Control			100	86	
6 1 Brine Control 100 95 7 2 Brine Control 100 98 8 3 Brine Control 100 91 9 4 Brine Control 100 91 10 5 Brine Control 100 97 11 1 6.25 100 89 12 2 6.25 100 89 12 2 6.25 100 87 14 4 6.25 100 87 14 4 6.25 100 87 15 5 6.25 100 85 16 1 12.5 100 98 17 2 12.5 100 92 18 3 12.5 100 97 19 4 12.5 100 91 20 5 12.5 100 99 21 1 25		4	4	Lab Control			100	90	
7 2 Brine Control 100 98 8 3 Brine Control 100 86 9 4 Brine Control 100 91 10 5 Brine Control 100 97 11 1 6.25 100 89 12 2 6.25 100 90 13 3 6.25 100 87 14 4 6.25 100 87 15 5 6.25 100 85 16 1 12.5 100 98 17 2 12.5 100 92 18 3 12.5 100 92 19 4 12.5 100 91 20 5 12.5 100 91 21 1 25 100 99 22 2 25 100 99 23 3 25 <td< td=""><td></td><td>5</td><td>5</td><td>Lab Control</td><td></td><td></td><td>100</td><td>96</td><td></td></td<>		5	5	Lab Control			100	96	
8 3 Brine Control 100 86 9 4 Brine Control 100 91 10 5 Brine Control 100 97 11 1 6.25 100 89 12 2 6.25 100 90 13 3 6.25 100 87 14 4 6.25 100 87 15 5 6.25 100 87 16 1 12.5 100 98 17 2 12.5 100 92 18 3 12.5 100 87 19 4 12.5 100 87 19 4 12.5 100 91 20 5 12.5 100 89 21 1 25 100 99 22 2 25 100 92 23 3 25 105 <td></td> <td>6</td> <td>1</td> <td>Brine Control</td> <td></td> <td></td> <td>100</td> <td>95</td> <td></td>		6	1	Brine Control			100	95	
9 4 Brine Control 100 91 10 5 Brine Control 100 97 11 1 6.25 100 89 12 2 6.25 100 90 13 3 6.25 100 87 14 4 6.25 100 87 15 5 6.25 100 85 16 1 12.5 100 98 17 2 12.5 100 92 18 3 12.5 100 87 19 4 12.5 100 87 19 4 12.5 100 87 20 5 12.5 100 89 21 1 25 100 89 21 1 25 100 92 23 3 25 105 91 24 4 25.0 100		7	2	Brine Control			100	98	
10 5 Brine Control 100 97 111 1 6.25 100 89 12 2 6.25 100 90 13 3 6.25 100 87 14 4 6.25 100 85 100 85 16 1 12.5 100 98 17 2 12.5 100 98 17 2 12.5 100 92 18 3 12.5 100 97 100 98 19 4 12.5 100 91 100 99 100		8	3	Brine Control			100	86	
11 1 6.25 100 89 12 2 6.25 100 90 13 3 6.25 100 87 14 4 6.25 100 87 15 5 6.25 100 85 16 1 12.5 100 98 17 2 12.5 100 92 18 3 12.5 100 87 19 4 12.5 100 91 20 5 12.5 100 89 21 1 25 100 99 22 2 25 100 99 23 3 25 105 91 24 4 25.0 100 89 25 5 25 100 89 25 5 25 100 96 26 1 50 100 95 28 3 50 100 95 28 3		9	4	Brine Control	,		100	91	
12 2 6.25 100 90 13 3 6.25 100 87 14 4 6.25 100 87 15 5 6.25 100 85 16 1 12.5 100 98 17 2 12.5 100 92 18 3 12.5 100 87 19 4 12.5 100 91 20 5 12.5 100 99 21 1 25 100 99 22 2 25 100 92 23 3 25 100 92 23 3 25 100 92 23 3 25 100 89 25 5 25 100 89 25 5 25 100 89 25 5 25 100 96 26 1 50 100 96 28 3		10	5	Brine Control			100	97	
13 3 6.25 100 87 14 4 6.25 100 87 15 5 6.25 100 85 16 1 12.5 100 98 17 2 12.5 100 92 18 3 12.5 100 87 19 4 12.5 100 91 20 5 12.5 100 91 20 5 12.5 100 89 21 1 25 100 92 23 3 25 105 91 24 4 25.0 100 89 25 5 25 100 89 25 5 25 100 96 26 1 50 100 96 27 2 50 100 95 29 4 50 100 95 29 4 50 100 96 31 1 <t< td=""><td></td><td>11</td><td>1</td><td>6.25</td><td></td><td></td><td>100</td><td>89</td><td></td></t<>		11	1	6.25			100	89	
14 4 6.25 100 87 15 5 6.25 100 85 16 1 12.5 100 98 17 2 12.5 100 92 18 3 12.5 100 87 19 4 12.5 100 91 20 5 12.5 100 89 21 1 25 100 92 22 2 25 100 92 23 3 25 105 91 24 4 25.0 100 89 25 5 25 100 89 25 5 25 100 96 26 1 50 100 96 26 1 50 100 95 28 3 50 100 95 29 4 50 100 95 29 4 50 100 95 30 5 50		12	2	6.25			100	90	
15 5 6.25 100 85 16 1 12.5 100 98 17 2 12.5 100 92 18 3 12.5 100 87 19 4 12.5 100 91 20 5 12.5 100 89 21 1 25 100 99 22 2 25 100 92 23 3 25 105 91 24 4 25.0 100 89 25 5 25 100 96 26 1 50 100 96 27 2 50 100 95 28 3 50 100 95 29 4 50 100 93 30 5 50 100 95 31 1 66 100 90 32 2 66 100 90 34 4 66 </td <td></td> <td>13</td> <td>3</td> <td>6.25</td> <td></td> <td></td> <td>100</td> <td>87</td> <td></td>		13	3	6.25			100	87	
16 1 12.5 100 98 17 2 12.5 100 92 18 3 12.5 100 87 19 4 12.5 100 91 20 5 12.5 100 89 21 1 25 100 99 22 2 25 100 92 23 3 25 105 91 24 4 25.0 100 89 25 5 25 100 96 26 1 50 100 96 27 2 50 100 95 28 3 50 100 95 29 4 50 100 95 31 1 66 100 87 32 2 66 100 90 34 4 66 100 91		14	4	6.25			100	87	
17 2 12.5 100 92 18 3 12.5 100 87 19 4 12.5 100 91 20 5 12.5 100 89 21 1 25 100 92 22 2 25 100 92 23 3 25 105 91 24 4 25.0 100 89 25 5 25 100 96 26 1 50 100 95 28 3 50 100 95 29 4 50 100 95 29 4 50 100 95 31 1 66 100 87 32 2 66 100 90 33 3 66 100 90 34 4 66 100 91		15	5	6.25			100	85	
18 3 12.5 100 87 19 4 12.5 100 91 20 5 12.5 100 89 21 1 25 100 92 22 2 25 105 91 24 4 25.0 100 89 25 5 25 100 96 26 1 50 100 96 27 2 50 100 95 28 3 50 100 95 29 4 50 100 95 31 1 66 100 87 32 2 66 100 96 33 3 66 100 90 34 4 66 100 91		16	1	12.5			100	98	
19 4 12.5 100 91 20 5 12.5 100 89 21 1 25 100 99 22 2 25 100 92 23 3 25 105 91 24 4 25.0 100 89 25 5 25 100 96 26 1 50 100 90 27 2 50 100 95 28 3 50 100 95 29 4 50 100 95 31 1 66 100 87 32 2 66 100 96 33 3 66 100 90 34 4 66 100 91		17	2	12.5			100	92	
20 5 12.5 100 89 21 1 25 100 99 22 2 25 100 92 23 3 25 105 91 24 4 25.0 100 89 25 5 25 100 96 26 1 50 100 90 27 2 50 100 95 28 3 50 100 95 29 4 50 100 95 31 1 66 100 87 32 2 66 100 96 33 3 66 100 90 34 4 66 100 91		18	3	12.5			100	87	1
21 1 25 100 99 22 2 25 100 92 23 3 25 105 91 24 4 25.0 100 89 25 5 25 100 96 26 1 50 100 90 27 2 50 100 95 28 3 50 100 95 29 4 50 100 93 30 5 50 100 95 31 1 66 100 87 32 2 66 100 96 33 3 66 100 90 34 4 66 100 91		19	4	12.5			100	91	
22 2 25 100 92 23 3 25 105 91 24 4 25.0 100 89 25 5 25 100 96 26 1 50 100 90 27 2 50 100 95 28 3 50 100 95 29 4 50 100 93 30 5 50 100 95 31 1 66 100 87 32 2 66 100 96 33 3 66 100 90 34 4 66 100 91		20	5	12.5			100	89	
23 3 25 105 91 24 4 25.0 100 89 25 5 25 100 96 26 1 50 100 90 27 2 50 100 95 28 3 50 100 95 29 4 50 100 93 30 5 50 100 95 31 1 66 100 87 32 2 66 100 96 33 3 66 100 90 34 4 66 100 91		21	1	25			100	99	
24 4 25.0 100 89 25 5 25 100 96 26 1 50 100 90 27 2 50 100 95 28 3 50 100 95 29 4 50 100 93 30 5 50 100 95 31 1 66 100 87 32 2 66 100 96 33 3 66 100 90 34 4 66 100 91		22	2	25			100	92	
25 5 25 100 96 26 1 50 100 90 27 2 50 100 95 28 3 50 100 95 29 4 50 100 93 30 5 50 100 95 31 1 66 100 87 32 2 66 100 96 33 3 66 100 90 34 4 66 100 91		23	3	25			105	91	
26 1 50 100 90 27 2 50 100 95 28 3 50 100 95 29 4 50 100 93 30 5 50 100 95 31 1 66 100 87 32 2 66 100 96 33 3 66 100 90 34 4 66 100 91		24	4	25.0			100	89	
27 2 50 100 95 28 3 50 100 95 29 4 50 100 93 30 5 50 100 95 31 1 66 100 87 32 2 66 100 96 33 3 66 100 90 34 4 66 100 91		25	5	25	1		100	96	
28 3 50 100 95 29 4 50 100 93 30 5 50 100 95 31 1 66 100 87 32 2 66 100 96 33 3 66 100 90 34 4 66 100 91		26	1	50	L		100	90	
29 4 50 100 93 30 5 50 100 95 31 1 66 100 87 32 2 66 100 96 33 3 66 100 90 34 4 66 100 91		27	2	50			100	95	
30 5 50 100 95 31 1 66 100 87 32 2 66 100 96 33 3 66 100 90 34 4 66 100 91		28	3	50			100	95	
31 1 66 100 87 32 2 66 100 96 33 3 66 100 90 34 4 66 100 91		29	4	50			100	93	
32 2 66 100 96 33 3 66 100 90 34 4 66 100 91		30	5	50			100	95	
33 3 66 100 90		31	1	66		i	100	87	
34 4 66 100 91		32	2	66			100	96	<u> </u>
		33	3	66			100	90	
		34	4	66			100	91	
35 5 66 100 80 Octa Chiny ac 9000		35	5	66			100	80	oceta entry ac acts

Comments: Sample C-3

Test:	BV-Bi	valve	Larval Survival	and Developm	ent Test	Test ID: 040	3-109	
			ilis galloprovinc			Protocol: AS	TM 87	
			A-City of Buen	aventura -	2)	Sample Type	e: OTH-Other	sample type
Start I	Date:	03/17	/2004 E	nd Date: 03/1 Initial	<i>8</i> 72004	Lab ID: AEE	SD-AMEC Bio	passay SD
		ব্য	14	Initial	Final	Total	Number	
Pos	ID	Rep	Group .	Density	Density	Counted	Normal	Notes
106						105	9,	30
107						100	86	1
108						100	88	OND
109						100		
110			•				9 6 92	
111						1	ab	
112				<u></u>		1	<i>R</i> 9	
113							- Ăr	
114					•	_	95	1
115							87	
116							91	
117							90	
118							90	
119						\\	85 87	
120						į	િ દ7	
121						-	85	
122							87	
123							92	
124						4	89	
125						+0(^y) 45	-81	THE STA
126						100	95	Y2
127						100	96	YR
128						100	96	1/2
129			,			100	80	MT
130						1	89	
131							99	
132							87	
133							90	
134						•	91	
135							87	
136							98	
137							95	
138							96	
139							93	
140							96	7

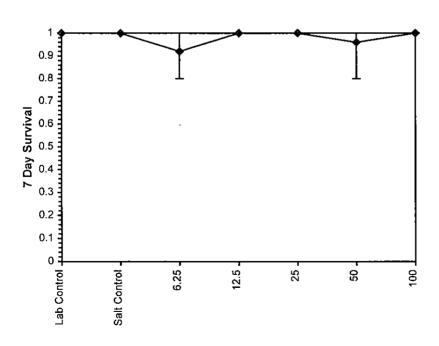
Comments: Sample 22

Reviewed by: <u>UC 4/28/c4</u>

Test: BV-Bivalve Larval Survival and Development Test Test ID: 0403-109 Species: MG-Mytilis galloprovincialis Protocol: ASTM 87 Sample ID: BUENA-City of Buenaventura Start Date: 03/27/2004 End Date: Sample Type: OTH-Other sample type naventura 7/ End Date: 03/18/2004 Lab ID: AEESD-AMEC Bioassay SD Final Initial Total Number Rep Pos ID Density Group Density Counted Normal Notes L-Lab Control L-Lab Control L-Lab Control L-Lab Control L-Lab Control BC 3/19/04 test B-Control B-Control B-Control B-Control **B**-Control 6.25 6.25 6.25 6.25 6.25 12.5 12.5 12,5 12.5 5 12.5 100b 100b 100b

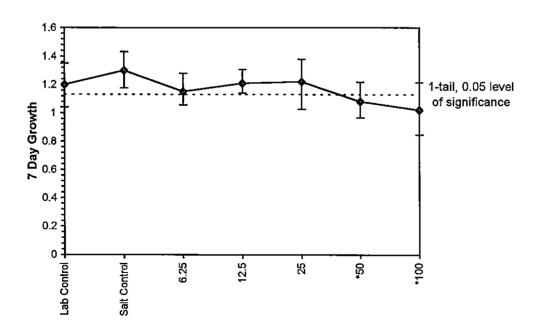
129 | 35 | 5 | 100b | Comments: Sample C 2 Q C = A+

100b


• •

			. Lai	rval Fish G	Larval Fish Growth and Survival Test-7 Day Survival											
Start Date:	03/17/2004		Test ID:	0403-094		Sample ID:	City of Buenaventura									
End Date:	03/24/2004		Lab ID:	AEESD-A	MEC Bioassay SD	Sample Type:	Ambient water									
Sample Date:	03/16/2004		Protocol:	EPAM 91-	EPA Marine	Test Species:	AA-Atherinops affinis									
Comments:	Site A-2															
Conc-%	1	2	3	4	5											
Lab Control	1.0000	1.0000	1.0000	1.0000	1.0000											
Salt Control	1.0000	1.0000	1.0000	1.0000	1.0000											
6.25	0.8000	1.0000	1.0000	1.0000	0.8000											
12.5	1.0000	1.0000	1.0000	1.0000	1.0000											
. 25	1.0000	1.0000	1.0000	1.0000	1.0000											
50	0.8000	1.0000	1.0000	1.0000	1.0000											
100	1.0000	1.0000	1.0000	1.0000	1.0000											

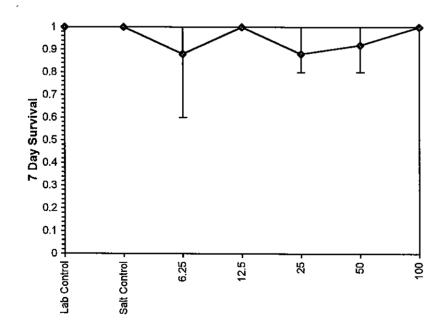
			Tra	ansform:	Arcsin Sc	uare Root	t	Rank	1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	
Lab Control	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	5			
Salt Control	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	5		•	
6.25	0.9200	0.9200	1.2500	1.1071	1.3453	10.434	5	22.50	16.00	
12.5	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	5	27.50	16.00	
25	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	5	27.50	16.00	
50	0.9600	0.9600	1.2977	1.1071	1.3453	8.207	5	25.00	16.00	
100	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	5	27.50	16.00	


Auxiliary Tests				Statistic	Critical	Skew	Kurt	
Shapiro-Wilk's Test indicates non	-normal dis	tribution (0.71382	0.9	-1.4688	3.36952	
Equality of variance cannot be co	nfirmed							
The control means are not signific	cantly differ	ent (p = 1	.00)		0	2.30601		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤŲ				
Steel's Many-One Rank Test	100	>100		1				

			La	rval Fish	Growth and Surviv	val Test-7 Day G	rowth
Start Date:	03/17/2004	ļ	Test ID:	0403-094	-	Sample ID:	City of Buenaventura
End Date:	03/24/2004	ļ	Lab ID:	AEESD-A	MEC Bioassay SD	Sample Type:	Ambient water
Sample Date:	03/16/2004	ļ	Protocol:	EPAM 91	-EPA Marine	Test Species:	AA-Atherinops affinis
Comments:	Site A-2					·	•
Conc-%	1	2	3	4	5		
Lab Control	1.0380	1.0760	1.2100	1.3460	1.3140		
Salt Control	1.3240	1.3640	1.1780	1.2140	1.4340		
6.25	1.2780	1.0880	1.2560	1.0680	1.0560		
12.5	1.2440	1.1420	1.2260	1.3080	1.1420		
25	1.1960	1.0260	1.1920	1.3040	1.3780		
50	1.0240	0.9920	0.9700	1.2140	1.2240		
100	1.0820	0.8440	1.0220	0.9280	1.2120		

			•	Transforn	n: Untran	sformed			1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Lab Control	1.1968	0.9186	1.1968	1.0380	1.3460	11.516	5			
Salt Control	1.3028	1.0000	1.3028	1.1780	1.4340	8.130	5			
6.25	1.1492	0.8821	1.1492	1.0560	1.2780	9.435	5	2.088	2.360	0.1736
12.5	1.2124	0.9306	1.2124	1.1420	1.3080	5.866	5	1.229	2.360	0.1736
25	1.2192	0.9358	1.2192	1,0260	1.3780	10.929	5	1.136	2,360	0.1736
*50	1.0848	0.8327	1.0848	0.9700	1.2240	11.436	5	2.963	2,360	0.1736
*100	1.0176	0.7811	1.0176	0.8440	1.2120	13.908	5	3.876	2.360	0.1736

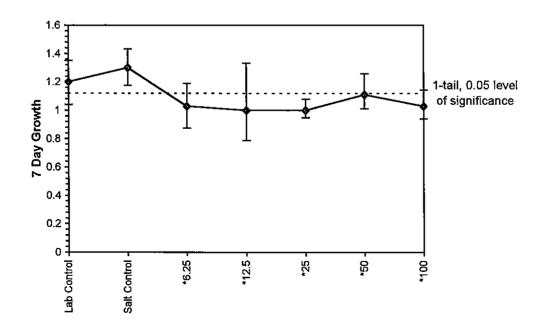
Auxiliary Tests			•		Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distrib	ution (p >	0.01)		0.95327		0.9		0.09955	-1.071
Bartlett's Test indicates equal var	iances (p =	= 0.86)			1.89892		15.0863			
The control means are not signifi-	cantly diffe	rent (p =	0.21)		1.36364		2.30601			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	25	50	35.3553	4	0.17364	0.13328	0.05258	0.01353	0.01012	5, 24



								Test S _i	pecies:	A.af	<u> </u>	nis	
Client Name:		aty	of	Buen	avei	nta	ra	Tes	t Date:	3/17/	0	4	
Sample ID:		Sca	2E	A-	<u> </u>		-	Te	st No.:	0403	<u>}-</u>	- 094	
Conc.	ļ	1			Surviva	l on Te	st Day	,.		Percent] [編	pan wt.	pan + fish
("/")	Rep.	0	1	2	3	4	5		7	Survival		(g)	(g)
Lab Cont.	a	5	5	5	5	5	5	5	5-	100	Į.	1	0.03578
#1	b	5	5	5	5	5	_	5	5	100	₹	0.03059 0.03065	0.03603
	С	5	5	5	5	5	3	5	5	100		0.02948	0.03533
	d	5	5	5	5	5	Ś	5	5	106	K	0.03488	0.04161
	e	5	5	5	5	13	5	5	5	100		0.03705	0.03362
Soft Cont	a	5	5.	5	5	5	5	5	5	100		0.0 3553	0.04215
地上	b	5	5	5	5	15	5	5	5	106	遂	0.03440	0.04122
	С	5	5	5	5	5	5	5	5	100	1	0.93316	0.04405
	d	5	5	5	5	5	3	5	5	100		6.03537	0,04144
	е	5	5	5	5	1	5	5	5	105		0.03757	0.04474
6.25	a	5	5.	4	4	i ii	4	4	4	80		0.03663	0.03 6302
	b	5	5	5	5	5	5	5	5	#20	5	0.03844	0.04388
	С	5	5	5	5	5	5	5	5	100		118800	0.04499
	d	5	5	5	5	5	15	5	5-	100		0.03684	004218
	e	5	5	И	4	Ч	4	a	4	80	14	0.03650	0.04178
12.5	а	5	5	5	5	5	5	5	5	[00	K	194500	0.04033
	Ь	15	5	5	5	5		5	5	100	To a	003260	0,03831
	С	5	5	5	5	5	5	5	5	100		043338	0.03751
	đ	5	5	5	5	5	5	5	5	100		643264	0.03858
	e	5	5	5	5	13	5	5	5	100		0.03136	0.03707
25	а	5	5	5	5	5	5	5	5	100	10	0.53318	0.03966
	ь	5	5	5	5	13	5	5	5	100	X	6.03247	003760
	С	5	5	5	5	5	5	5	5	lab		003149	0.03745
	d	5	5	5	5	5	5	5	5	loo	憲	6.03079	0.03731
	е	5	5	5	5	5	5	5	5	100	15	0.0 2703	0.03392
50	a	5	4	4	4	ч	4	4	4	80		0.03595	0.04107
	b	5	5	5	5	5	5	6	5	(00		0.03193	0.03689
	С	555	5	5	5	5	5	5	5	100		0.03362	0.03847
	d	5	5	5	5	_5	5	5	5	100		003433	0.04040
	е	9	5	5	5	5	5	5	5	ID		0.03265	0.03877
100	a	5	5	.5	5	5	5	5	5	100	6	8.63245	0.03786
	Ь	5	5	-5	6	5	5	5	5	100		0.03444	0.03866
	С	5	5	5	5	5	5	5	5	100		675EQ0	0.03884
	d	5	5	5	5	5	5	5	5	100	£.	0.03225	0.03689
	е	5	*5	5	_5	5	5	_5	5	100	\$	0-03152	0.037 <i>5</i> 8
Tech Initials		BULL	<u>5₩</u>	me	_S i\	Rh	AH	SH	۴b				
		- 1							•				nt Data:
Feeding Times	s (day)	:	0	1	, 2 _	3	4	5	6			Date/Time in:	3-27-04/19
				0842			0430			•			3-26-04 09
-			1 43 0	1515	V700	1400	1901	1745	1630		O۷	en Temp (°C):	
			-									Tech Initials:	Aul
Comments:												QC Check	Ma 4/13/04
							. .				F	inal Review:	WX 5/5/04

			Lai	rval Fish G	rowth and Surviv	/al Test-7 Day Sι	ırvival
Start Date:	03/17/2004		Test ID:	0403-095		Sample ID:	City of Buenaventura
End Date:	03/24/2004	ļ	Lab ID:	AEESD-A	MEC Bioassay SD	Sample Type:	Ambient water
Sample Date:	03/16/2004	ļ	Protocol:	EPAM 91-	EPA Marine	Test Species:	AA-Atherinops affinis
Comments:	Site B-1						•
Conc-%	1	2	3	4	5		
Lab Control	1.0000	1.0000	1.0000	1.0000	1.0000		
Salt Control	1.0000	1.0000	1.0000	1.0000	1.0000		
6.25	1.0000	1.0000	1.0000	0.8000	0.6000		
12.5	1.0000	1.0000	1.0000	1.0000	1.0000		
25	1.0000	0.8000	0.8000	1,0000	0.8000		
50	1.0000	1.0000	1.0000	0.8000	0.8000		
100	1.0000	1.0000	1,0000	1.0000	1.0000		

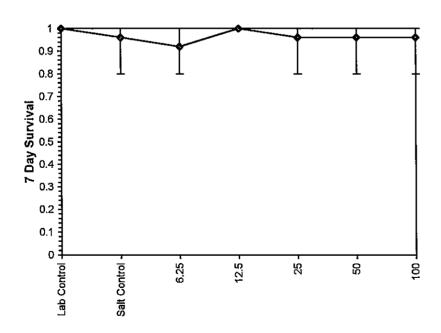
			Tra	ansform:	Arcsin Sc	uare Roo	t	Rank	1-Tailed		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical		
Lab Control	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	5			_	
Salt Control	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	5				
6.25	0.8800	0.8800	1.2058	0.8861	1.3453	17.113	5	22.50	16.00		
12.5	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	5	27.50	16.00		
25	0.8800	0.8800	1.2024	1.1071	1.3453	10.848	5	20.00	16.00		
50	0.9200	0.9200	1.2500	1.1071	1.3453	10.434	5	22.50	16,00		
100	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	5	27.50	16.00		


Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	n-normal di	stribution	(p <= 0.01)	0.86829	0.9	-0.8677	1.92205
Equality of variance cannot be co	nfirmed		•	-				
The control means are not signifi	cantly diffe	rent (p = 1	1.00)		0	2.30601		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				·
Steel's Many-One Rank Test	100	>100	_	1				

			La	rval Fish	Growth and Survi	/al Test-7 Day G	rowth	
Start Date:	03/17/2004		Test ID:	0403-095	- 	Sample ID:	City of Buenaventura	
End Date:	03/24/2004		Lab ID:	AEESD-A	MEC Bioassay SD	Sample Type:	Ambient water	
Sample Date:	03/16/2004		Protocol:	EPAM 91	-EPA Marine	Test Species:	AA-Atherinops affinis	
Comments:	Site B-1							
Conc-%	1	2	3	4	5			
Lab Control	1.0380	1.0760	1.2100	1.3460	1.3140			
Salt Control	1.3240	1.3640	1.1780	1.2140	1.4340			
6.25	1.0660	1.1900	0.8740	1.0320	0.9920			
12.5	1.0080	0.8740	0.7900	1.3340	1.0100			
25	1.0800	0.9480	0.9520	1.0760	0.9480			
50	1.2580	1.0320	1.2140	1.0120	1.0400			
100	1,1180	1.0020	0,9560	0.9400	1.1440			

		_	-	Transforn	ո։ Untran	sformed		1-Tailed		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Lab Control	1.1968	0.9186	1.1968	1.0380	1.3460	11.516	5			
Salt Control	1.3028	1.0000	1.3028	1.1780	1.4340	8.130	5			
*6.25	1.0308	0.7912	1,0308	0.8740	1.1900	11.133	5	3.429	2.360	0.1872
*12.5	1.0032	0.7700	1.0032	0.7900	1.3340	20,649	5	3.777	2.360	0.1872
*25	1.0008	0.7682	1.0008	0.9480	1.0800	7.045	5	3.808	2.360	0.1872
*50	1.1112	0.8529	1.1112	1.0120	1.2580	10.388	5	2.416	2.360	0.1872
*100	1.0320	0.7921	1.0320	0.9400	1.1440	9.074	5	3.414	2.360	0.1872

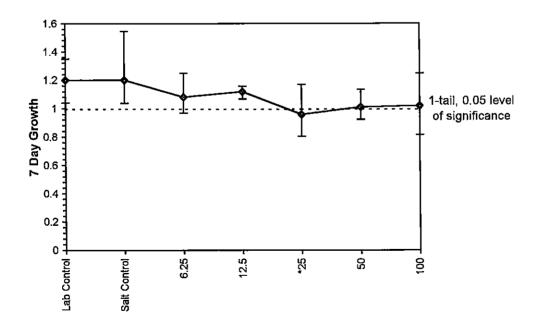
Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distrib	ution (p >	0.01)		0.96619		0.9		0.69899	1.00297
Bartlett's Test indicates equal var	iances (p =	= 0.40)			5,15223		15.0863			
The control means are not signific	cantly diffe	rent (p = (0.21)		1.36364		2.30601			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	<6.25	6.25			0.18718	0.14368	0.06751	0.01573	0.00625	5, 24



							•	Test S	pecies:	A.	αf	Finis		
Client Name:	(City	OF	Bue	nav	ent			•	3/17/				-
Sample ID:		Sci	2E	В-	1		-	Te	est No.:	0403	<u>. – </u>	095		-
Conc.	Rep.			S	urviva	l on Te	st Day	<i>r</i> :		Percent		pan wt.	pan + fish]
رويک ا	Kep.	0	1	2	3	4	5	6	. 7	Survival		(g)	(g)	
Lab Cont.	а	5	5	5	5	5	5	5	5	100]
妆(ь	5	5	5	5	5	5	5	5	1022		_	<u> </u>	
	С	5	5	-5	S	5	5	5	5	100	Ĉ.]
	ď	5	5_	5	5	5	5	5	5	100	- E.			ļ
	e	5	5	5	5	15_	5	5	5	100				
Salt Cont.	a	5	5	5	5	5	5	5	5	<u>los</u>			<u> </u>	į
#1	ь	5		-	5	15	5	5	5	140	- X	_		1
	C	5	5	5	5	\$	5	5	5	100	13.	_		-
	ď	5	5	5	5	1->-	5	5	5	100			 	}
7-2-	e	15	5	5	5	1->-		5	5	100			10.00	-
6.25	a	15	5	5	2	5	<u>5</u>	5	5	<u> </u>	37	0.02857	0.03390 D-08-178	Co
<u> </u>	b	5	5	5	5	5	5	<u> 5</u>	5	100		0.03583		
ļ	d C	5	5	S	5_	4	4	<u>5</u> 4	15	100	- 4	0.03397	0.03934	†
 , 	e	5	5	4	5	13		+	1 7	80 60	130	6.0 33.25	0.0384	{
10 6	a	3		5	5	5	3	3	5		∤	0.03509	0.04005	ł
12.5	b	5	5	2	5	5	5	5	5	100	i i	69 33/3	0.03873	1
	C	5	,	5	5	5	5	2	5	100	1	0'03336	0.03726	{
	d	5	5	3	2	5	5	5	5	100	-	0.03331	0.04058	{
	e	5	5	5	5	13	5	5	5	100	1:3	0.0 339.1 0.0 3215	0.03720	1
25	а	5	5	3	5	5	5	5	5	100	-	0.03262	0.03802	
	b	5	5	5	5	4	4	4	4	80		6.0.3081	0.03555	i
	C	5	5	5	5	5	5	н	14	80		0.03551	0.04027	1
· ·	d	5	5	5	5	5	5	5	5	140		003346	0.03934	ĺ
	e	5	5	4	4	Ú	4	н	4	80		0.03412	0.03886	1
50	а	5	5	5	5	1 3	S	5	5	100	1.	0.03438	204067	ĺ
-5	ъ	5	5	5	5	5	15	5	12	100		0.0331H	0.03830]
	С	5	5	5	5	3	5	.5	5	WO		6.23434	0.04041	
	ď	5	5	-5	5	4	4	ч	4	80		003554	0.04060	
	е	5	5	5	5	4	4	14	Y	80		0.0 3420	0.03940	
100	а	5	5	5	5	3	5		5	100	5.	0.03436	0.03995	
	Ь		5	5	5	12145	<u>\$</u> 5	5	5	100		6.03043	203933"	0.03544
	C	9	5	5	5	5	5	5	5	106] 🤄	0.03117	0.03595	_
	đ	5	5	5	5	PH 5	5	5	5	100]-	6.03463	0.03933	
	e	5	5	5	5	5	_5	5	3	100		0.03448	0.04020	
Tech Initials		RhINI	SH	mc	が	Ra	AH	SH	Rla	_				
		,			•••	-						Weig	ht Data:	1
Feeding Times	s (day)	:		1_	2	3	4	5	6			Date/Time in	: <u>3-24-04</u>	1500
				0842		00F0							3-25-04/0	9900
			1430	1515		1400						n Temp (°C)	: 59	
												Tech Initials	:AW	
Comments:												00 Charle	ue ulisto	4
Johnneilla.									 -		F	inal Review	MT 5 (510	 4

			Lar	val Fish G	rowth and Surviv	al Test-7 Day Sι	ırvival
Start Date:	03/17/2004		Test ID:	0403-096		Sample ID:	City of Buenaventura
End Date:	03/24/2004		Lab ID:	AEESD-AI	MEC Bioassay SD	Sample Type:	Ambient water
Sample Date:	03/16/2004		Protocol:	EPAM 91-	EPA Marine	Test Species:	AA-Atherinops affinis
Comments:	Site B-3						
Conc-%	1	2	3	4	5		
Lab Control	1.0000	1.0000	1.0000	1.0000	1.0000		
Salt Control	0.8000	1.0000	1.0000	1.0000	1.0000		
6.25	1.0000	1.0000	0.8000	0.8000	1.0000		
12.5	1.0000	1.0000	1.0000	1.0000	1.0000		
25	0.8000	1.0000	1.0000	1.0000	1.0000		
50	0.8000	1.0000	1.0000	1.0000	1.0000		
100	0.8000	1.0000	1.0000	1.0000	1.0000		

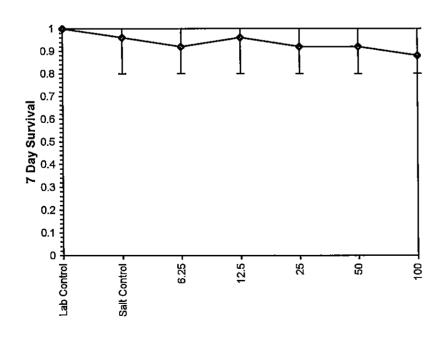
		_	Tra	ansform:	Arcsin So	uare Roo	Rank	1-Tailed		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	
Lab Control	1.0000	1.0417	1.3453	1.3453	1.3453	0.000	5			
Salt Control	0.9600	1.0000	1.2977	1.1071	1.3453	8.207	5			
6.25	0.9200	0.9583	1.2500	1.1071	1.3453	10.434	5	25.00	16.00	
12.5	1.0000	1.0417	1.3453	1.3453	1.3453	0.000	5	30.00	16.00	
25	0.9600	1.0000	1.2977	1.1071	1.3453	8.207	5	27.50	16.00	
50	0.9600	1.0000	1.2977	1.1071	1.3453	8.207	5	27.50	16.00	
100	0.9600	1.0000	1.2977	1.1071	1.3453	8.207	5	27.50	16,00	


Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non	-normal di	stribution	(p <= 0.01))	0.70526	0.9	-1.3503	0.34809
Equality of variance cannot be co	nfirmed							
The control means are not significate	cantly diffe	rent (p = 0	0.35)		1	2.30601		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	100	>100		1				

			La	rval Fish	Growth and Survi	val Test-7 Day G	rowth
Start Date:	03/17/2004	,	Test ID:	0403-096	3	Sample ID:	CITY OF BU
End Date:	03/24/2004	Ļ	Lab ID:	AEESD-A	AMEC Bioassay SD	Sample Type:	AMBIENT WA
Sample Date:	03/16/2004	Ļ	Protocol:	EPAM 91	-EPA Marine	Test Species:	AA-Atherinops affinis
Comments:	Site B-3						
Conc-%	1	2	3	4	5		
Lab Control	1.0380	1.0760	1.2100	1.3460	1.3140		•
Salt Control	1.1200	1.5400	1.2080	1.0340	1.0740		
6.25	1.0140	0.9780	1.1840	0.9640	1.2460		
12.5	1.1580	1.1020	1.1540	1.0680	1.1240		
25	0.8040	0.9320	0.9260	0.9660	1.1680		
50	1.0180	0.9200	1.1320	0.9880	0.9740		
100	1.0280	0.9900	1.0200	0.8140	1.2480		

· 			ï	Transform	n: Untran	sformed		1-Tailed		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Lab Control	1.1968	1.0013	1.1968	1.0380	1.3460	11.516	5			
Salt Control	1.1952	1.0000	1.1952	1.0340	1.5400	17.013	5			
6.25	1.0772	0.9013	1.0772	0.9640	1.2460	11.974	5	1.398	2.360	0,1992
12.5	1.1212	0.9381	1.1212	1.0680	1.1580	3.348	5	0.877	2.360	0.1992
*25	0.9592	0.8025	0.9592	0.8040	1.1680	13.749	5	2.797	2.360	0.1992
50	1.0064	0,8420	1.0064	0.9200	1.1320	7.818	5	2.237	2.360	0.1992
100	1.0200	0.8534	1.0200	0.8140	1.2480	15.139	5	2.076	2.360	0,1992

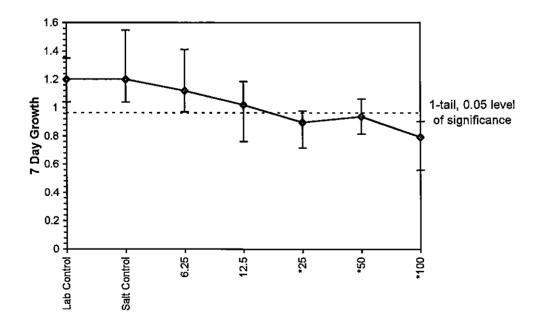
Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distrib	ution (p >	0.01)		0.93139		0.9		0.98261	1.27014
Bartlett's Test indicates equal var	iances (p =	= 0.10)	-		9.29265		15.0863			
The control means are not signific			0.99)		0.01456		2.30601			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TÜ	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	12.5	25	17.6777	8	0,19916	0.16663	0.03689	0.0178	0.10427	5, 24



							-	Test Sp	oecies:	A.	α <i>f</i>	Finis	
Client Name:		City	of	Bue	nav	ent				3/17/			
			2	~			•						
Sample ID:		<u>SQ</u>	46	_ b ~	<u>、</u>		•	Te	st No.:	0403	_	096	
Conc.	Dan			S	urviva	l on Te	st Day	/:		Percent	÷	pan wt.	pan + fish
ا دورت ا	Rep.	0	1	2	3	4	5	6	7	Survival		(g)	(g)
Lab Cont.	a	5	5	3	3	2	4	1.0		Survival	*		
#2	Ь	5	5	4	4	4	/	wa:	e/c.		\$		·
	С		H	ાં	4	14			4	60	3		
	d	5	5	3	3	2		ļ		Cont #	4		
	е	5	5	5	5	15		<u> </u>					
Salt Cont.	a	<u>5</u>	5	4	4	4	4	4	4	80	\$	0.03312	0.03872
#2-	ь		5	5	5	5	5	5	5	100	1	0.03570	0.04340
	С	5	5	5	5_	5	2	8	5	100		0.03337	0.03941
	d		5_	5	5	15	5	5	2	100	نځ.	6.03435	0.03952
	е	5	5	5	2	3	5	5	5	100		0.03491	0.04028
6.25	a	5	5_	5_	2	5	5	5	5	100	į	6.63477	0.03984
	ъ	5	5	5	5	3	5	5	5	100		003424	0.03913
	С	5	5	4	4	4	4	4	14	80	1.5	0.03022	0.03/d4
	d	5	5	5	5	1-7-	4	14	17_	80	19	0.0 2971	0-03453
'	е	5	5	5	5	15	5	5	5	100	3	0.03577_	0.04200
12.5	a	5	5	5	5	5	5	5	5	106	***	0.0.3452	0.04031
	Ь	5	5	5	5	5	5	5	5	100		6 <i>N</i> 3565	0.0416
	C	5	5	5	5	15	3	5	5	100	1	0.03443	0.04020
	d	5	5	5	5	15	5	5	15	100	1.5	6.03451	0.03985
	е	5	5	5	5	15	5	2	5	106	Ų.	6.6.3433 <u> </u>	0.03995
25	a	5	5	5	5_	4	4	4	4	80		0.03505	0.03907
	b	5	5	5	5	15.	5	5	5	100	۱»,	003501	0.03967
	С	5	5	5	5	5	5	5	5	(0)	. K.	0.03415	0.03878
	ď	5	_5	5	5	5	5	5	2	100		1200E as	0.03487
	е	5	5	5	5	5	5	5	5	100	Į.	0.93413	0.03997
50	<u>a</u>	5	4	4	4.	4	4	4	14	80		0'03#03	0.03912
	ь	5	5	5	5	5_	5	5	5	WSVICO		003453	0.03913
	C	5	5	5	5	15	5	5	5	100	17.	0.03347	0.03963
	d	5	5	3	2	5	5	5	5	100	3	603377	0.03871
1.50	<u>e</u>	5	5	5	5	5	5	5	5	100		003221	0.03708
100	a	5	5	5	5	1 4	4	4	4	-80	1	0.03296	0.03810
	Ь	5	5	5	5	5	5	5_	2	(0)		<u> </u>	0.03991
	C	<u>5</u> _	5	5	5	5	5	5	2	100		0.03447	0.03957
	d	5	5	}	2	5	5	5_	5	100	100	0.03179	0.03586
T 1 1 241-1-	е	5	5	5	5	14	5	5	5	100	177	0.02997	0.03621
Tech Initials		RymT	SH	l mc	5H	Ry	AH	SĦ	لطع	J		304-1-4	L4 B -4
		_	^	_	_	_		-	_			weigi	ht Data:
Feeding Times	s (aay)	:		1	2	3	<u> 4</u>	5	<u>6</u>	1	_	nate/ I ime iu	3-24-04 1500
			1:22	D8/12		0706					D	aterime out	3-26-04/0902
			1040	1515	1700	11400	1700	1745	11630	1	Ovi	en Temp (°C)	
												Tech Initials	:AW
Commenter												OC Charles	: 10 4/13/4
Comments:											F		100 4/15/04

			Laı	rval Fish G	Frowth and Surviv	ral Test-7 Day Sເ	ırvival
Start Date:	03/17/2004		Test ID:	0403-097		Sample ID:	City of Buenaventura
End Date:	03/24/2004		Lab ID:	AEESD-A	MEC Bioassay SD	Sample Type:	Ambient water
Sample Date:	03/16/2004		Protocol:	EPAM 91-	-EPA Marine	Test Species:	AA-Atherinops affinis
Comments:	Site C-3						
Conc-%	1	2	3	4	5		
Lab Control	1.0000	1.0000	1.0000	1.0000	1.0000		
Salt Control	0.8000	1.0000	1.0000	1.0000	1.0000		
6.25	0.8000	1.0000	1.0000	0.8000	1.0000		
12.5	0.8000	1.0000	1.0000	1.0000	1.0000		
25	1.0000	1.0000	0.8000	1.0000	0.8000		
50	1.0000	0.8000	0.8000	1.0000	1.0000		
100	0.8000	1.0000	1.0000	0.8000	0.8000		

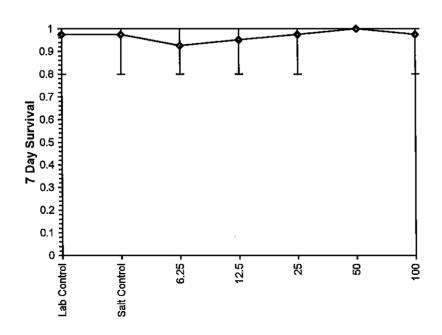
			Tra	ansform:	Arcsin Sc	uare Roo	t	Rank	1-Tailed	<u> </u>
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	
Lab Control	1.0000	1.0417	1.3453	1.3453	1.3453	0.000	5			•
Salt Control	0.9600	1.0000	1.2977	1.1071	1.3453	8.207	5			
6.25	0.9200	0.9583	1.2500	1.1071	1.3453	10.434	5	25.00	16.00	
12.5	0.9600	1.0000	1.2977	1.1071	1.3453	8.207	5	27.50	16.00	
25	0.9200	0.9583	1.2500	1.1071	1.3453	10.434	5	25.00	16.00	
50	0.9200	0.9583	1.2500	1.1071	1.3453	10.434	5	25.00	16.00	
100	0.8800	0.9167	1.2024	1.1071	1.3453	10.848	5	22.50	16,00	


Auxiliary Tests	Statistic	Critical	Skew Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)	0.82098	0.9	-0.5132 -1.4421
Bartlett's Test indicates equal variances (p = 1.00)	0.37999	15.0863	
The control means are not significantly different (p = 0.35)	1	2.30601	
Hypothesis Test (1-tail, 0.05) NOEC LOEC ChV TL	j		<u></u>
Steel's Many-One Rank Test 100 >100 1	_		

			La	rval Fish (Growth and Survi	val Test-7 Day G	rowth
Start Date:	03/17/2004	,	Test ID:	0403-097		Sample ID:	CITY OF BU
End Date:	03/24/2004		Lab ID:	AEESD-A	MEC Bioassay SD	Sample Type:	AMBIENT WA
Sample Date:	03/16/2004		Protocol:	EPAM 91-	EPA Marine	Test Species:	AA-Atherinops affinis
Comments:	Site C-3						
Conc-%	1	2	3	4	5		· ·
Lab Control	1.0380	1.0760	1.2100	1.3460	1.3140		
Salt Control	1.1200	1.5400	1,2080	1.0340	1.0740		
6.25	1.0240	1.2140	1.4080	0.9700	0.9680		
12.5	0.7560	1.1800	1.0080	1.0080	1.1240		
25	0.9220	0.8920	0.7160	0.9780	0.9660		
50	1.0280	0.8140	0.8720	1.0600	0.9040		
100	0.8620	0.5580	0.9020	0.8020	0.8380		

			•	Transforn	n: Untran	sformed		1-Tailed		
Conc-%	Mean	N-Mean	Меал	Min	Max	CV%	N	t-Stat	Critical	MSD
Lab Control	1.1968	1.0013	1.1968	1.0380	1.3460	11.516	5			
Salt Control	1.1952	1.0000	1.1952	1.0340	1.5400	17.013	5			
6.25	1.1168	0.9344	1.1168	0.9680	1.4080	17.139	5	0.797	2.360	0.2322
12.5	1.0152	0.8494	1.0152	0.7560	1.1800	16.057	5	1.830	2.360	0,2322
*25	0.8948	0.7487	0.8948	0.7160	0.9780	11.815	5	3.053	2.360	0.2322
*50	0.9356	0.7828	0.9356	0.8140	1.0600	11.190	5	2,639	2.360	0.2322
*100	0.7924	0.6630	0.7924	0.5580	0.9020	17.162	5	4.094	2.360	0.2322

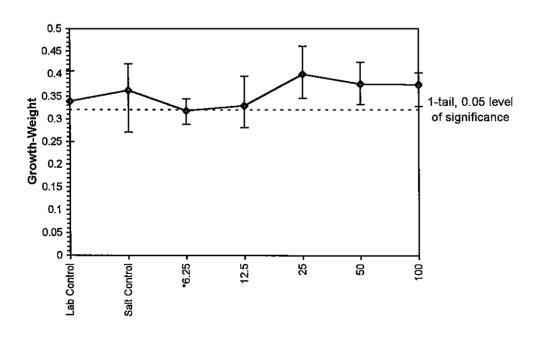
Auxiliary Tests	•		_		Statistic	_	Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distrib	ution (p >	0.01)		0.97274		0.9		0.33951	0.21611
Bartlett's Test indicates equal var	iances (p =	0.72)			2.8765		15.0863			
The control means are not signification	cantly diffe	rent (p =	0.99)		0.01456		2.30601			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	12.5	25	17.6777	8	0.23218	0.19426	0.10987	0.0242	0.0047	5, 24


							7	Test Sp	pecies:	A.	α <i>f</i>	Finis		
Client Name:	1	City	of	Bue	nav	ent				3/17/				
Sample ID:		<u>Sq</u>	ZE	<u>C-</u>	3_		_	Te	st No.:	0403		097		_
Cono	ī	1				l on Te	et Day			Donost				ר
Conc.	Rep.	0	. 1	2	3	4	5	6	7	Percent		pan wt.	pan + fish	
() () () ()							7			Survival		(g)	(g)	-}
Lab Cont.	a L	5	2	3 4	3	12	~	Na.	 	Les Corn#1				-
35.6	Ь.	5	5	4	4	14	 		2 / Us	<u> </u>	75		 	
	d d		4_	3	3	1 4	<u> </u>	 -	200	Lab .			+	-
<u> </u>	e	5	5	5		12	 	 	 	CZZZ**			-	-
Salt Cont.	a	5	<u>F</u>	 -	5	15	VΆ	 ,, -		02	1		 	┥
*>	b	3	5	4	14	 		4	4	80			 	┥
44	C	5	 	5	5	5	5	5	5	106				-{
	d	5	5	5	2	5	5	5	5	106	7		+	-{
	e	5	5	5_	5	3	5	5	3	100			- -	-{
6.25		3	5	5	5	 		5	4	100			0.0274.6	-
<u>b.∻2</u>	a b	5	5	5	2	1	4			80		0.035\$5	0.03744	-
ļ	-	5	5	5	2	 } 	5	5	<u>\$</u>	100		0.03340	0.03997	4
	d		5	5	5	1 7	5		5	106	1	0.03510	0.04214	4
1	e	5	<u> </u>	4	+		4	4	4	100	17:00	0.0.3364	0.03849	4
		12	5	5	5	17	5	5	5		14	0.03404	0.03388	-
12.5	a b	12	4	4	4		4	4	Ϋ́	80		003383	0.03761	4
		5	5	5	5	5	5	5	5	100	1	6.03337	0.03927	┥
	d	5	15		5	+	>	5	5	100		0.03461	0.03965	╡
	e	5		5	2	1 7	5		5	100	1 1	0.03566	0.04064	┥
06			5	5	5		 2 -	5	1	/(20		6.03209	0.03771	-
25	a b	5	5	5	5	5	5	5	5	100	1 1	0.03052	0.03513	-
<u> </u>		5	5	*5	<u>চ</u>	5		5	5	106		003265	0.03711	-
	d	3	14	4		5	4	4	84	\$D 180		0.03414	0.03772	4
	e	5	5	5	2		5	5	<u>~</u>		1 ~~~1	6.0 3766	0.04189	4
		5	2		5	5	5-	5	4	80	1:1	<u> 6,03583</u>	0.04066	-
 5 2	a b	5	5	3	5	5	4	4	5	100		0.03551	0.04065	-
			<u>5</u>			1 9			 4	80		0.03523	0.03930	4
	<u>с</u>	5	5 5	5	4	1	5	5	1	80		<u> 603565</u>	0.04001	┥
	e	5	5	5	5	5		5	3	- 600		0.0.3941	0.04471	4
100	a	5	4			<u> </u>	5		<u>.)</u>	100	44.23	9.93661	0.04113	┥
102	b	5	5	5	5	7	5	5	 	80	1 30 3.1	6.0.3296	0.03721	┥
	C	5	5	5		3	5	5	5	100 100		003101	0.03380	4
_	d	5	5	4	5	, ,	4		φ		11	0.0 3239	0.03690	4
	e	5	5	5	5	5	4	4	4	80 80		0.03160	0.03561	4
Tech Initials				mc	5H			4		00		00 3338	0.03757	_
recir iriidais		<u>rg mī</u>	S₩	1000	SI,	Ry	AH	Sit	Rb			Maial	ht Datas	
Feeding Times	- (day)		0	1	2	3		_	6				ht Data:	1
recamy ranes	s (uay)	•		~			4	5 AG 4-		1	!	vate/ime in	3-24-04/	/J'00
				0815	0912		0430						: <u>3-26-04 /</u>	n (OC
•			<u>ΠΆ 20</u>	1515	1700	1400	1.1800	1745	1630	l		n Temp (°C):		-
												Tech Initials	:	-
Commenter												00.051		11
Comments:							•——		<u>_</u>		_	uc Check:	UC 4/131	04
											FI	nai Keview:	M-5/5/	<u> 9</u> 4

A. BAHIA

	<u>-</u>			Mysid Surv	ival and	Growth	Test-7 Day	/ Surviva	al
Start Date:	03/17/2004	ļ	Test ID:	0403-098			Sample ID	D:	City of Buenaventura
End Date:	03/24/2004	ļ	Lab ID:	AEESD-A	MEC Bioa	ssay SD	Sample T	ype:	Ambient water
Sample Date:	03/16/2004	Į.	Protocol:	EPAM 91-	EPA Mari	ne	Test Spec	ies:	MY-Mysidopsi s bahia
Comments:	A-2								AM-Americanysis
Conc-%	1	2	3	4	5	6	7	8	
Lab Control	0.8000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
Salt Control	0.8000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	l e
6.25	0.8000	0.8000	1.0000	1,0000	1.0000	1.0000	1.0000	0.8000	
12.5	1.0000	0.8000	1.0000	0.8000	1.0000	1.0000	1.0000	1.0000	1
25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.8000	1
50	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1
100	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.8000	

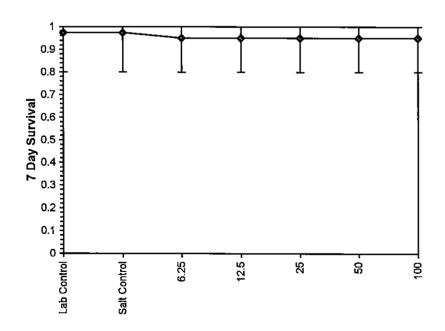
		_	Tra	Rank	1-Tailed						
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical		
Lab Control	0.9750	1.0000	1.3155	1.1071	1.3453	6.400	8				
Salt Control	0.9750	1.0000	1.3155	1.1071	1.3453	6.400	8				
6.25	0.9250	0.9487	1.2560	1.1071	1.3453	9.813	8	60.00	46.00		
12.5	0.9500	0.9744	1.2857	1.1071	1.3453	8.574	8	64.00	46.00		
25	0.9750	1.0000	1.3155	1.1071	1.3453	6.400	8	68.00	46.00		
50	1.0000	1.0256	1.3453	1.3453	1.3453	0.000	8	72.00	46.00		
100	0.9750	1.0000	1.3155	1.1071	1.3453	6.400	8	68.00	46.00		


Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	n-normal di	stribution	(p <= 0.01)	0.71592	0.929	-1.5515	1.21402
Equality of variance cannot be co	nfirmed							
The control means are not signifi	cantly diffe	rent(p = 1)	1.00)		0	2.14479		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	100	>100		1				

			Mysid	Survival,	Growth a	nd Fecu	ndity Test-	Growth-	Weight
Start Date:	03/17/2004	ļ	Test ID:	0403-098			Sample ID):	City of Buenaventura
End Date:	03/24/2004		Lab ID:	AEESD-A	MEC Bioa	ssay SD	Sample T	уре:	Ambient water
Sample Date:	03/16/2004	1	Protocol:	EPAM 91-	EPA Mari	ne	Test Spec	ies:	MY-Mysidopsis bahia
Comments:	A-2								M. Linericanysis
Conc-%	1	2	3	4	5	6	7	8	
Lab Control	0.2500	0.3900	0.4060	0.3500	0.3480	0,3060	0.3420	0.3200	
Salt Control	0.2700	0.3300	0.3380	0.3820	0.3440	0.4220	0.4160	0.4040	
6,25	0.3000	0.3080	0.3300	0.3340	0.3000	0.3440	0.3400	0.2880	
12.5	0.3380	0.2800	0.3360	0.2800	0.3500	0.3020	0.3480	0.3940	
25	0.4500	0.3600	0.4620	0.3620	0.4280	0.4160	0.3460	0.3720	
50	0.4260	0.3980	0.3560	0.3440	0.3320	0.3740	0.3780	0.4060	
100	0.3800	0.3860	0.3740	0.3600	0.3920	0.3860	0.4020	0.3280	

•				Transforn	n: Untran	sformed			1-Tailed	
Conc-%	Mean	N-Mean	Mean	Mîn	Max	CV%	N	t-Stat	Critical	MSD
Lab Control	0.3390	0.9332	0.3390	0.2500	0.4060	14.396	8			-
Salt Control	0.3633	1.0000	0.3633	0.2700	0.4220	14.363	8			
*6.25	0.3180	0.8754	0.3180	0.2880	0.3440	6.732	8	2.435	2.306	0.0429
12.5	0.3285	0.9043	0.3285	0.2800	0.3940	11.894	8	1.870	2.306	0.0429
25	0.3995	1.0998	0.3995	0.3460	0.4620	11.245	8	-1.950	2.306	0.0429
50	0.3768	1.0372	0.3768	0.3320	0.4260	8.541	8	-0.726	2.306	0.0429
100	0.3760	1.0351	0.3760	0.3280	0.4020	6.124	8	-0.686	2.306	0.0429

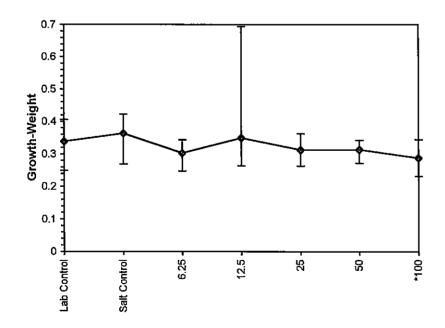
Auxiliary Tests	-	_			Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)					0.97366		0.929		-0.1832	-0,2553
Bartlett's Test indicates equal variances (p = 0.16)					7.91504		15.0863			
The control means are not significantly different ($p = 0.35$)					0.96007		2.14479			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	100	>100		1	0.04285	0.11798	0.00778	0.00138	4.6E-04	5, 42


							1	rest Sp	ecies:	A M.b	ahia	
Client Name:		City	of	Buer	aver	atur				3/17/04		
Sample ID:		SCA	E_	<u>A</u> -	D			Tes	st No.: _	0403	- 098	
Conc.	_			S	urvival	on Tes	st Day:		· - · · 	Percent	pan wt.	pan + mysid
(*/-)	Rep.	0	1	2	3	4	5	- 6	7	Survival	(g)	(g)
Lab Control	а	5	4	4	4	4	ਪ	4	4	80	0.03262	0.03387
#1	b	15	5	5	9	5	5	5	5	100	0.03262	0.03476
	С	5	5	5	5	5	5	5	5	100	0.63187	0.03390
	d	15)	5	5	5	5	5	5	5	100	0.03264	0.03434
	е	15	5	5	5	5	5	5	5	100	0.03232	0.03406
	f	1	5	5	5	5	5	5	5	100/2	6,03422	0.03575
	g	5	5	5	5	5	5	5	Ś	100	0.0 3402	0.03573
	h	5	5	5	5	5	3	5	5	100	0.03438	0.03598
Salt Control	а		5	5	5	S	_	4	4	360	0.03308	0.03443
#1	b	55	5	.5	5	5	4	5	5	IOB	6.03343	0.03508
1	С	5		5	45	5	5	5	5	100	0.63549	0.03718
	d	5	5	5	_5	5	3-	3	5	100	0.03546	0.03731
	e	5	5	5	-5	5	5	5	5	100	0.03278	0.03450
	f	5	5	5	5	5	5	5	5	100	E0/250.0	0.03614
	g	5	5	5	5	5	5	5	5	100	0.03404	0.03612
	h	5	Κ	5	5	5	5	5	5	1020	0.03454	0.03656
6.25	а	5	4	Àį	4	4	4	4	4	80	0.03212	0.03367
*	b	5	4	4	4	4	Ý	4	4	80	6.03423	0.03577
	С	5	5	5	5	Ś	5	5	5	100	0.03291	0.03456
	d	5	5	5	5	5	. 5	5	5	100	6.03232	0.03379
	е	5	5	5	15	5	5	5	5	100	0.03482	0.03632
	f	5	5	5	5	5	5	5	5	100	0.03674	0.03846
	g	5	5	5	5	55	5	5	5	100	0.63263	0.03433
	h	5	5	5	5	5	5	5	4	80	0.9 3/36	0.03280
12.5	а	5	5	5	5	5	5	5	5	(D)	0.0 33 59	0.03528
	b	5	5	5	45	5	Ÿ	4	4	35	0.03345	0.03485
	С	5	5	5	5		5	5	5	(ØD	0.03299	0.03467
	d	5	5	5	5	5	4	4	4	80	0.03486	0.03626
	е	5	5	5	ج	5	5	5	5	(00)	043271	0.03686
-	f	5	5	5	5	5	5	5	5	100	003162	0.03313
	g	5	5	5	5	5	5	5	5	100	7-03089	0.03263
	h	与	5	5	5	5	5	5	5	100	0.03(37	0.03334
Tech Initials		50	Ru	SH	mc	ÁН	RЦ	AH	ne		<u> </u>	
		m			<u> </u>	1. 7	N-1	17 111			Weid	jht Data:
Feeding Times	s (day)	: ''`'	0	1	2	3	4	5	6			1: 3.24.04 1436
_	,			3846					0830		Date/Time ou	t: <u>3-25-04</u> 143
			1630	1515		1400	14/10	1145	1630	(Oven Temp (°C): 60
			·		, · · · 	<u>, , </u>	, <u>UUU</u>	1 3	1.0	·	Tech Initial	s: <u>AW</u>
												7 (0 0
Comments:											QC Check	k: <u>ue 4/13/04</u>
		_									Final Review	V: MT5/8/04
												<u>//_/) / 3 / 9</u> 7

										A. X.bah		
							T	est Sp	ecies:	M. bah	ia	<u>. </u>
Client Name:	(îty	of	Buei	ave	ntu	a	Test	Date:	3/17/0	4	
Sample ID:		Scr	E	A-1				Tes	st No.:	0403	- 098	
Conc.				S	urviva	l on Tes	st Day:		Ī	Percent	pan wt.	pan + mysid
(* /*)	Rep.	0	1.	2	3	4	5	6	7	Survival	(g)	(g)
25	a	5		5	\$	5	5	5	5	(60	063298	0.08523
7	b	5	5	5	<u>5</u>	5	5	Š	5	100	0.03468	0.03648
	c	5	<u> </u>	5	5	5	5	5	5	100	0.63544	0.03775
	d	5	5	5	5	5	5	5	5	106	603377 603757	0.03738
	e	5	5	5	5	5	5	3	5	100	0.03545	0.03759
	f	5	5	5	5	5	5	5	5	100	6.0 3245	0.03453
	g	5	5	5	75	5	5	5	5	106	0.03234	0.03407
	h	5	5	5	\ V	5	7	2	4/	780	6033374	0.03560
50	a	5	5	5	کمارد	5	5	5	5		.002	0.03235
_50	b	5		5	5	5	5	5	5	106	0.03022	0.03520
	C	5	5		5	5	5	5	5	100 100	0.0 33.2/	0.03366
-	d	5	5	5			5	5		-	0.03/88	
	-	5	5 5	5	5	5			5	100	6.03177	0.03349
	e		5	5			<i>5</i>	5	2	100	0V 3128	0.03324
	f	5		5_	5	5		5	2	100	0.03240	0034-27
	g	5	5	5	5	5	5	5	5	100	003300	0.03489
7.3.5	h	5	5	5	5	5	5	5	5	1 <i>0</i> U	0.0 3820	0.03523
100	a	5	5	5	45	5	5	5	5	100	<u>0.03555</u>	0.03412
	b	5	5	5	5	5	5	5	9	160	0'921 <u>1</u>	0.03364
	С	5	2	5	5	5	5	5	3	160	0.03193	0.03380
	d	5	5	5	5	5	5	5	ク	100	6.03320	0.03500
	е	5	5	5_	5	5	5_	5	5	100	0.03345	0.03541
	f	5	5	5	5	5	5	5	5	100	68PS0.0	0.03176
	g	5	5	5	5	5	5	5	5	los	0.032V7	0.0348
	h	5	5	<u> </u>	5	5	5	14	ય	80	0.03562	0-03666
	а											
	b	_										
	С											
	d				1						無	
	е											
	f											
	g		1	<u> </u>							類	
	h						<u> </u>					
Tech Initials		Tange	Pla	SH	Mζ	AH	RG	AH	inc		<u> </u>	
										•	Wei	ght Data:
Feeding Time	s (day)	:	0	1	2	3	4	5	6			n: 3 24.041438
_				0845	0815	0706	2930	0845	0630]		ıt: <u>3-25-69 14</u> 35
			1630				1800		1630	1	Oven Temp (°C	
			0			1, ,00_	<u> </u>	11/11	<u>,</u>	,		s: <u>A</u> U
												- I-TW
Comments:											QC Chec	k: <u>Lle 4/18/04</u>
						•		 -		-	Final Review	N: MT5/55 OU
						_				-	1101101	<u>m 3 /3 3 0</u> 4

		_		Mysid Sur	vival and	Growth	Test-7 Day	/ Surviva	al .
Start Date:	03/17/2004	,	Test ID:	0403-099			Sample ID);	City of Buenaventura
End Date:	03/24/2004	ŀ	Lab ID:	AEESD-AI	MEC Bioa	ssay SD	Sample Ty	ype:	Ambient water
Sample Date:	03/16/2004	ļ	Protocol:	EPAM 91-	EPA Mari	ne	Test Spec	ies:	MY-Mysidopsis bahia
Comments:	B-1						-		AM-Americanysis
Conc-%	1	2	3	4	5	6	7	8	
Lab Control	0.8000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	-
Salt Control	0.8000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
6.25	1.0000	1.0000	0.8000	1.0000	1.0000	0.8000	1.0000	1.0000	
12.5	0.8000	1.0000	1.0000	0.8000	1.0000	1.0000	1.0000	1.0000	
25	1.0000	1.0000	1.0000	1.0000	0.8000	0.8000	1.0000	1.0000	
50	0.8000	1.0000	1.0000	1.0000	0.8000	1.0000	1.0000	1.0000	
100	0.8000	1.0000	1.0000	1.0000	0.8000	1.0000	1.0000	1.0000	

		_	Tra	ansform:	Arcsin So	uare Roo	t	Rank	1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	
Lab Control	0.9750	1.0000	1.3155	1.1071	1.3453	6.400	8			
Salt Control	0.9750	1.0000	1.3155	1.1071	1.3453	6.400	8			
6.25	0.9500	0.9744	1.2857	1.1071	1.3453	8.574	8	64.00	46.00	
12.5	0.9500	0.9744	1.2857	1.1071	1.3453	8.574	8	64.00	46.00	
25	0.9500	0.9744	1.2857	1.1071	1.3453	8.574	8	64.00	46.00	
50	0.9500	0.9744	1.2857	1.1071	1.3453	8.574	8	64.00	46.00	
100	0.9500	0.9744	1.2857	1.1071	1.3453	8.574	8	64.00	46.00	


			·	,				
Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	n-normal di	stribution	(p <= 0.01))	0.57567	0.929	-1.3005	-0.2556
Bartlett's Test indicates equal var	riances (p =	= 0.98)			0.71061	15.0863		
The control means are not signifi	cantly diffe	rent (p = 1	1.00)		0	2.14479		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	100	>100		1				

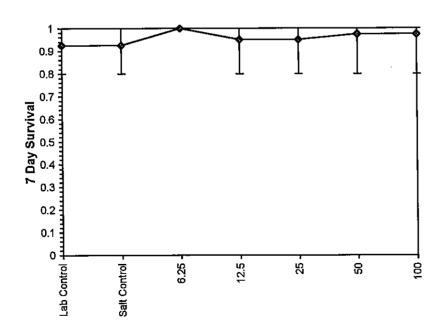
			Mysid	Survival,	Growth a	nd Fecu	ndity Test-	Growth-	Weight
Start Date:	03/17/2004	1	Test ID:	0403-099			Sample ID):	City of Buenaventura
End Date:	03/24/2004	ļ	Lab ID:	AEESD-A	MEC Bioa	ssay SD	Sample T	уре:	Ambient water
Sample Date:	03/16/2004	1	Protocol:	EPAM 91-	EPA Mari	ne	Test Spec	ies:	MY-Mysidopsis bahla
Comments:	B-1								AM-Americanysis
Conc-%	1	2	3	4	5	6	7	8	
Lab Control	0.2500	0.3900	0.4060	0.3500	0.3480	0.3060	0.3420	0.3200	
Salt Control	0.2700	0.3300	0.3380	0.3820	0.3440	0.4220	0.4160	0.4040	
6.25	0.2820	0.3440	0.2480	0.2880	0.2980	0.3380	0.2980	0.3300	
12,5	0.2640	0.3120	0.3180	0.2720	0.6940	0.3300	0.2880	0,3200	
25	0.3500	0.3620	0.3500	0.2740	0.2900	0.2640	0.2860	0.3280	
50	0.3420	0.2860	0.3240	0.3140	0.2720	0.3320	0.3140	0.3260	
100	0.2320	0.3120	0.2800	0.2820	0.2500	0.2880	0.3140	0.3440	

			•	Transforn	n: Untran	sformed		Rank	1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	
Lab Control	0.3390	0.9332	0.3390	0.2500	0.4060	14.396	8			-
Salt Control	0.3633	1.0000	0.3633	0.2700	0.4220	14.363	8			
6.25	0.3033	0.8348	0.3033	0.2480	0.3440	10.704	8	48.00	46.00	
12.5	0.3498	0.9628	0.3498	0.2640	0.6940	40.352	8	50,50	46.00	
25	0.3130	0.8617	0.3130	0.2640	0.3620	12.400	8	52.00	46.00	
50	0.3138	0.8637	0.3138	0.2720	0.3420	7.523	8	47.00	46.00	
*100	0.2878	0.7922	0.2878	0.2320	0.3440	12.508	8	45.00	46.00	

Auxiliary Tests				·	Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	n-normal di	istribution	(p <= 0.01)		0.73391	0.929	3.36593	18.1129
Bartlett's Test indicates unequal	variances (p = 4.63E	E-06)		32.5443	15.0863		
The control means are not signifi	cantly diffe	erent (p =	0.35)		0.96007	2.14479		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	50	100	70 7107	2	· - · · · · · · · · · · · · · · · · · · ·			

							Т	est Sp	ecies:	su b	<u>a</u>	hia	
Client Name:		City	of	Buer	aver	<u>ıtur</u>				3/17/04			
Sample ID:		<u>City</u> SCR	E	B-	<u>l</u>					0403			
0		1			urvival	on Tes	et Dave			Percent	1. [pan wt.	pan + mysid
Conc.	Rep.	0	1	2	3	4	5 Day.	6	7	Survival		(g)	(g)
		5		4	4	4	4	4	4	80		. (9)	(9/
Lab Control	a b	5	<u>''</u> 5	5	4	5	5		5	100			•
===	C	5	5	7 10	5	5	5	55	5	100	3		
	d d	5	5	5	5	5	5		5	lω		·	
·	e	5	3	5	5	5	5	20	5	(OD			
	f	5		5	-5	5	5		5	100	П		
	g	5_	5	5	5	5		55	5	100	Ų		
	h	5	7	5	5	5	5	<u></u> 5	5	100	11		
Soil Control			,	5	5	5	V		4	80		·· ··· ·	
Salt Control	b	15/15	<u>5</u> 5	5	5	5	4	4	5	(Q)			
<u> </u>	C	15	3	5	5	5	5	3	5				1
	q	5	3	5	5	5	3	5	5	100	8		
	e	5	5	5	5	5	5	5	5	100			
	f	5	5	5	3-	5	5	5	5	100	11		1
	g	5	5	5	5	5	5	3	5	100			
	h h	5	3	5	5	5	5	5	3	106			
7 36	- ''- a	5	· .	2	5		5		5	106	1:	6.03263	0.03404
6.25	b	3	5	5	5	5 5	5	5	5	(00	ξ.		0.03545
-	C	6	5	5	5	4	У	4	4	80	- , ;	0°03! C 0	0.03224
	q	5	5	5	5	5	5	5	\$	too	3	0.0300 0.03354	0.03498
	e		5	5	5	5	5		5	100		0'03351	203470
<u> </u>	f	55	5	5	5	12	5	5	4	80	1		0.03630
 		5	5	5	5	5	5	5	5	140	÷ 2.	0.03461	0.03657
	g h	13	5	5	5	5	-	3	5	100	-	0.03508	0-03608
12 5		_			4	4	4	14	4	<u>8</u> 80	- 35	0.03440	0.03672
12.5	a b	==	5	4		5		5	5		- 12. 20.	0.03548	0.03718
ļ			2	5	5		5		5	<u>ເຕ</u>	-[:]	0.03562	0.03728
	d	5	-	5	<u>+</u>	5	5	5	4		- 6.	N.0361d	0.03681
	e	 글	5	2 -	5	5 5 5	¥ 5t	<i>4</i> 5	5	80	- W.	0.03545	0.03575
	f	5 5	5	2	5	12	5	5	5		- (i)	0.03248	0.03764
	<u> </u>		5 -		5		5	5	5	100	-[°	0.03599	0.03512
<u> </u>	g h	5	5	5		5	5	5	5	190	-	0.03368	0.03465
Took Initials	<u></u>		5	5	5		•	 		100	٠٠٠	0.03305	101-27-05
Tech Initials		\$D/MT	Rh	SH	me	AH	Ru	AH	mc			Mois	ıht Data:
Feeding Times	n (day)		0	4	2	3	4	5	6			_	1: <u>3</u> ·24:04 (43%
reeding times	s (uay)	•	_	1						1	r		
			1/2			0700				}	ـ د د	on Town 190	t: 3-25-04 1439
			1630	1515	1700	HAGO	1800	1745	Lion	l '	JV	Task !=!#!=!): <u>60</u> s: AW
												i ech initials	s
O												OC CLI	المايد سييه
Comments:										•		wo onecl	C. Le 4/13/04
										_		raiai Keviev	V: MT 8 15 104

AMEC Earth	and E	nviror	nmen	tal							Rav	v Datasheet
										A		
										St. bah		
Client Name:	(ity	of_	Buei	avei	ntu	0	Test	Date: _	3/17/0	1	
Sample ID:	;	Scie	E	B-1				Tes	t No.: _	3/17/04	- 099	
	-			S	urvival	on Te	st Dav:			Percent	pan wt.	pan + mysid
Conc.	Rep.	0	1	2	3	4	5		7	Survival	(g)	(g)
	a	5	5	5	5	5	5	5	5	lo ₀	0.03247	0.03422
25		5	5	5	5	5	5	5	5	106	0.63432	0.03613
	C	5	<u></u> 5	5	5	5	5	5	5	106	0.03478	0.03653
	d	5	<u> </u>	5	5	5	5	3	5	100	0.03279	0.03416
	e	5	¥	4		4	4	4	4	80	0.03221	0-03366
······	f	5	7	5	4	5	5	5_	4	80	0,0 3445	003577
· -	g	5	-}-	5	5	5_	5	5	5	(06	0.03/33	0.03276
	9 h	5	5-	5	5	5	5	5	5	100	0.02936	0.03100
		5		4	4	4	F	4	4	80	19180.0	0.03362
_50	a b	5		5	5	5	5	5	=	140	6.03164	0.03307
		물	<u>5</u>		5	5	5	5	5	top	0.03204	0.03366
	C		5	5-	5	5	5	5	5	100	0.09266	003423
	di_	5		5	4	4	4	4	4	80	003323	0.03459
	e		5	5	<u> </u>	5	15-	3	5	(OD	0'033!8	0.03484
	f	5			5	5	13	3	5	100	0.03297	0.03454
	<u>g</u> _	5	5	5		5	1	5	5	100	0.03246	0.03409
	h	10	5_		5	4	14	4	3	80_	0.03371	0.03487
100	a	5	4	4	4	5			5	100	0.03227	0.03383
<u> </u>	b	5	5_	5	<u>*</u>	5	5	5	5	100	0.03227	0.03696
	С	5	5	5_	5		2	5	5		— — — — — — — — — — — — — — — — — — —	0-03495
	d	5	5	5	5	5	15			100	603354	0.03029
	e	5	5	5_		5_	14_	AIS4	A-	80	002904	0.03738
	f	5	5-	5	5	5_	5	5	5	100	0.03594	0.03668
	g	5_	5	5	5	5	5	5	5	100	0.035N	0.03763
	h	5	5	5_	5	<u> </u>	3	5	5	W _	003591	
	а			↓	<u> </u>	1	-	┦	 	<u> </u>		
	b	1	ļ			<u> </u>		 	 	 -	-	
	С		L		<u> </u>	<u> </u>	 _	-	 -			
	d					ļ			——	ļ	-	
	е				<u> </u>	<u> </u>	<u> </u>	_		 	-8	
	f				1	1	_		 	ļ	- [5]	
	g					<u> </u>		<u> </u>	 	<u> </u>	<u>- []</u>	
	h								<u> </u>		_ %	
Tech Initials		Dom	1/24	SH	mL	.] <i>[</i> 44	RG	AH	MU]	We	ight Data:
Feeding Time		A.	0	4	2	3	4	5	6			in: 3-24-04 143

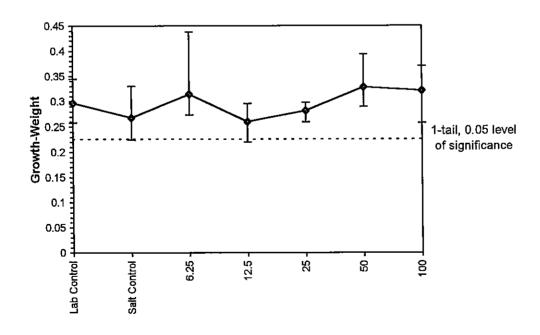

Feeding Times (day):	U	. 4	J	•	-	· · · · · · · · · · · · · · · · · · ·	<u> </u>
(==)/-		0845 0815	0700	0930	0845	0830	Date/Time out: 3~25~64 14-35
	 	1515 1700	- · ·	1800	1745	1630	Oven Temp (°C):
	16 20	(3/) 1/0	. 11 (92		,, , <u>, , , , , , , , , , , , , , , , ,</u>		Tech Initials: <u>AW</u>
Comments:							QC Check: Lie 4/15/04 Final Review: Mt 5/5/04

Feeding Times (day):

•	_			Mysid Surv	ival and	Growth	Test-7 Day	Surviva	al
Start Date:	03/17/2004		Test ID:	0403-100			Sample ID) <u>:</u>	City of Buenaventura
End Date:	03/24/2004	ŗ	Lab ID:	AEESD-A	MEC Bioa	ssay SD	Sample Ty	/pe:	Ambient water
Sample Date:	03/16/2004	ļ	Protocol:	EPAM 91-	EPA Mari	ne	Test Spec	ies:	MY Mysidopsis bahia
Comments:	B-3								AM-Americanyas
Conc-%	_1	2	3	4	5	6	7	88	
Lab Control	0.8000	0.8000	1.0000	1.0000	0.8000	1.0000	1.0000	1,0000	
Salt Control	0.8000	0.8000	1.0000	1.0000	1.0000	1.0000	1.0000	0.8000	
6.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1
12.5	1.0000	1.0000	0.8000	1.0000	1.0000	1.0000	0.8000	1.0000	l
25	1.0000	1.0000	1.0000	0.8000	1.0000	1.0000	1.0000	0.8000	
50	1.0000	1.0000	1.0000	0.8000	1.0000	1.0000	1.0000	1.0000	1
100	1.0000	1.0000	1.0000	1.0000	1.0000	0.8000	1.0000	1.0000	

			Tra	ansform:	Arcsin Sc	uare Roo	t	Rank	1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	
Lab Control	0.9250	1.0000	1.2560	1.1071	1.3453	9.813	8			
Salt Control	0.9250	1.0000	1.2560	1.1071	1.3453	9.813	8			
6.25	1.0000	1.0811	1.3453	1.3453	1.3453	0.000	8	80.00	46.00	
12.5	0.9500	1.0270	1.2857	1.1071	1.3453	8.574	8	72.00	46.00	
25	0.9500	1.0270	1.2857	1.1071	1.3453	8.574	8	72.00	46.00	
50	0.9750	1.0541	1.3155	1.1071	1.3453	6.400	8	76.00	46.00	
100	0.9750	1.0541	1.3155	1.1071	1.3453	6.400	8	76.00	46.00	

(711 441	. 00pu. +			,				
Auxiliary Tests					Statistic	Critical	Skew	Kurt_
Shapiro-Wilk's Test indicates nor	n-normal di	stribution	(p <= 0.01)	0.73875	0.929	-1.3766	0.50339
Equality of variance cannot be co	onfirmed							
The control means are not signifi	cantly diffe	rent_(p = 1	1.00)		######################################	2.14479		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	100	>100		1				



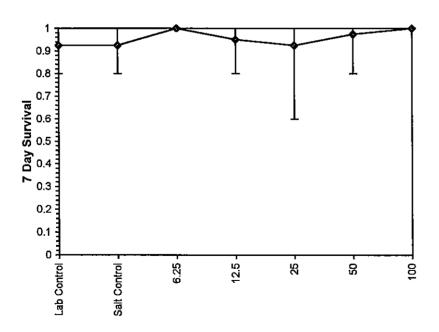
			Mysid	Survival, (Growth a	nd Fecu	ndity Test-	Growth-	Weight
Start Date:	03/17/2004	,	Test ID:	0403-100			Sample ID) :	City of Buenaventura
End Date:	03/24/2004	,	Lab ID:	AEESD-A	MEC Bioa	ssay SD	Sample Ty	ype:	Ambient water
Sample Date:	03/16/2004	ļ	Protocol:	EPAM 91-	EPA Mari	ne	Test Spec		MY-Mysidopsis bahia
Comments:	B-3								AM-Americanysis
Conc-%	1	2	3	4	5	6	7	8	
Lab Control	0.2940	0.2580	0.2840	0,3280	0.2740	0.3440	0.2880	0.3020	
Salt Control	0.2420	0.2300	0.2420	0.2960	0.3300	0.3220	0.2580	0.2240	
6.25	0.3020	0.2880	0.3080	0.4380	0.3240	0.2940	0.2740	0.2860	
12.5	0.2780	0.2200	0.2600	0.2580	0.2600	0.2780	0.2300	0.2960	
25	0.2920	0.2980	0.2680	0.2720	0.2960	0.2960	0.2600	0.2760	
50	0.3000	0.2900	0.2980	0.3140	0.3020	0.3940	0.3580	0.3720	
100	0.3120	0.2580	0.3420	0.3460	0.3080	0.3100	0.3700	0.3240	•

•				Transform	n: Untran	sformed		_	1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N _	t-Stat	Critical	MSD
Lab Control	0.2965	1.1063	0.2965	0.2580	0.3440	9.456	8		-	
Salt Control	0.2680	1.0000	0.2680	0.2240	0.3300	15.689	8			
6.25	0,3143	1.1726	0.3143	0.2740	0.4380	16.629	8	-2.522	2.306	0.0423
12.5	0.2600	0.9701	0.2600	0.2200	0.2960	9.695	8	0.436	2.306	0.0423
25	0.2823	1.0532	0.2823	0.2600	0.2980	5.295	8	-0.777	2.306	0.0423
50	0.3285	1.2257	0.3285	0.2900	0.3940	12.171	8	-3.299	2.306	0.0423
100	0.3213	1.1987	0.3213	0.2580	0.3700	10.401	8	-2.903	2.306	0.0423

Auxiliary Tests			_		Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distrib	ution (p >	0.01)		0.9389		0.929		1.13147	2.21844
Bartlett's Test indicates equal val			·		10.4714		15.0863			
The control means are not signifi			0.13)		1.59507		2.14479			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df _
Dunnett's Test	100	>100	_	1	0.04229	0.15779	0.00687	0.00135	9.5E-04	5, 42

Dose-Response Plot

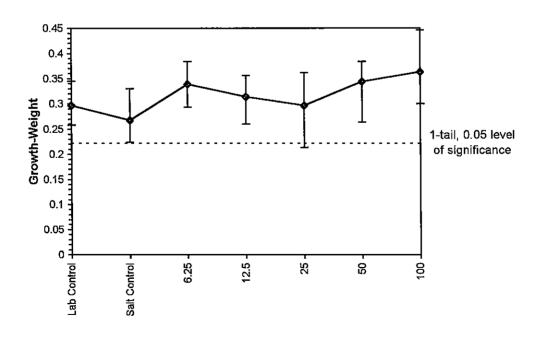
Page 1


							т	est Sp	ecies:	A. M.bah	1/12	
Client Name:	(îtu	of	Buei	Vave.	ntar	a.	Test	Date:	3/17/0	4	
Sample ID:		Scie								0403		· .
Conc.	1			S	urvival	on Tes	t Day:			Percent	pan wt.	pan + mysid
(<u>* / ,</u>)	Rep.	0	1	2	3	4	5	6	7.	Survival	(g)	(g)
25	а	5	3	5	5	5			5	[00	0.03552	0.03678
<i></i>	b	5	5	5	2	S	5	5	5	100	0.03476	0.03625
	C	5	5	5	5	5	5	5	5	100	0.03653	0.03787
	d	5	. 7	7	4	4	4	4	4	80	0.03773	0.03909
	e	5	5	5	5	5	5	5	9	1D>	0.03381	0.03529
	f	5			5	2	3	5	3	105	0.03524	0.03672
	<u> </u>	5	5	5	5	<u> </u>	5	5	5	100	0.03324	0.03456
	g h	5		5	٠,	5	4	4	4	80	0.03326	0.034-11
		5		5	5			5	2	100		0.03360
50	a		5	5		5	5			100	0.03210	0.03457
	b	5	<u>.5</u>	2	5		5	5	5		0.03312	0.03285
	С	151	4	4	4	5	5	2	5	100	0.03/36	
	d	5	-5	5	5	5	4	4	4	80	0.03451	0,03608
	е	5	5	5	5	5_	5	<u>ح</u>	5	100	0.0 3042	0.03193
	f	5	5	5	5	5	5	5	5	100	ुं ० ∙० 34 5€	0.03653
	g	5	5	5	5	5	5	5	5	100	0.03121	003 330
	h	5	5	5	~	5	3	5	5	(00)	0.0 2950	0.03136
100	а	5	3	5	~	5	<	5	5	100	0.03337	0.03493
100	b	5	5	5	<i>Z</i> -7	5	3	5	5	100	P0EE 0.0	0.03438
	С	5	5	5	5	5	5	5	9	100	0.03152	0.03323
	d	5	5	5	5	5	3	3	3	100	0.03241	0.03414
	e	5	3	5	5	5	3	5	5	100	0.03418	0.03572
	f	5	4	4	4	4	4	4	4	80	0.0 3414	0.03569
·			5	-	5	5	5	3	5	100	0.03397	003582
	g	5		5	3	5		3	5	100		0.034.58
	h	2	5	5_	-	 _	-5-	3	17	100	0.03296	10.0 0.00
	a		<u> </u>	ļ	 		 	-	ļ <u> </u>	<u></u>		
	b		<u> </u>	ļ—	 	<u> </u>	ļ <u> —</u>	<u> </u>	<u> </u>		-E	
	С			<u> </u>		ļ			<u> </u>			
	d				ļ		ļ	<u></u>	<u> </u>	ļ	- (c)	
	е	<u> </u>						<u> </u>	<u> </u>			
	f						<u> </u>		ļ <u> </u>		[9]	
	g											
	h				{			T				
Tech Initials		S) not	RG	SH	me	AH	R6	AH	mc			
		7		1-2-1		131	1 3 7			_	Wei	ght Data:
Feeding Time	s (dav)	:	0	1	2	3	4	5	6			in: 3 24 04 1300
	(=3)				0815		0930	0845		7		ut: <u>3-25-64 [3</u> 10
			1/2 22	1515				1745		1	Oven Temp (°C	
			1030	رادي	14100	TIGOS	1/8/11	17 (7)	1.000	J	Tach Initia	Is: AW
											i eon milia	13.
_											00.06	w us delat
Comments:										_	QU Chec	:k: <u>UC U/18/04</u> w: <u>mt 5/5/04</u>
										_	Final Revie	W: Mt 5/5/04

							7			A. M.b				
Client Name:		City SCR	of	Buer	aver	<u>ıtur</u>	a	Test	Date:	3/17/00	L			
Sample ID:		SCR	E	B-3	·			Tes	st No.:	0403		100		
Conc.		<u> </u>		S	urvival	on Tes	st Dav:			Percent]:	pan wt.	pan + mysid	
(- / -)	Rep.	0	1	2	3	4	5	6	7	Survival) (1)	(g)	(g)	
Lab Control	a	5		4	4	4	4	4	Δ	80	s	0.03327	0.03474	
#2-	b	5	5	5	5	4	4	4	4	86		0.03548	0.03677	
	С	5	5	5	5	5	5	5	5	100	77	0.03576	0-03712	
	d	5	5-	5	5	5	5	5	5 N	100	75	0.03535	0.03699	
	е	5	5	5	5	u	4	4	15 4"	WY 60	100	0-0 3124	0.03261	
	f	5	5	5	5	5	5	5	5	100		0.03502	0.03674	
	g	5	5	5	5	5	5	5	ار. 5 ا	lao]	0.0 3369	0.03513	
	h	5	5	5	5	5	5	5	YE	100]	0.03274	0.03430	
Salt Control	а		.5	ц	4	-+	u/	4	بك	84].	0.03590	0.0371	
#2-	b	15/15/	5	ц	4	4	4	4	4	80];	0.03410	003525	
	С	5	5	5	5	3	5	5	5	I(D)	<u>]</u> [.	0.03410	003531	
	d	5	5	5	5	5	5	5	5	loo]:	0.03110	0.03258	
	е	5	5	5	5	5	5	5	5	100]:	0.03545	0.03710	
	f	5	5	5	5	5	5	5	5	107];	0.03624	0.000,0378	5
	g	5	5	5	5	ら	5	5	4	1(2)		0.03646	0.03775	
	h	15	5	5	5	5	¥	4	4	80		0.03182	0.03294	
6.25	а	5	5	2	5	5	5	5	5	1(20		0.0 2444	0.03575	
	b	15	5	5	5			5	5	105]	0.03275	0.03419	
	С	5	5	2	5	5	5	5	5	100		0.03227	0.03381	
	d	5	5	3	25	5	5	5	5	100	_]:	6.03208	0.03427	
	е	5	5	3	5	5	5	5	5	100		0.03280	0.03442	
	f	5	5	5	5	5	5	5	5	100		0.03421	0.03568	
	g	5	5	5	45	5	5	5	5	100		0.03414	003551	
	h	5	5	5	5	5	5	5	5	100		0.03422	0.03565	
12.5	а	5	5	5	5	5	5	\$	5	100];	19120.0	0.03330	
	Ь	5	5	5	4	5	5	5	5	100	<u>]</u>	0.03166	0.03276	
	С	5	5	4	24	4	4	4	4	80		0.02870	0.03000	
·	d	5	5	5	5-	5	5	5	5	lab		0.03487	0.03616	
	е	5	5	5	5	5	5	_	5	100]	6,03384	0.03514	
	f	5	5	5	5-	5	5	<u>5</u> S	5	80		0.03263	0.03402	
	g		5	5	5	5	5	5	4	80		0,63567	0.03622	
	h	5	6	5	4	5	5	5	5	100		6.03583	0.03731	
Tech Initials		SYNT	RY	SH	me	Ait	KG	AH	ML]				
												-	ıht Data:	
Feeding Time	s (day)):	0	1	2	3	4	5	6	_			1: 3 24 04 13	
				0845	08/2	070	043	0845	0530			Date/Time ou	t: <u>3-25-04/13</u> 1	O
			1630					1745	$\overline{}$		0	ven Temp (°C): 60	
				-	<u> </u>					_		Tech Initial	s: <u>AW</u>	
Comments:		·					<u></u>			-		QC Chec	K: <u>le 4/18/04</u>	
				_						_		Final Review	V: MT 5/5/04	(

		•		Mysid Sur	ival and	Growth	Test-7 Day	/ Surviva	al	
Start Date:	03/17/2004		Test ID:	0403-101	•		Sample II):	City of Buenaventura	
End Date:	03/24/2004		Lab ID:	AEESD-A	MEC Bioa	ssay SD	Sample T	уре:	Ambient water	
Sample Date:	03/16/2004		Protocol:	EPAM 91-	EPA Mari	ne	Test Spec	ies:	-MY-Mysidopsis bahia	
Comments:	C-3						•		AM-Americanysis	
Conc-%	1	2	3	4	5	6	7	8		
Lab Control	0.8000	0.8000	1.0000	1.0000	0.8000	1.0000	1.0000	1.0000		
Salt Control	0.8000	0.8000	1.0000	1.0000	1.0000	1.0000	1.0000	0.8000		
6.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
12.5	1.0000	1.0000	1.0000	1.0000	0.8000	1.0000	0.8000	1.0000	•	
25	0.6000	1.0000	1.0000	1.0000	0.8000	1.0000	1.0000	1.0000	1	
50	0.8000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1	
100	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1,0000	1	

		_	Tra	ansform:	Arcsin S	uare Roo	t	Rank	1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	
Lab Control	0.9250	1.0000	1.2560	1.1071	1.3453	9,813	8			
Salt Control	0.9250	1.0000	1.2560	1.1071	1.3453	9.813	8			
6.25	1.0000	1.0811	1.3453	1.3453	1.3453	10.000	8	80.00	46.00	
12.5	0.9500	1.0270	1.2857	1.1071	1.3453	8.574	8	72.00	46.00	
25	0.9250	1,0000	1.2581	0.8861	1.3453	13.661	8	70.50	46.00	
50	0.9750	1.0541	1.3155	1.1071	1.3453	6,400	8	76.00	46.00	
100	1.0000	1.0811	1.3453	1.3453	1.3453	0.000	8	80.00	46.00	


				,				
Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non	-normal di	stribution	(p <= 0.01)	0.77081	0.929	-1.8211	3.67339
Equality of variance cannot be co	nfirmed							
The control means are not signific	cantly diffe	erent (p = 1	1.00)		########	2.14479		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	100	>100		1				

			Mysid	Survival,	Growth a	nd Fecu	ndity Tes <u>t</u> -	Growth-	Weight
Start Date:	03/17/2004		Test ID:	0403-101			Sample ID):	City of Buenaventura
End Date:	03/24/2004	ļ	Lab ID:	AEESD-AI	MEC Bioa	ssay SD	Sample T	уре:	Ambient water
Sample Date:	03/16/2004)	Protocol:	EPAM 91-	EPA Mari	ne	Test Spec	ies:	MY-Mysidopsis bahia
Comments:	C-3								AM-Americanysis
Conc-%	1	2	3	4	5	6	7	8	
Lab Control	0.2940	0.2580	0.2840	0.3280	0.2740	0.3440	0.2880	0.3020	
Salt Control	0.2420	0.2300	0.2420	0.2960	0.3300	0.3220	0.2580	0.2240	
6.25	0.3060	0.3540	0.3600	0.3200	0.3580	0.2940	0.3840	0,3360	
12.5	0.3400	0.3060	0.3140	0.2600	0.3020	0.3260	0.3060	0.3560	
25	0.2140	0.3040	0.3200	0.2660	0.2860	0.3160	0.3080	0.3620	
50	0.2640	0.3380	0.3820	0.3460	0.3560	0.3460	0.3360	0.3840	
100	0.3000	0.3380	0.3340	0.3400	0.3400	0.3740	0.4460	0.4300	

				Transforn	n: Untran	sformed			1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Lab Control	0.2965	1.1063	0.2965	0.2580	0.3440	9.456	8			
Salt Control	0.2680	1.0000	0.2680	0.2240	0.3300	15.689	8			
6.25	0.3390	1.2649	0,3390	0.2940	0.3840	9.014	8	-3.592	2.306	0.0456
12.5	0.3138	1.1707	0.3138	0.2600	0.3560	9.152	8	-2.315	2.306	0.0456
25	0.2970	1.1082	0.2970	0.2140	0.3620	14.652	8	-1.467	2.306	0.0456
50	0.3440	1.2836	0.3440	0.2640	0.3840	10.819	8	-3.845	2.306	0.0456
100	0.3628	1.3535	0.3628	0.3000	0.4460	13.976	8	-4.794	2,306	0.0456

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distrib	ution (p >	0.01)		0.98541	<u> </u>	0.929		0.01234	-0,0953
Bartlett's Test indicates equal var	iances (p =	0.69)			3.05906		15.0863			
The control means are not signifi-	cantly diffe	rent(p = 0)	0.13)		1.59507		2.14479			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TÜ	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	100	>100		1	0.04557	0.17004	0,00965	0.00156	2.2E-04	5, 42

	4,1.4	.,,,,,,										•
										Δ		
							7	oet Sn	ocies.	A. bah	1/1	
Client Name:	(ity	of	Buer	rave	ntu	10	Test	Date:	3/17/0	4	
		Con	_	\wedge \sim	3_			т.,	-t Nia t	0403	- 101	
Sample ID:	;	<u> </u>	<u>.e</u>		<i>-</i>		•	res	st 140	0-100		· · · · · · · · · · · · · · · · · · ·
	, 				•	T-	4 D-11			Percent	pan wt.	pan + mysid
Conc.	Rep.						st Day:	-	I	•	[2]	(g)
<u> </u>		0	1_	2	3	4	5	6	7	Survival	(g)	
25	a	5	5	5	5	4	3	3	3	<u>(06</u>	0031H	0.03221
	b	5_	_5	5_	5	Խխ	5	9, 6	5	100	0.03165	0.03317
	С	5	_5	5	5	5	5	5	5	106	0.03428	0.03588 0.03420
	d	5	5	5	25	S)	5		5	106	0.03297	0.03721
	e	5	5	4_	4	4	14 -	4	4	86	0.03578	
	f	5	5	5	5	5	5	5	5	106	0.03053	003211
	g	5	5.	5	5	5	5	5	5	100	₹ 003505	0.03356
	h	5	5	5	5	5	5	3	5_	100	003340	0.03521
50	а	5	4	4	4	4	4	4	4	ঠি	003170	0.03302
	b	5	5	5	5	3	5	5	5	100	0.03492	0.03661
	С	5	5	5	5	5	5	5	5	100	003241	0.03432
	d	5	-5	5	5	5	5	5	5	106	6.03198	0.03371
	e	5	5	5	5	5_	5	7	5	100	6.03350	0.035-28
	f	5	5	5	5	5	5	5	5	100	0.03560	0-03733
	g	5	7	5	5	5	3	5	5	1.00	0.03546	0.03714
	h	5	5	5	5	5	5	5	5	100	60342G	0.03618
100	a	5	5	5	5	5_	15	5	5	106	0.0 3483	0.03633
H. W	<u>u</u> b	5	3	5	5	5	5	5	5	100	0.03623	0.03792
	C	5	5	5	5	5	5	3	5	106	0.03236	0-03403
	d	5	13	5	5	5	5	5	5	106	0.0 3520	0.03690
	 -	3	5		5	5	2	5	5	106	6.03647	0.03817
	e	5	5	5	5	5	5	5	5_	106	6.03471	003658
	+		1 2	5	3	5	15-	5	5	100	6.0 3360	0-03583
	<u>g</u>	5	+->	5	5	3	13	5	5		0.03225	0.03440
	h	12	 	5_	- '-	+ -	+	+->-	 	106	0.03225	100
	a	ļ	 -	1	+			 	 			
ļ	b	<u> </u>	↓	 	 -	 -	-}	_	 	 		
	С	 	<u> </u>	4	-	 			 		<u> </u>	
	d	<u> </u>	 	+		├	- 		+	 		
	е	 				 	 	-	+			
	f	<u> </u>	<u> </u>		 	 			 	 		
	g	<u> </u>	+			<u> </u>	 		+	 		
	h	<u> </u>		ļ		 	 	+		ļ	2.2 2.2	
Tech Initials		\$ \square \(\sqrt{1} \)	T RG	SH	mc	AH	Rh	14H	111	J	NAJ-	alit Data
							_	_	_			ght Data:
Feeding Time	es (day):	0	1	2	3	4_		6	٦		in: <u>3 24 04 13</u> 02
				0844	5 0815	070	١ 0920	> 108 45	0830	4	Date/Time o	ut: <u>3-28-04 131</u> 0
			1630		1770	1400	> 1800	1745	1670	_	Oven Temp (°	C): <u>60</u>
											Tech Initia	ls: AW
											OC Char	الماليمياط
Comments:										_	GC CHEC	k: <u>UC 4/13/04</u>
										_ _	rinai Kevie	W: MT 5/5/04

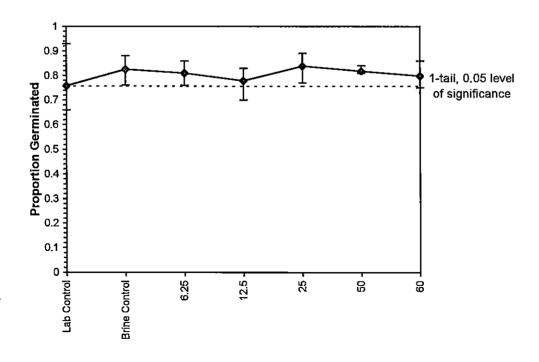
Comments:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												
							,	Гest Sp	ecies:	Ai, bo	chia	
Client Name:		Cita	£	Buer	nave i	ntriv	n	Tes	t Date:	3/17/04	ſ	
Silette Hairte.		4,4	<u> </u>		7	(10(1				=1:14=1		
Sample ID:		SCR	E_	<u>C-2</u>)			Te	st No.:	0403-	- 101	
Conc.	_			s	urvival	on Te	st Day:	<u> </u>	<u> </u>	Percent	pan wt.	pan + mysid
(-/-)	Rep.	0	1	2	3	4	5	6	7	Survival	(g)	(g)
ab Control	а	5	5	4	4	4	Ч	4	4	80	0.0	0.03474
#2	Ь	5	5	5	5	4	4	4	4	80	0.0	0.03677
	C	5	3	5	5	5	5		5	luo	<u>د</u> ه د	0.03712
	d	5	5	5	5	5	5	5	5	100	# 0.0	0.03699
	е	5	5	5	5	4	4	4	4	જુ	0.0	0.03261
	f	5	5	5	5	5	5	5	5	IUD	0.0	003674
.,,	g	5	5	5	5	5	5	5	5	100	δ.ο.	0.03513
	h	13	5	5	5	5	5	5	5	108	0.0	0.03430
Salt Control	а	5	5	4	14	Ч	V	4	4	80.	8 0.0	0.03711
#2	b	5	5	h	4	4	Y	4	4	80	0.0	0 0 3525
710	С	5	5	5	5	5	5	5	5	100	0.0	0.03531
	d	5	5	5	5	5	5	5	5	100	6.0	0-03258
	e	15	5	5	5	5	3	5	5	lw	0.0	0-03710
	f	5	5	5	5	5	5	5	5	140	5 0.0	0-03785
	g	5	5	5	5	5	5	5	5	100	<u></u>	0.03775
	h	5	5	5	5	5	ĬŸ	4	4	80	0.0	0.03294
6.25	a	5	5	5	5	5	3	5	5	100	6.5.3443	8.0359
<u> </u>	b	15	5	5	5	5	5	5	5	106	0.0 3313	0.03550
	С	15	5	5	5	5	5		5	108	0.03073	0.03253
	d	5	5	5	5	5	5	5	5	100	0.63441	0.03601
	е	15	5	5	5	5	5	5 5	5	100	0.03555	0.03734
	f	15	5	5	5	5	5	5	5	100	093934	0.03481
	g	15	5	5	5	5	5	5	5	100	0.03242	0.0343
	h	15		5	5	5	1 3	5 5	5	100	6.03392	0.03560
12.5	а	5	5	5	5	5	5	5	5	100	6.03130	0.03300
10-12	b	13	5	5	5	5	5	5	5	lob	0.03483	0.03636
	C	5	5	5	5	5	5	5	5	100	003278	0.03435
	d	13	5	5	5	5	1	5	5	100	0.03478	0.03608
·- <u>-</u> · · ·	e	5	5	5	5	4	5	4	4	80	0.03656	0.03807
·	f	15	5	5	5	3	4-5	5	5	106	0.03016	0.03179
	-	12	1	<u> </u>	4	182	1 5	11.	12	925	10.0 5016	0.03317

	g	ロワー	15	4	4	14	. Ч	4	4	700	@ 0.031 5 9	0.00014	
	h	5	5	5	49	5	5	5	5	100	Eeee 00	0.03531]
Tech Initials		5/15	RG	SH	MC_	AH	RU	A ₃	mc				
			, ,					-			Weig	ht Data:	
Feeding Times	(day)	:	0	1	2	3	4	5	6		Date/Time in	324-04 1	308
				9845	0815	OFUL	0930	2480	0830		Date/Time out	3-25-04 1	310
			1630	1515	1,500	1400	1800	1745	1630		Oven Temp (°C)	:60	_
						-					Tech Initials	: <u>A</u> W	<u>-</u>
Comments:											QC Check	: 1104/p/a	4
•											Final Review	: MT51510	4

M. PYRIFERA

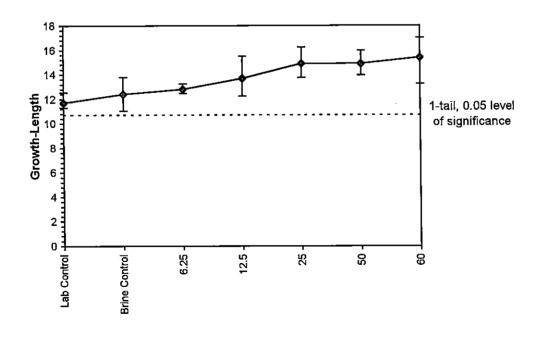
Kelp Spore Germination Bioassay Worksheet


Client: <u>City of Bueraventura</u>	Start/End Dates: 3-17-04 / 3-19-04
Test No.: <u>6463 - 162 → 16</u> 5	Start/End Times: 11020 / 1376
	Test Species: Macrocystis pyrifera
Date Collected: Kelp Collector: Collection Location: Conditions (weather, etc.): 3.16.04 AH, TR Faggy la Tolla Core Foggy, medical	te surge, 10:15ft visibility
Dilution Water Source (Client I:):	Scripps per
Dilution Water Source (Client II:):	
Dilution Water Source (Client III:):	
Dilution Water Source (Reference Toxicant):	
Time of Initial Rinsing and Dessication : Time of Rinsing and Transfer to Release Beakers: Conditions of Zoospore Density and Motility (beaker 1): Time of Blade Removal From Release Beaker 1/Beaker 2 (if needed)	3/16/04 1/30 (keep kelp from each collecting bag separated) 3/17/04 1538 (keep kelp from each collecting bag separated) high density, and motility 1/400
Density Counts (target = 90): 146 157 164 15	157.2 Mean: 131.2 Me
Mean 151.1 * 10,000 = 1,512,000 spores per ml (Density of	Spore Release)
Calculate the volume of spore stock to add to each test container (225,000 spores/container)/(density of spore release) = ml s In cases of a spore release = 900,000 spores/ml, the volume is 0.25	stock/container
If density > 900,000 spores/ml, calculate a dilution factor, x, and crea	te a new spore stock of 900,000 cells/ml and add 0.25 ml:
Density of spore release $1.592000 \cdot 0.25 \text{ml} = 2$	$\frac{998000}{225,000} \text{ spores} = 1.77(x)$
Example: 980,000 * 0.25 / 225,000 = 1.09 (100 ml stock + 9 ml sw)	
	volume added should not exceed 0.5 ml. (This volume exceeds the EPA tion volume. However, it may sometimes be necessary to exceed the
If the density of spore release is < 450,000 spores/ml, check the dens	sity of the spores in the second release beaker.
Time of Inoculation: 1620 Amount in	oculated: <u>0, 25 m L</u>
Comments: 24 h c QC: 76%	
	AMEC Earth & Environmental Bioassay Laboratory
QC Check: 110 4/14/04 Final Review: \$2	5550 Morehouse Drive, Suite B San Diego, CA 92121

		- N	/lacrocyst	is Germin	ation and Growth	Test-Proportion	n Germinated
Start Date:	03/17/200	4	Test ID:	0403-102		Sample ID:	City of Buenaventura
End Date:	03/19/2004	4	Lab ID:	AEESD-AI	MEC Bioassay SD	Sample Type:	Ambient water
Sample Date:	03/16/2004	4	Protocol:	MBP 90-A	nderson et al.	Test Species:	MP-Macrocystis pyrifera
Comments:	Sample A	-2					
Conc-%	1	2	3	4	5		
Lab Control	0.6600	0.7100	0.9300	0.8300	0.6600		
Brine Control	0.7600	0.8100	0.8100	0.8800	0.8700		
6.25	0.8600	0.7900	0.8600	0.7600	0.7800		
12.5	0.8300	0.7000	0.8000	0.7600	0.8000		
25	0.8200	0.8900	0.8700	0.8400	0.7700		
50	0.8200	0.8100	0.8400	0.8100	0.8100		
60	0.7700	0.7500	0.8400	0.7700	0.8600		

		_	Tra	ansform:	Arcsin Sc	uare Root	t		1-Tailed		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	
Lab Control	0.7580	0.9177	1,0695	0.9483	1.3030	14.356	5			•	
Brine Control	0.8260	1.0000	1.1435	1.0588	1.2171	5.722	5				
6.25	0.8100	0.9806	1.1222	1.0588	1.1873	5.423	5	0,590	2.360	0.0853	
12.5	0.7780	0.9419	1.0820	0.9912	1.1458	5.492	5	1.700	2.360	0.0853	
25	0.8380	1.0145	1.1594	1.0706	1.2327	5.418	5	-0.442	2.360	0.0853	
50	0.8180	0.9903	1.1302	1.1198	1.1593	1.518	5	0.366	2.360	0.0853	
60	0.7980	0.9661	1.1070	1.0472	1.1873	5.606	5	1.009	2.360	0.0853	

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distrib	ution (p >	0.01)		0.93798		0.9		-0.0441	-1.0473
Bartlett's Test indicates equal var	iances (p =	= 0.33)			5.76421		15,0863			
The control means are not signifi-	cantly diffe	rent(p = 0)	0.35)		0.99108		2.30601			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	60	>60		1.67	0.06882	0.08309	0.00373	0.00327	0.36615	5, 24


Dose-Response Plot

			Macro	cystis Ger	mination and Gr	owth Test-Growt	h-Length
Start Date:	03/17/2004	4	Test ID:	0403-102		Sample ID:	City of Buenaventura
End Date:	03/19/2004	4	Lab ID:	AEESD-A	MEC Bioassay SD	Sample Type:	Ambient water
Sample Date:	03/16/2004	4	Protocol:	MBP 90-A	nderson et al.	Test Species:	MP-Macrocystis pyrifera
Comments:	Sample A	-2	_				
Conc-%	1	2	3	4	5		·
Lab Control	11.750	11.250	12.500	11.250	11.500		
Brine Control	12.000	11.750	11.000	13.250	13.750		
6.25	12.500	12.750	13.000	12.500	13.250		
12.5	12.250	14.000	15.500	12.250	14.500		
25	14.000	15.000	15.500	13.750	16.250		
50	14.500	14.750	14.000	15.500	16.000		
60	14.250	16.250	13.250	16.250	17.000		

-			•	Transforn	ո: Untran	sformed		_	1-Tailed		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	
Lab Control	11.650	0.9433	11.650	11.250	12,500	4.450	5				
Brine Control	12.350	1.0000	12.350	11.000	13.750	9.121	5				
6.25	12.800	1.0364	12.800	12.500	13.250	2.547	5	-0.631	2.360	1.683	
12.5	13.700	1.1093	13.700	12.250	15.500	10.435	5	-1.893	2.360	1.683	
25	14.900	1,2065	14.900	13.750	16.250	6.979	5	-3.577	2,360	1.683	
50	14.950	1.2105	14.950	14.000	16.000	5.341	5	-3.647	2.360	1.683	
60	15.400	1.2470	15.400	13.250	17.000	10.241	5	-4.278	2.360	1.683	

Auxiliary Tests				•	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distrib	ution (p >	0.01)		0.97464		0.9		-0.1462	<i>-</i> 0.7865
Bartlett's Test indicates equal var			,		7.97645		15.0863			
The control means are not signific			0.24)		1.26234		2.30601			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	60	>60		1.67	1.68262	0.13624	7.92333	1.27083	7.7E-04	5, 24

Species: MP-Macrocystis pyrifera

Sample ID: City of Buenaventura Start Date: 03/17/2004

Test ID: 0403-102

Protocol: MBP 90-Anderson et al.

Sample Type: Ambient water

		-	7/2004 E	nd Date: 0	3/19/2004					D-AME		 ssav Sl	D				
Start	Date.	00/17	72004	Total	Number	-		Lu <i>u</i>	. , <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	1	. D.O.		Ī	1	I	Cal	
Pos	ID	Rep	Group	Counted	Germ	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	Factor	Notes
1	2		Lab Control	100	71	4	5	4	4	4	5	5	4	5	5	2.5	
2	14	4	6.25	100	76	7	5	5	4	6	5	4	4	4	6	2.5	
3	30	5	50	100	81	8	5	7	8	6	5	5	6	7	7	2.5	
4	12	2	6.25	100	79	7	5	5	5	3	4	6	6	6	4_	2.5	
5	16	1	12.5	100	83	4	6	4	3	4	5	6	5	5	7_	2.5	
6	34	4	60	100	77	8	6	6	5	5	5	8	7	7	. 8	2.5	
7	26	1	50	100	82	6	6	9	6	5	4	5	7	4	6	2.5	
8	22	2	25	100	89	7	6	7	6	5	6	6	8	5	4	2.5	
9	11	1	6.25	100	86	5	5	5	5	5	5	4	5	5	6	2.5	
10	5	5	Lab Control	100	66	4	6	6	4	5	4	3	4	6	4	2.5	
11	9	4	Brine Control	100	88	6	5	6	6	6	5	5	4	5	5	2.5	
12	20	5	12.5	100	80	4	7	8	7	7	5	5	4	6	5	2.5	
13	10	5	Brine Control	100	87	6	6	6	7	4	5	6	5	5	5	2.5	
14	3	3	Lab Control	100	93	5	4	5	5	5	6	5	5	5	5	2.5	
15	29	4	50	100	81	7	5	7	4	8	6	6	7	7	5	2.5	
16	1	1	Lab Control	100	66	4	6	4	4	4	5	7	4	4	5	2.5	
17	4	4	Lab Control	100	83	5	5	4	5	4	4	4	4	6	4	2.5	
18	17	2	12.5	100	70	5	7	6	6	.5	3	7	5	7	5	2.5	
19	25	5	25	100	77	7	8	6	6	7	6	5	8	6	6	2.5	
20	35	5	60	100	86	6	6	9	5	9	8	7	8	6	7	2.5	
21	13	3	6,25	100	86	4	5	7	4	6	4	5	6	6	5	2.5	
22	27	2	50	100	81	7	6	6	3	6	6	5	6	7	7	2.5	
23	21	1	25	100	82	6	6	6	6	6	4	6	5	5	6	2.5	
24	33	3	60	100	84	5	6	5	6	4	4	7	5	5	6	2.5	
25	18	3	12.5	100	80	8	7	5	6	6	5	6	7	7	5	2.5	
26	28	3	50	100	84	6	7	5	7	4	6	6	6	3	6	2.5	
27	23	3	25	100	87	5	5	5	7	7	6	7	7	7	6	2.5	
28	24	4	25	100	84	5	6	5	5	5	8	6	5	5	5	2.5	
29	32	2	60	100	75	7	9	6	7	6	6	7	5	6	6	2.5	
30	6	1	Brine Control	100	76	5	5	5	5	5	5	4	4	5	5	2.5	
31	8	3	Brine Control	100	81	4	3	5	4	4	6	4	5	5	4	2.5	
32	31	1	60	100	77	6	6	4	7	5	6	4	7	7	5	2.5	
33	15	5	6.25	100	78	5	5	6	6	6	6	6	3	4	6	2.5	
34	7	2	Brine Control	100	81	4	6	5	6	5	4	5	4	4	4	2.5	
35	19	4	12.5	100	76	3	4	6	4	4	4	4	8	6	6	2.5	Data Entry QC: 54

Comments: Sample A-2

Test ID: 0403-102 Test: MC-Macrocystis Germination and Growth Test Protocol: MBP 90-Anderson et al. Species: MP-Macrocystis pyrifera Sample Type: OTH-Other sample type Sample ID: BUENA-City of Buenaventura Lab ID: AEESD-AMEC Bioassay SD End Date: 03/19/2004 Start Date: 03/17/2004 Cal Total Number L7 L8 L9 L10 Factor Notes L4 L5 L6 L2 L3 ID Rep Group Counted Germ L1 Pos SH 2.5 loo ч ч ч н ч ч ч ц ц S C શ્ 5. Ц И প্ত ~ ፕ u В б Б C Ц н ے 5_ ч C = C প্ত Н ч ч н ч ч _ ଷ 枟 q ଶ Ц Ğ н G G G ч ᄃ 7. R C ч ч ч Ц ц ግፍ Ц ন্ত W Ц ч Comments: Sample A-2 ч ч LC3-1 LC3-2 LOD ToxCalc 50 Reviewed by: 14/04 LC3 3 Page 1 ч LC3-4 LOO

LC3 - 5

Species: MP-Macrocystis pyrifera

Sample ID: BUENA-City of Buenaventura

Test ID: 0403-102

Protocol: MBP 90-Anderson et al. Sample Type: OTH-Other sample type

Lab ID: AEESD-AMEC Bioassay SD

tart Date: 03/17/2004	End Date: 03/19/2004

Start	Date.	00/1/	12004	Ind Date. U					. , ,	7,							
				Total	Number											Cal	
Pos	D	Rep		Counted	Germ_	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	Factor	Notes
16	1		L-Lab Control														
1	2		L-Lab Control														
14	3	3	L-Lab Control								_						
17	4	4	L-Lab Control														
10	5	5	L-Lab Control														
30	6	1	B-Control														<u> </u>
34	7	2	B-Control										:				
31	8	3	B-Control				_										
11	9	4	B-Control														<u>-</u> -
13	10	5	B-Control														
9	11		6.25											ļ			
4	12	2	6.25														
21	13	3	6.25														
2	14	4	6.25				_										
33	15	5	6.25						_							_	
5	16	1	12.5							_							
18	17	2	12.5														
25	18	3	12.5														
35	19	4	12.5														
12	20	5	12.5														
23	21	1	25											<u> </u>			
8	22	2	25														<u> </u>
27	23	3	25											ļ			 –
28	24	4	25						_			_		<u> </u>			
19	25		25														
7	26		50														
22	27	2	50														
26	28		50														
15	29	4	50														
3	30	5	50											<u> </u>			
32	31	1	100b											<u> </u>			
29	32	2	100b													_	<u>-</u>
24	33	3	100b														
6	34		100b														
20	35		100b														
			-l- A O														

Comments: Sample A-2

of the

Species: MP-Macrocystis pyrifera

Sample ID: BUENA-City of Buenaventura

Start Date: 03/17/2004 End Date: 03/19/2004

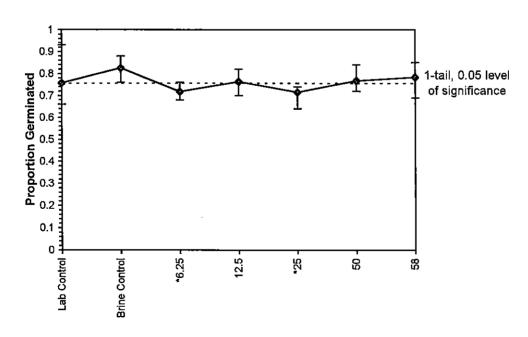
Test ID: 0403-102

Protocol: MBP 90-Anderson et al.

Sample Type: OTH-Other sample type

Lab ID: AEESD-AMEC Bioassay SD

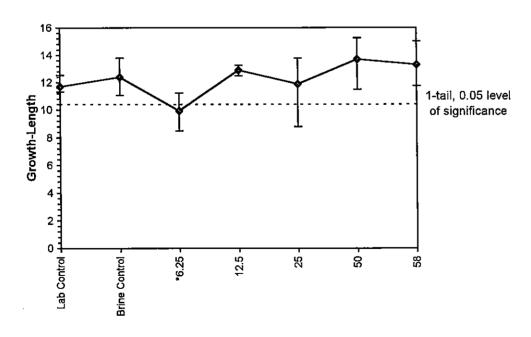
Start	Date:	03/17	/2004E	ind Date: 0	3/19/2004			Lab ID	: AEES	D-AME	C Bloa	ssay Si	,			·····	·
				Total	Number			i								Cal	
Pos	ם	Rep		Counted	Germ	L1	L2	L3	_L4	L5	L6	L7	L8	L9_	L10	Factor	Notes
16	1		L-Lab Control		iele			<u> </u>			<u> </u>						
1	2		L-Lab Control		71			<u> </u>	<u> </u>		<u> </u>					-	
14	3	3	L-Lab Control		93							ļ					
17	4	4_	L-Lab Control		83_				<u> </u>	<u> </u>		<u> </u>					
10	5	5	L-Lab Control		ble				<u> </u>	ļ							
30	6	1	B-Control		76							ļ	_			ļ	
34	7	2	B-Control		8			<u> </u>		<u> </u>							
31	8	3	B-Control		81					<u> </u>							
11	9	4	B-Control		প্ত												
13	10	5	B-Control		87												
9	11	1	6.25		86				[<u></u>								
4	12	2	6.25		79					<u> </u>							
21	13	3	6.25		86												
2	14	4	6.25		76_											<u> </u>	
33	15	5	6.25		78									Ĺ <u>. </u>	_		
5	16	1	12.5		83												
18	17	2	12.5		70										<u> </u>		
25	18	3	12.5		80												
35	19	4	12.5		76												<u> </u>
12	20	5	12.5		80						<u> </u>	1					
23	21	1	25		82					<u> </u>							
8	22	2	25		89				<u> </u>					<u> </u>	ļ		
27	23	3	25		87				<u> </u>	<u> </u>			1	<u></u>	ļ	<u> </u>	
28	24	4	25		84							<u></u>			L		
19	25	5	25		77							<u> </u>		ļ	<u> </u>		
7	26	1	50		82				<u> </u>	L		ļ					<u> </u>
22	27	2	50		81												
26	28	3	50 ·		84					<u> </u>	<u> </u>		<u> </u>		<u> </u>		<u> </u>
15	29	4	50		81					[ļ					
3	30	5	50		81							1					<u></u>
32	31	1	100b	· ·	77												<u> </u>
29	32	2	100b	T	75											<u> </u>	
24	33	3	100b		८५												
6	34	1	100b	1	' 77												
20	35		100b	1	86		<u> </u>									<u> </u>	<u> </u>
			nlo A 2													•	


Comments: Sample A-2

nc GH

	- 	1	/lacrocys	is Germin	ation and Growth	Test-Proportio	n Germinated
Start Date:	03/17/2004	4	Test ID:	0403-103		Sample ID:	City of Buenaventura
End Date:	03/19/2004	4	Lab ID:	AEESD-AI	MEC Bioassay SD	Sample Type:	Ambient water
Sample Date:	03/16/2004	4	Protocol:	MBP 90-A	nderson et al.	Test Species:	MP-Macrocystis pyrifera
Comments:	Sample B	-1					
Conc-%	1	2	3	4	5		
Lab Control	0.6600	0.8300	0.9300	0.6600	0.7100		
Brine Control	0.7600	0.8700	0.8100	0.8800	0.8100		
6.25	0.6800	0.7600	0.7100	0.7000	0.7400		
12.5	0.8000	0.7000	0.7400	0.7600	0.8200		
25	0.6400	0.7200	0.7400	0.7400	0.7400		
50	0.7200	0.7400	0.7500	0.8400	0.7900		
58	0.8500	0.7600	0.8300	0.7900	0.6900		

		_	_	1-Tailed						
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Lab Control	0.7580	0.9177	1.0695	0,9483	1.3030	14.356	5			
Brine Control	0.8260	1.0000	1.1435	1.0588	1.2171	5.722	5			
*6.25	0.7180	0.8692	1.0115	0.9695	1.0588	3,527	5	3.608	2.360	0.0863
12.5	0.7640	0.9249	1.0651	0.9912	1.1326	5.290	5	2.142	2.360	0.0863
*25	0.7160	0,8668	1.0095	0.9273	1.0357	4.655	5	3.661	2.360	0.0863
50	0.7680	0.9298	1.0700	1.0132	1.1593	5.430	5	2.007	2.360	0.0863
58	0.7840	0.9492	1.0906	0.9803	1.1731	6.960	5	1.446	2.360	0.0863


Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distrib	ution (p >	-0.1771	-0.6605						
Bartlett's Test indicates equal var	iances (p =	= 0.80)			2.31675		15.0863			
The control means are not significant	cantly diffe	rent (p = 0	0.35)		0.99108		2.30601			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	58	>58		1.72	0.06968	0.08414	0.01278	0.00335	0.01096	5, 24

Macrocystis Germination and Growth Test-Growth-Length													
Start Date:	03/17/2004	4	Test ID:	0403-103		San	nple ID:	City of Buenaventura					
End Date:	03/19/2004	4	Lab ID:	AEESD-A	MEC Bioassay	SD San	nple Type:	Ambient water					
Sample Date:	03/16/2004	4	Protocol:	MBP 90-A	nderson et al.	Tes	: Species:	MP-Macrocystis pyrifera					
Comments:	Sample B	-1						and a					
Conc-%	1	2	3	4	5								
Lab Control	11.500	11.250	12.500	11,750	11.250								
Brine Control	12.000	13.750	11.750	13.250	11.000								
6.25	10.250	8.750	8.500	11.250	11,000								
12.5	12.750	13.000	13.250	13,000	12.500								
25	13.250	12.500	13.750	8.750	11.000								
50	13,250	11.500	14.750	15.250	13.750								
58	11.750	12.750	13.500	15.000	13.500								

			-	Transforn	n: Untran	sformed		_	1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t_Stat	Critical	MSD
Lab Control	11.650	0.9433	11.650	11.250	12.500	4.450	5			
Brine Control	12.350	1.0000	12.350	11.000	13.750	9.121	5			
*6.25	9.950	0.8057	9.950	8.500	11.250	12.737	5	2.856	2.360	1.983
12.5	12,900	1.0445	12.900	12.500	13,250	2.210	5	-0.654	2.360	1.983
25	11.850	0.9595	11.850	8.750	13.750	17.048	5	0.595	2.360	1.983
50	13.700	1.1093	13.700	11.500	15.250	10.672	5	-1.606	2.360	1.983
58	13.300	1.0769	13,300	11.750	15.000	8.956	5	-1.130	2.360	1.983

Auxiliary Tests				·	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distrib	ution (p >	0.01)		0.96631		0.9		-0.544	0.10329
Bartlett's Test indicates equal var					9.81935		15.0863			
The control means are not signific										
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	58	>58		1.72	1.98331	0.16059	9.03708	1.76563	0.00247	5, 24

Species: MP-Macrocystis pyrifera

Sample ID: City of Buenaventura
Start Date: 03/17/2004

End Date: 03/19/2004

Test ID: 0403-103

Protocol: MBP 90-Anderson et al.

Sample Type: Ambient water

Lab ID: AEESD-AMEC Bioassay SD

Start	Date.	03/1/	/2004	nd Date. U	3/13/2007			<u> </u>	. / ,			ouy o.		•			
				Total	Number	1										Cal	
Pos	ID	Rep	Group	Counted	Germ	<u>L1</u>	L2	L3_	_L4	L5	L6	L7_	L8	L9	L10_	Factor	Notes
36	4	4	Lab Control	100	66	4	6	4	4	_ 4	5	7	4	4	5_	2.5	
37	14	4	6.25	100	70	5	5	5	6_	3	4	6	3	3	5_	2.5	
38	18	3	12.5	100	74	5	5	4_	6	5	5	6_	4	7	6	2.5	
39	21	1	25	100	64	5	6	5	4	4	6_	7	6	5	5	2.5	<u> </u>
40	6	1	Brine Control	100	76	5	5_	5	5	5	5	4	4	5_	5	2.5	
41	31	1	58	100	85	4	3	4_	6	4	5_	5	6	5	5	2.5	
42	35	5	58	100	69	4	6	6	6	5	5	6	6	5	5	2.5	
43	32	2	58	100	76	3	6	5	5	6	6	8	6	3	3	2.5	<u> </u>
44	26	1	50	100	72	10	4_	5	5	6	7_	6	3	3	4	2.5	
45	8	3	Brine Control	100	81	4	6	5_	6	5	4	5	_4	4	4	2.5	
46	5	5	Lab Control	100	71	4	5	4	4	4	5_	5	4	5	5	2.5	
47	34	4	58	100	79	8	6	7	5	5	7_	6	- 8	4	4	2.5	
48	10	5	Brine Control	100	81	4	3	5	4	4	6	4	5	5_	4	2.5	
49	11	1	6.25	100	68	4	6	4	3	3	5	5	4_	4	3	2.5	
50	9	4	Brine Control	100	88	6	5	6	6_	6	5	5	4	5	5	2.5	
51	19	4	12.5	100	76	5	8	4	6	3	5	6	5	5	5	2.5	
52	27	2	50	100	74	4	6	5	4	6	4	4	4	5	4	2.5	
53	30	5	50	100	79	6	5	7	7	6	6	6	4	4	4	2.5	
54	29	4	50	100	84	8	3	7	7	6	6	7	5	6	6	2.5	
55	22	2	25	100	72	4	3	6	6	5	7_	5	5	5_	4	2.5	
56	25	5	25	100	74	4	5	8	3	3	4	4	4	4_	5	2.5	
57	3	3	Lab Control	100	93	5	4	5	5	5	6	5	5	5	5	2.5	
58	16	1	12.5	100	80	5	6	5	5	3	6	5	5	6_	5	2.5	
59	24	4	25.0	100	74	4	4	3	3	3	4	5	3	3_	3	2.5	
60	17	2	12.5	100	70	5	5	6	5	7	6	6	4	4_	4	2.5	
61	12	2	6.25	100	76	4	4	3	3	3 _	4	5	3	3	3	2.5	
62	2	2	Lab Control	100	83	5	5	4	5	4	4	4	4	6_	4	2.5	
63	20	5	12.5	100	82	4	5	5	4	4	4	7	7	4	6	2.5	
64	15	5	6.25	100	74	7	5	3	3	4	4	3	5	5	5	2.5_	
65	33	3	58	100	83	6	5	8	7	6	5_	5	5	4	3	2.5	
66	13	3	6.25	100	71	3	2	2	3	3	4_	4	4	5	4	2.5	
67	28	3	50	100	75	7	9	5	6	4	3	5	5	7_	8	2.5	
68	23	3	25	100	74	6	5	7	4	7	5	4	6	6_	5	2.5	
69	1	1	Lab Control	100	66	4	6	6	4	5	4	3	4	6_	4	2.5	
70	7	2	Brine Control	100	87	6	6	6	7	4	5	6	5	5_	5	2.5	Dada Entry QC: MV

Comments: Sample B-1

Test: MC-Macrocystis Germination and Growth Test Test ID: 0403-103 Protocol: MBP 90-Anderson et al. Species: MP-Macrocystis pyrifera Sample Type: OTH-Other sample type Sample ID: BUENA-City of Buenaventura Lab ID: AEESD-AMEC Bioassay SD End Date: 03/19/2004 Start Date: 03/17/2004 Cal Number Total L8 L7 L9 L10 Factor Notes L5 L6 L3 L4 L1 L2 Rep Counted Germ Group Pos 2-5 NC U Iap Œ चय Ų G Ø (04 (0 Le (n ھا (0 ΙÓ ጽ (0 ろ Ц (0 Q (a (0 (0 ክ প্ত Q V <u>4</u>50 (0 Q

Comments: Sample B-1

Ц

(0

J

(0

Ц

Species: MP-Macrocystis pyrifera

Sample ID: BUENA-City of Buenaventura

Start Date: 03/17/2004 End Date: 03/19/2004 Test ID: 0403-103

Protocol: MBP 90-Anderson et al.

Sample Type: OTH-Other sample type

Lab ID: AEESD-AMEC Bioassay SD

Start	Staft Date: 03/17/2004 Elid Date: 03/19/2004 Cab ID: ALLOD-AVICO Bloassay OD																
				Total	Number											Cal	
Pos	ID.	Rep		Counted	Germ	<u>L1</u>	_L2	L3	L4	L5	L6	<u>L7</u>	L8	L9	L10	Factor	Notes
69	1		L-Lab Control		-												
62	Ŋ		L-Lab Control		-						 						
57	3		L-Lab Control														
36	4	4	L-Lab Control		_								<u> </u>				
46	5	5	L-Lab Control		-												
746	6	1	B-Control		-												
70	/		B-Control											. '			
45	8		R-Control	<u> </u>	-												
50	9	4	B-Control				<u> </u>										
48	10	5	B-Control		-												
49	11	1	6.25		&												
61	12	2	6.25		76												
66	13	3	6.25		71					L							
37	14	4	6.25		70	·											
64	15	5	6.25		74						·						
58	16	1	12.5		80												
60	17	2	12.5		70												
38	18	3	12.5		74												
51	19	4	12.5		76												
63	20	5	12.5		82											_	
39	21	1	25		64												
55	22	2	25		72												
68	23	3	25		74												
59	24	4	25		74												
56	25	5	25		74												
44	26	1	50		72												
52	27	2	50		74												
67	28		50		75		1										
54	29	4	50		84												
53	30		50		79												
41	31	1	100b		85								· · · ·				
43	32	2	100b		76		-										
65	33	3	100b		83			····					-				
47	34	4	100b		79			 									
42	35	5	100b ple B-1		69							-					
Comr	nents	Sam	ple B-1					•						•		·	
2			ON MC														
			- AKA	'													

Reviewed by: <u>\(\lambda \lamb</u>

Species: MP-Macrocystis pyrifera

Sample ID. BUENA-City of Buenaventura

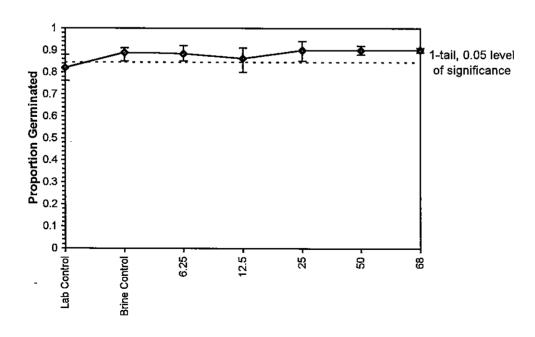
Test ID: 0403-103

Protocol: MBP 90-Anderson et al. Sample Type: OTH-Other sample type

Lab ID: AFESD-AMEC Binassay SD

End Data: 03/10/2004

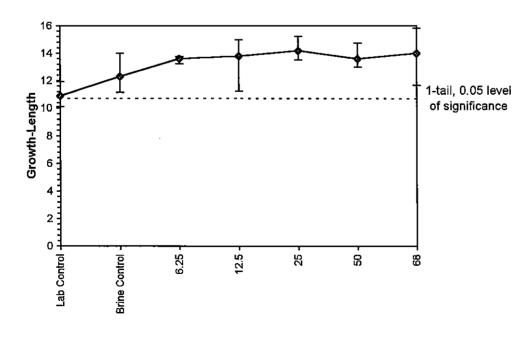
Start	Date:	03/17	/2004 E	End Date: 0	3/19/2004			Lab ID	: AEES	D-AME	C Bioa	ssay S	<u>D</u> _				
				Total	Number				ļ		[Cal	
Pos	ID	Rep	Group	Counted	Germ	L1	L2	L3	L4	L5	L6	L7_	L8	L9	L10	Factor	Notes
69	1		L-Lab Control											_	<u> </u>		
62	2	2	L-Lab Control										<u> </u>		ļ		
57	3	3	L-Lab Control									<u> </u>					
36	4		L-Lab Control	-											<u> </u>	<u> </u>	
46	5		L-Lab Control												ļ		
40	6	1	B-Control	1										L		_	
70	7	2	B-Control											1 /			
45	8		B-Control							<u> </u>			<u> </u>	_	<u> </u>		
50	9	4	B-Control														
48	10		B-Control														
49	11	1	6.25						L	<u></u>				ļ			
61	12		6.25						£					ļ			
66	13		6.25								<u> </u>						
37	14		6.25							<u> </u>	<u></u>		<u> </u>		<u> </u>		
64	15	5	6.25							<u> </u>	L				<u> </u>		
58	16	1	12.5									<u> </u>	_				
60	17	2	12.5								<u> </u>						
38	18	3	12.5						<u> </u>	<u> </u>						ļ	
51	19	4	12.5							<u> </u>					<u> </u>	ļ	
63	20	5	12.5										<u> </u>	<u> </u>	Į		
39	21	1	25								ļ	<u> </u>			ļ		
55	22	2	25								<u> </u>	<u> </u>		<u> </u>		<u> </u>	
68	23	3	25						<u> </u>	L		<u> </u>				ļ	
59	24	4	25					Ī							<u> </u>	<u> </u>	
56	25		25										<u> </u>		ļ		
44	26	1	50												ļ	<u> </u>	
52	27	2	50	1											<u> </u>	<u> </u>	
67	28	3	50								<u> </u>			<u> </u>	<u> </u>	<u> </u>	
54	29	4	50					T							<u> </u>	<u> </u>	<u> </u>
53	30	5	50													<u> </u>	
41	31	1	100b										1	L_		ļ	
43	32	2	100b	1									<u> </u>	<u> </u>		<u> </u>	
65	33	3	100b	1											$oxed{oxed}$		
47	34	4	100b		<u> </u>							1		<u> </u>	<u> </u>	ļ	
42	35	_	100b	1	<u> </u>									<u> </u>	<u> </u>	<u> </u>	<u> </u>
			pple B-1														


Comments: Sample B-1

ToxCalc 5.0

	_		Macrocyst	tis Germin	ation and Growth	Test-Proportion	n Germinated
Start Date:	03/17/2004	Ţ	Test ID:	0403-104		Sample ID:	City of Buenaventura
End Date:	03/19/2004	ļ	Lab ID:	AEESD-AI	MEC Bioassay SD	Sample Type:	Ambient water
Sample Date:	03/16/2004	ļ	Protocol:	MBP 90-A	nderson et al.	Test Species:	MP-Macrocystis pyrifera
Comments:	Sample B	-3				·	, ,,
Conc-%	1	2	3	4	5		
Lab Control	0.8400	0.7600	0.8800	0.8200	0.8000		
Brine Control	0.8500	0.9100	0.8900	0.8900	0.9100		
6.25	0.8600	0.8500	0.9200	0.8800	0.9100		
12.5	0.8000	0.9100	0.8900	0.8400	0.8700		
25	0.9000	0.8800	0.9400	0.8500	0.9300		
50	0.8900	0.9000	0.9100	0.8800	0.9200		
68	0.9000	0.9100	0.9000	0.9100	0.8900		

		_	Transform: Arcsin Square Root						1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	_ t-Stat	Critical	MSD
Lab Control	0.8200	0.9213	1.1350	1.0588	1.2171	5.195	5			·
Brine Control	0.8900	1.0000	1.2342	1.1731	1.2661	3.078	5			
6.25	0.8840	0.9933	1.2255	1.1731	1.2840	3.946	5	0.301	2.360	0.0677
12.5	0.8620	0.9685	1,1934	1.1071	1.2661	5.217	5	1.419	2.360	0.0677
25	0.9000	1.0112	1.2531	1.1731	1.3233	4.910	5	-0.661	2.360	0.0677
50	0.9000	1.0112	1.2498	1.2171	1.2840	2.118	5	-0.545	2.360	0.0677
68	0.9020	1.0135	1.2526	1.2327	1.2661	1.118	5	-0.643	2.360	0.0677


Auxiliary Tests	-				Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distrib	ution (p >	0.01)		0.9751		0.9		-0.2211	-0.3611
Bartlett's Test indicates equal var	iances (p =	= 0.12)			8.78179		15.0863			
The control means are significant	ly different	(p = 0.01))		3,16118		2.30601			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	68	>68		1.47	0.04566	0.05125	0.00267	0.00206	0.29684	5, 24

	Macrocystis Germination and Growth Test-Growth-Length												
Start Date:	03/17/2004	1	Test ID:	0403-104		Sample ID:	City of Buenaventura						
End Date:	03/19/2004	1	Lab ID:	AEESD-A	MEC Bioassay SD	Sample Type:	Ambient water						
Sample Date:	03/16/2004	1	Protocol:	MBP 90-A	nderson et al.	Test Species:	MP-Macrocystis pyrifera						
Comments:	Sample B	-3_											
Conc-%	1	2	3	4	5								
Lab Control	11.180	10.140	11.960	10.660	10.660								
Brine Control	12.480	12.500	14.040	11.500	11.180								
6.25	13.780	13.520	13.780	13.780	13.250								
12.5	14.820	15.000	14.250	11.250	13.780								
25	13.780	15.250	13.520	15.000	13.520								
50	14.750	13.750	13.000	13.500	13.000								
68	14.820	13.750	14.040	15.860	11.700								

		_	Transform: Untransformed						1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Lab Control	10.920	0.8849	10.920	10.140	11.960	6.299	5			
Brine Control	12.340	1.0000	12.340	11.180	14.040	9.048	5			
6.25	13.622	1.1039	13,622	13.250	13.780	1.736	5	-1.851	2.360	1.635
12.5	13.820	1.1199	13.820	11.250	15.000	10.964	5	-2.136	2.360	1.635
25	14.214	1.1519	14.214	13.520	15.250	5.931	5	-2.705	2.360	1.635
50	13.600	1.1021	13.600	13.000	14.750	5.296	5	-1.819	2,360	1.635
68	14.034	1.1373	14.034	11.700	15.860	10.970	5	-2.445	2.360	1.635

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates non	mal distrib	ution (p >	0.01)		0.94896		0.9		-0.5883	1.07391
Bartlett's Test indicates equal vari	iances (p =	= 0.05)			11.1535		15.0863			
The control means are significant	ly different	t(p = 0.04)	·)		2.42122		2.30601			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	68	>68		1.47	1.63483	0.13248	2.20169	1.19966	0.14389	5, 24

Species: MP-Macrocystis pyrifera Sample ID: City of Buenaventura

Test ID: 0403-104

Protocol: MBP 90-Anderson et al. Sample Type: Ambient water

		_	on Buenaventura		2/4.0/0004								n				
Start	Date:	03/17	/2004 E	nd Date: 0		3		Lab ID	: AEES	D-AIVIE	C Bloa	ssay oi	<u> </u>				T
Pos	ID	Rep	Group	Total Counted	Number Germ	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	Cal Factor	Notes
71	11	1	6.25	100	86	6	5	6	4	6	5	6	6	5	4	2.6	
72	5	5	Lab Control	100	80	5	4	3	4	5	3	6	3	4	4	2.6	
73	2	2	Lab Control	100	76	4	5	4	4 .	2	6	3	4	4	3	2.6	
74	23	3	25	100	94	6	6	4	4	4	3	8	5	7	5	2.6	
75	33	3	68	100	90	5	4	7	5	4	7	8	5	4	5	2.6	
76	25	5	25	100	93	5	5	5	4	6	3	6	7	5	6	2,6	
77	12	2	6.25	100	85	5	5	4	7	4	5	5	6	5	6	2.6	
78	3	3	Lab Control	100	88	7	3	4	4	3	4	6	4	6	5	2.6	
79	1	1	Lab Control	100	84	6	4	5	3	3 _	4	3	6	5	4	2.6	
80	13	3	6.25	100	92	7	4	7	6	3	7	5	5	4	5	2.6	
81	4	4	Lab Control	100	82	4	4	5	5	4	3	3	5	4	4	2.6	
82	14		6.25	100	88	6	6	5	5	5	5	6	4	6	5	2.6	
83	10	5	Brine Control	100	91	6	3	5	3	3	5	5	3	5	5	2.6	
84	20	5	12.5	100	87	6	5	7	4	5	5	7	5	5	4	2.6	
85	28	3	50	100	91	5 _	6	6	3	6	5	7	3	5	4	2.6	
86	35	5	68	100	89	4	3	5	5	5	5	4	5	4	5	2.6	
87	16	1	12.5	100	80	7	6	5	7	4	5	5	6	7	5	2.6	
88	6	1	Brine Control	100	85	4	6	6	4	4	4	5	3	7	5	2.6	
89	34	4	68	100	91	7	4	7	8	5	6	7	4	7	6	2.6	
90	8	3	Brine Control	100	89	7	5	6	5	6	5	6	4	6	4	2.6	
91	31		68	100	90	6	7	6	4	6	7	4	6	6	5	2.6	
92	21	1_	25	100	90	5	5	7	4	7	6	4	5	5	5	2.6	
93	7		Brine Control	100	91	5	4	5	5	5	7	5	5	3_	6	2.5	
94	17		12.5	100	91	5	7	5	8	6	8	4	6	4	7	2.5	
95	9		Brine Control	100	89	5	6	4	4	4	5	4	5	3	6	2.5	
96	30		50	100	92	5	5	5	6	7	3	6	6	4	5	2.5	
97	19		12.5	100	84	5	6	3	4	3	4	4	5	6	5	2.5	
98	18		12.5	100	89	88	5	3	6	4	6	7	6	7	5	2.5	
99	26		50	100	89	66	6	5	8	6	5	4	7	5	7	2.5_	
100	22		25	100	88	6	5	7	6	7	7	5	6	5	7	2.5	_
101	15		6.25	100	91	5	4	6	4	6	4	6	6	7	5	2.5	
102	27		50	100	90	5	5	6	6	4	5	7	7	4	6	2.5	
103	24		25	100	85	8	6	4	7	6	7	5	4	7	6	2.5	
104	29		50	100	88	5	8	4	3	7	6	5	6	4	6	2.5	
105	32	2	68	100	91	6	4	5	3	7	8	5	6	6	5	2.5	OConta entry: MC

Comments: Sample B-3

Species: MP-Macrocystis pyrifera

Sample ID: BUENA-City of Buenaventura

Test ID: 0403-104

Protocol: MBP 90-Anderson et al. Sample Type: OTH-Other sample type

Lab ID: AEESD-AMEC Bioassay SD

Start Date: 03/17/2004 End Date: 03/19/2004 Cal Total Number L8 L9 L10 Factor Notes L4 L5 L6 L7 L1 L2 L3 Pos Rep Counted Germ ID Group DC87.86 2.6 $\overline{}$ V s KD V B B -5-2/ Š C フ سح 5-_ \mathcal{C} て Y <u>ż</u> IJ 100) 5-Ų U Ч Ų Q 2.5 5-U

Comments: Sample B-3

ורטו

Species: MP-Macrocystis pyrifera

Sample ID: BUENA-City of Buenaventura

Test ID: 0403-104

Protocol: MBP 90-Anderson et al.

Sample Type: OTH-Other sample type

	art Date: 03/17/2004 End Date: 03/19/2004								Lab ID: AEESD-AMEC Bioassay SD								
Start	Date.	03/17	72004				<u> </u>		. /\		0.00	Jouy C.	ī			Cal	
Pos	ID	Rep	Group	Total Counted	Number Germ	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10		Notes
79	1	1	L-Lab Control		84												
73	2	2	L-Lab Control		74												İ
78	3	3	L-Lab Control		88					ĺ							
81	4	4	L-Lab Control		87												
72	5	5	L-Lab Control		80												
88	6	1	B-Control		85											i	
93	7	2	B-Control		91												*
90	8		B-Control		୪୩												
95	9	4	B-Control		89												
83	10		B-Control		91												
71	11		6.25		જે છ					<u> </u>							
77	12	2	6.25		85					<u> </u>					ļ		
80	13		6.25		92												
82	14	4	6.25		જ્જ			<u> </u>	!	<u> </u>							
101	15	5	6.25		91					<u> </u>							
87	16		12.5		80								<u> </u>				
94	17	2	12.5		91				<u> </u>				<u> </u>				
98	18		12.5		89				<u> </u>								
97	19		12.5		84			<u> </u>		<u> </u>							
84	20		12.5	<u> </u>	8ጉ		<u></u>						L				
92	21		25		90								<u> </u>				
100	22		25		ষ্ঠৰ্ড												
74	23		25		94					<u> </u>			<u> </u>	<u> </u>	<u> </u>		
103	24		25		85					<u> </u>			<u></u>			L	
76	25	1	25		93				<u> </u>		<u> </u>				<u> </u>		
99	26		50		જિલ			1	<u></u>						<u> </u>	1	
102	27		50		90												
85	28		50		91		<u></u>						ļ. <u>. </u>		L		
104	29		50		જજ			<u> </u>						<u> </u>			
96	30	5	50		92								<u> </u>	<u> </u>			
91	31	1	100Ь		90								L				
105	32	2	100b		91							<u></u>	<u> </u>		<u> </u>		
75	33	3	100ь		90												
89	34	4	100ь		91	-											
86	35	5	100b		89			L					<u> </u>	<u></u>]	<u> </u>	<u> </u>

Comments: Sample B-3

Species: MP-Macrocystis pyrifera

Sample ID: BUENA-City of Buenaventura

Start Date: 03/17/2004 End Date: 03/19/2004

Test ID: 0403-104

Protocol: MBP 90-Anderson et al. Sample Type: OTH-Other sample type

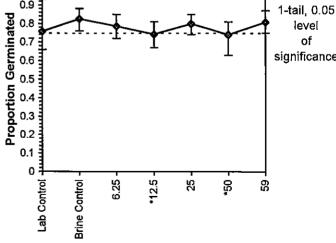
Lab ID: AEESD-AMEC Bioassay SD

01411			12001	-110 Date. 0						7		, ,	1				· · · · · ·
				Total	Number											Cal	
Pos	1D	Rep		Counted	Germ	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	Factor	Notes
79	1		L-Lab Control														
73	2		L-Lab Control														
78	3		L-Lab Control														
81	4		L-Lab Control														· · · · · · · · · · · · · · · · · · ·
72	5	5	L-Lab Control														<u></u>
88	6		B-Control														<u> </u>
93	7		B-Control							71. 1							W (
90	8		B-Control														
95	9		B-Control														
83	10		B-Control														
71	11	1	6.25														
77	12		6.25														
80	13	3	6.25														
82	14	4	6.25														
101	15	5	6.25														
87	16	1	12.5														
94	17	2	12.5														
98	18	3	12.5														
97	19	4	12.5														
84	20		12.5														
92	21	1	25														
100	22		25														
74	23	3	25														
103	24		25														
76	25		25														
99	26		50														
102	27	2	50													-	
85	28	3	50											,			·
104	29	4	50														
96	30	5	50														
91	31	1	100b					Î									
105	32		100b	-													
75	33		100b					Ì									
89	34		100b														
86	35		100b														
			nio B 3											· · · · · · · · ·			

Comments: Sample B-3

10/H---

Reviewed by: 18444

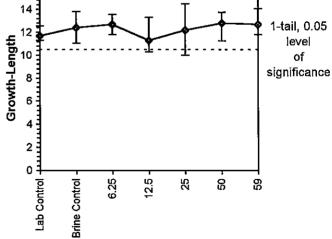

		N	/lacrocyst	is Germin	ation and Grov	vth Test-Proportion	n Germinated
Start Date:	03/17/200	4	Test ID:	0403-105		Sample ID:	City of Buenaventura
End Date:	03/19/200	4	Lab ID:	AMEC Bio	assay SD	Sample Type:	Ambient water
Sample Date:	03/16/200	4	Protocol:	MBP 90-A	nderson et al.	Test Species:	MP-Macrocystis pyrifera
Comments:	Sample C	-3				·	
Conc-%	1_	2	3	4	5		· · =
Lab Control	0.6600	0.7100	0.9300	0.8300	0.6600		
Brine Control	0.7600	0.8100	0.8100	0.8800	0.8700		
6.25	0.8500	0.7700	0.7200	0.7900	0.8000		
12.5	0.6900	0.7600	0.8100	0.7800	0.6700		
25	0.7400	0.7800	0.8500	0.8500	0.7800		
50	0.8100	0.7700	0.6300	0.7700	0.7200		
59	0.8700	0.8100	0.7500	0.7800	0.8300		

		_	Transform: Arcsin Square Root						1-Tailed		Isot	onic
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	_ t-Stat	Critical	MSD	Mean	N-Mean
Lab Control	0.7580	0.9177	1.0695	0.9483	1.3030	14.356	5					
Brine Control	0.8260	1.0000	1.1435	1.0588	1.2171	5.722	5				0.8260	1.0000
6.25	0.7860	0.9516	1.0918	1.0132	1.1731	5.317	5	1.251	2.360	0.0975	0.7860	0.9516
*12.5	0.7420	0.8983	1.0401	0.9589	1.1198	6.571	5	2.503	2.360	0.0975	0.7725	0.9352
25	0.8000	0.9685	1.1094	1.0357	1.1731	5.516	5	0.824	2.360	0.0975	0.7725	0.9352
*50	0.7400	0.8959	1.0382	0.9169	1.1198	7.475	5	2.547	2,360	0.0975	0.7725	0.9352
59	0.8080	0.9782	1.1195	1.0472	1.2019	5.299	5	0.581	2.360	0.0975	0.7725	0.9352

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distrib	ution (p >	0.01)		0.93985		0.9		-0.1951	-1.0328
Bartlett's Test indicates equal var	iances (p =	= 0.99)			0.44622		15.0863			
The control means are not significate	cantly diffe	rent(p = 0)	0.35)		0.99108		2.30601			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	59	>59		1.69492	0.07931	0.09576	0.00928	0.00427	0.09079	5, 24

Linear Interpolation (200 Resamples) Skew **%** 6.8519 **Point** SD 95% CL(Exp) IC05 IC10 >59 IC15 >59 0.9 IC20 >59 1-tail, 0.05 IC25 >59 level IC40 >59 of IC50 >59 significance

Comparisons made against the brine control.


Macrocystis Germination and Growth Test-Growth-Length									
Start Date:	03/17/200	7/2004 Test ID: (0403-105		Sample ID:	City of Buenaventura		
End Date:	03/19/2004		Lab ID:	D: AMEC Bioassay SD		Sample Type:	Ambient water		
Sample Date:	te: 03/16/2004		Protocol:	ol: MBP 90-Anderson et al.		Test Species:	MP-Macrocystis pyrifera		
Comments:	Sample C	-3							
Conc-%	1	2	3	4	5				
Lab Control	11.750	11.250	12.500	11.250	11.500				
Brine Control	12.000	11.750	11.000	13.250	13.750				
6.25	13,500	12,750	11.750	12.250	13.000				
12.5	11,000	13.250	10.750	10.250	11.000		•		
25	11.250	11.250	14.000	10.000	14.500				
50	13.750	11.500	13.750	11.250	13.750				
59	11.750	14.000	12.750	12.500	12.250				

		_	Transform: Untransformed				1-Tailed			Isotonic		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
Lab Control	11.650	0.9433	11.650	11.250	12.500	4.450	5					
Brine Control	12.350	1.0000	12.350	11.000	13.750	9.121	5				12.500	1.0000
6.25	12.650	1.0243	12.650	11.750	13.500	5.340	5	-0.382	2.360	1.855	12.500	1.0000
12.5	11.250	0.9109	11.250	10.250	13,250	10.304	5	1.399	2.360	1.855	12.225	0.9780
25	12.200	0.9879	12.200	10.000	14.500	15.965	5	0.191	2.360	1.855	12,225	0.9780
50	12.800	1.0364	12.800	11.250	13.750	10.186	5	-0.572	2.360	1.855	12.225	0.9780
59	12.650	1.0243	12.650	11.750	14.000	6.643	5	-0.382	2.360	1.855	12.225	0.9780

Auxiliary Tests		Statistic		Critical		Skew	Kurt			
Shapiro-Wilk's Test indicates nor		0.96695		0.9		0.29175	-0.6157			
Bartlett's Test indicates equal var		4.90094		15.0863						
The control means are not signific		1.26234		2.30601						
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	59	>59		1.69492	1.85514	0.15021	1.60833	1.54479	0.41657	5, 24

Linear Interpolation (200 Resamples) Skew Point IC05 % SD 95% CL(Exp) >59 IC10 >59 IC15 >59 IC20 >59 14 IC25 >59 1-tail, 0.05 IC40 >59 level IC50 >59

Comparisons made against brine control.

Test: MC-Macrocystis Germination and Growth Test

Species: MP-Macrocystis pyrifera

Sample ID: BUENA-City of Buenaventura

Start Date: 03/17/2004 End Date: 03/19/2004

Test ID: 0403-105

Protocol: MBP 90-Anderson et al.

Sample Type: AMB1-Ambient water

Lab ID: AEESD-AMEC Bioassay SD

Start	Date.	03/1/	/2004 E	na Date. U	3/13/2004			Lab ID	. ALLS	D-71VIL	O DIOL	33 4, 0.	-				
				Total	Number											Cal	
Pos	ID	Rep	Group	Counted	Germ	L1	L2	L3	L4	L5	L6	L7 _	L8	L9	L10	Factor	Notes
	1	1	Lab Control	100	66	4	6	4	4	4	5	7	4_	4	5	2.5	
	2	2	Lab Control	100	71	4	5	4	4	4	5	5	4	5	5	2.5	
	3	3	Lab Control	100	93	5	4	5	5	5	6	5	5	5	5	2.5	
	4	4	Lab Control	100	83	5	5	4	5	4	4	4	4	6	4	2.5	
	5	5	Lab Control	100	66	4	6	6	4	5	4	3	4	6	4	2.5	
	6	1	Brine Control	100	76	5	5	5	5	5	5	4	4	5	5_	2.5	
	7	2	Brine Control	100	81	4	6	5	6	5	4	5	4	4	4	2.5	
	8	3	Brine Control	100	81	4	3	5	4	4	6	4	5	5	4	2.5	
	9	4	Brine Control	100	88	6_	5	6	6	6	5	5	4	5	5	2.5	<u> </u>
	10	5	Brine Control	100	87	6	6	6	7	4	5	6	5	5	5	2.5	
	11	1	6.25	100	85	6	5	5	5	7	6	6	6	4	4	2.5	
	12	2	6.25	100	77	5	4	5	5	6	6	8	4	4	4	2.5	
	13	3	6.25	100	72	4	4	5	4	4	5	5	5	6	5	2.5	
	14	4	6.25	100	79	4	4	4_	4	5	5	6	5	6	6	2.5	
	15	5	6.25	100	80	4	5	6	6	6	4	5	.7	_ 5	4	2.5	
	16	1	12.5	100	69	3	4	4	4	6	5	5	3	_ 3	7	2,5	
	17	2	12.5	100	76	5	60	5	5	6	7	7	4	3	5	2.5	
	18	3	12.5	100	81	3	4	3	4	5	5	4	5	5	5	2.5	
	19	4	12.5	100	78	5	5	3	3	3	4	5	4	5	4	2,5	
	20	5	12.5	100	67	4	5	3	3	3	4	6	3	8	5	2.5	
	21	1	25	100	74	3	4	4	4	4	5	5	. 7	4	5	2.5	
	22	2	25	100	78	5	6	4	4	4	4	5	4	6	3_	2.5	
	23	3	25	100	85	4	4	8	7	6	6	6	5	4	6_	2.5	
	24	4	25.0	100	85	4	4_	4	5	4	4	4	3	3	5_	2.5	
	25	5	25	100	78	4	6	3	6	10	4	8	5	6	6	2.5	
	26	1	50	100	81	5	3	9	8	6	6	5	3	5	5	2.5	
	27	2	50	100	77	5	3	4	4	5	5	4	6	7	3	2.5	
	28	3	50	100	63	5	7	7	6	5	4	4	5	6	6	2.5	
	29	4	50	100	77	3	3	7	4	5	4	7	4	4	4	2.5	
	30	5	50	100	72	9	6	4	5	4	5	6	6	5	5	2.5	
	31	1	59	100	87	5	5	3	3	5	4	5	6	6	5	2.5	
	32	2	59	100	81	6	6	6	5	7	7	4	5	6.	_ 4	2.5	
	33	3	59	100	75	3	6	6	7_	4	4	7	4	4	6	2.5	
	34	4	59	100	78	8	4	4	5	5	4	4	6	4	6	2.5	
	35	5	59	100	83	4	3	3	6	6	5	6	6	5	5	2.5	data outry be after
			77											· · · · · · · · · · · · · · · · · · ·			/

Comments: Sample C-3

Test: MC-Macrocystis Germination and Growth Test

Species: MP-Macrocystis pyrifera

Protocol: MBP 90-Anderson et al.

Sample Type: OTH-Other sample type

Sample ID: BUENA-City of Buenaventura

Sample Type: OTH-Other sample type
Start Date: 03/17/2004

End Date: 03/19/2004

Lab ID: AEESD-AMEC Bioassay SD

Start	Date:	03/17/2	2004	End Date: (03/19/2004			Lab ID	: AEES	D-AME	C Bioa	ssay Si)								_
				Total	Number	·				[,		Cal	}				
Pos	ID	Rep	Group	Counted	Germ	L1_	L2	L3	L4	L5	L6	L7	L8	L9	L10	Factor			Notes		
106		\vdash	•													2.5	. 1	vc_			
107				100	84	5	ち	3	3	5	4	b	6	Ce	5						_
108		\Box		1	78	4	Q	3 4	Q	10	ĭ	þ	١'n	Le .	لو				_		
109		~~			77	5	3	4	પ	5	б	→	Q	77	3		<u> </u>	1			_
110					78	5	(e	٦	4	4	4	5	4	(0	3		<u> </u>	<u> </u>			_
111					85	4	4	4	5	4	4	4	3	<u>ন</u>	5		_	↓			ᆜ
112					81	3	4	3	4	5	5	4	5	<u>\$</u>	5	<u> </u>	_	 			ᅴ
113					85	(o_	5	5	5	7	و	<u>(a</u>	۵	4	4		_	↓_ _			_
114					79	-	4	4_	Ц	5	5	رو	5	اه	6	<i>∐</i> ;	_	 			_
115					72	4	4	5	4	4	5	5	5	٥	5	<u> </u>	_	<u> </u>			_
116					83	4	B	3	ړي	a	B	رو	Q	5	5	<u>├</u> ┤	_	<u> </u>			4
117					85	4_	4	8	7	(e	Le	Q	ජ	4	(0	 - 	_				\dashv
118								<u> </u>									-				\dashv
119					74	3	4	4	4	4	'n	5	7	J	5	Щ.	+				
120					 '												_				\dashv
121					76	5	9	5	5	<u> (o</u>	7	7	4	3	5		1				\dashv
122					45	3	رو	0	1	4	۷	7	4	4	(0	 	-				ᅴ
123					69	3	4	4	4	Q	5	5	3	3	7	\vdash	+				ᅴ
124					<u> </u>				<u> </u>		<u> </u>			,1	-77	 	 -				\dashv
125		L			77	3	3_	77	4_	5	4	1	4	4	4		+-'				
126						_		l		<u> </u>		-,1	<u> </u>		 , 	 	┼	 			ᅴ
127		<u> </u>			78	8	니	4	5	5	4	4	(0	4	(Q_	\vdash	+	-			
128		L		_	18	ف	LQ.	(<u>ò</u>	5	1.4	4	4	5	Ce	4_	\vdash	┼	├			\dashv
129		ļ. — ļ			 		<u></u>	-					<u> </u>				+	+			\dashv
130		\vdash		+	1			 -	, .	 , 	1		7		4	 	+-				
131		\vdash			80	4	5	(2)	(0	10	4	5		5		 	+-		·-		
132		 			42	9	۵	4	5	4_	5	Q	<u>a</u>	5	5	 	+-/		-		
133		\vdash	<u> </u>	+	<u> </u>		ļ.——	-			-		 		├	\vdash	╂╾┼				
134		\vdash		1	 - -				 		<u> </u>						+ +				-
135		$\vdash \vdash$			<u> </u>			 			/2	C	4	4	4		╂╌┼				
136		\vdash		+	47	5	4	5	5	مِ ا	(9	8			 	\vdash	++				\dashv
137	. —	\vdash		+	63	5	7	7	<u>(e</u>	5	4	4	<u>5</u>	4	(0)	 	╂╾┧				
138		\vdash			81	5	3	3	3	3	<u>le</u>	9	3	5	5	\vdash	+				\dashv
139		\vdash			67	4			<u> </u>				4	5	4	 ,	1	7			\dashv
140				7 2	<u> 78</u>	5	5	3	3	3	4	_5_	<u> </u>		<u> </u>						

Comments: Sample C-23

Test: MC-Macrocystis Germination and Growth Test

Species: MP-Macrocystis pyrifera

Sample ID: BUENA-City of Buenaventura

Start Date: 03/17/2004 End Date: 03/19/2004

Test ID: 0403-105

Protocol: MBP 90-Anderson et al.

Sample Type: OTH-Other sample type

Lab ID: AEESD-AMEC Bioassay SD

Start	Date:	03/17	/2004 E	End Date: 0	3/19/2004			Lab ID	: AEES	D-AME	C Bioa	ssay St)				
		i		Total	Number											Cal	
Pos	₽	Rep	Group	Counted	Germ	L1	L2	L3	L4	Ļ5	L6	L7	L8	L9	L10	Factor	Notes
780	1		L-Lab Control														
126	y		L-Lab Control														
124	3	7	L-Lab Control														
129	4	4	L-Lab Control		·												
118	5	5	L-Lab Centrol														
734	6	1	B-Control									·					
135	¥	2	B-Control			-					'						
133	8	3	B-Control														
120	9	4	B-Sontrol														
106	10	5	B-Control												·		
113	11	1	6.25	85											·		
136	12	2	6.25	77							·						
115	13	3	6.25	, 72													
114	14	4	6.25	79													
131	15	5	6.25	80													
123	16	1	12.5	69										·			
121	17	2	12.5	7-6													
112	18	3	12.5	જા													
140	19	4	12.5	78													
139	20		12.5	67		_				•							
119	21	1	25	74													
110	22	2	25	78													
117	23	3	25	85													
111	24	4	25	85													
108	25	5	25	78													
138	26	1	50	જા													
109	27	2	50	77-													
137	28		50	63													
125	29	4	50	77													
132	30	5	50	72													
107	31		100b	87	1												
128	32		100b	કો													
122	33		100b	75													
127	34		100b	78													
116	35		100b	83													
			10 C 2- / -2														

Comments: Sample G-2 C

ast H

Reviewed by: MC 4/4/04

Test: MC-Macrocystis Germination and Growth Test

Species: MP-Macrocystis pyrifera

Sample ID: BUENA-City of Buenaventura

End Date: 03/19/2004

Test ID: 0403-105

Protocol: MBP 90-Anderson et al.

Sample Type: OTH-Other sample type

Lab ID: AFESD-AMEC Binassay SD

Start	Date:	03/17	/2004 E	End Date: 0	3/19/2004			Lab ID	: AEES	D-AME	C Bioa	ssay Si	<u>. </u>			-	
				Total	Number											Cal	I
Pos	ID	Rep	Group	Counted	Germ	L1	L2	L3	L4	L5	L6	_L7	L8	L9	L10	Factor	Notes
180	1	1	L-Lab Control														
126	Z	2	L-Lab Control					_									
124	3	3	L-Lab Control							,							
129	4	4	L-Lab Control											_			<u> </u>
118	5	5	L-Lab Centrol					_									
134	6	1	B-Control														
135	7	2	B-Control			- į								•			<u></u>
133	8	3	B-Control														<u> </u>
120	9	4	B-Sontrol														
106	10		B-Control														
113	11	1	6.25						•						i		
136	12	2	6.25	_									<u> </u>				-
115	13	3	6.25														
114	14	4	6.25														<u> </u>
131	15	5	6.25														<u> </u>
123	16	1	12.5														
121	17	2	12.5														<u> </u>
112	18	3	12.5														
140	19	4	12.5					i									<u> </u>
139	20	5	12.5										<u> </u>				<u>.</u>
119	21	1	25		_										<u></u>		
110	22	2	25		-												
117	23	3	25														
111	24	4	25	· -													
108	25	5	25														
138	26	1	50														<u> </u>
109	27	2	50														<u> </u>
137	28	3	50	<u> </u>													<u> </u>
125	29	4	50														
132	30		50														
107	31		100b														
128	32		100b														
122	33		100b														
127	34		100b														
116	35		100b														
			-l- 0 0 > C = 5											-		-	

Comments: Sample C 2 C - 3

Reviewed by: 10 4/14/04

APPENDIX E
GRAIN SIZE ANALYSES

Appendix Table E-1. Grain Size Summary Results City of Buenaventura

Santa Clara River Estuary Wet Weather Sampling Event

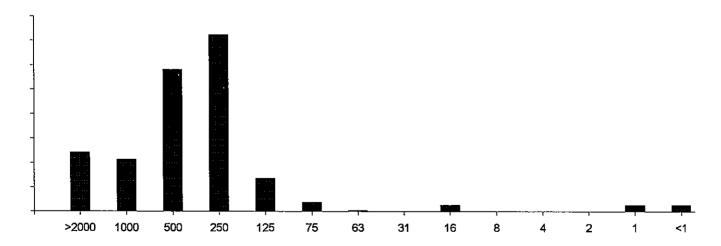
Sample Collection Date: 16 March 2004

Site	Percent Gravel	Percent Sand	Percent Silt	Percent Clay	Percent Fine (Silt+Clay)
A-1	12.08	84.22	1.23	2.47	3.70
A-2	1.73	95.76	1.25	1.25	2.51
A-3	0.39	91.92	3.85	3.85	7.69
B-1	1.69	97.03	0.00	1.28	1.28
B-2	5.11	93.80	1.09	0.00	1.09
B-3	9.18	88.36	1.23	1.23	2.46
B-4	0.12	92.12	5.17	2.58	7.75
C-1	11.04	87.93	0.00	1.03	1.03
C-2	14.37	83.20	1.22	1.22	2.43
C-3	29.02	69.76	0.00	1.22	1.22
D-1	17. <u>44</u>	81.35	0.00	1.21	1.21

Client ID: C

City of Buenaventura

Santa Clara River Estuary


Sample I.D:

Site A-1

Sample Date: _ Analysis Date:

Particle Size	Particle Size		Incremental	Cumulative
(µm)	(mm)	phl	Percent	Percent
>2000	>2	-1	12.08%	12.08%
1000	1	0	10.56%	22.63%
500	0.50	1	28.92%	51.55%
250	0.25	2	36.04%	87.59%
125	0.125	3	6.76%	94.35%
75	0.075	3.5	1.81%	96.16%
63	0.063	4	0.14%	96.30%
31	0.031	5	0.00%	96.30%
16	0.016	6	1.23%	97.53%
8	0.008	7	0.00%	97.53%
4	0.004	8	0.00%	97.53%
2	0,002	9	0.00%	97.53%
1	0.001	10	1.23%	98.77%
<1	>0,001	>10	1.23%	100.00%
% Gravel	12.1%	>2000 μm		
% Sand	84.2%	>63 µm		
% Silt	1.2%	>2 μm		
% Clay	2.5%	<2 μm		

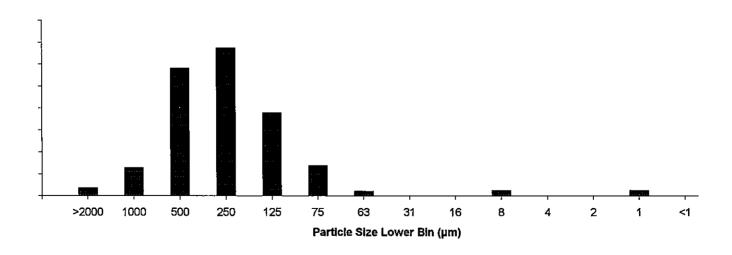
Sample ID: Site A-1

Client ID:

City of Buenaventura

Project ID:

Santa Clara River Estuary


Sample I.D:

Site A-2

Sample Date: _ Analysis Date:

Particle Size	Particle Size		incremental	Cumulative
(µm)	(mm)	phi	Percent	Percent
>2000	>2	-1	1.73%	1.73%
1000	1	0	6.34%	8,07%
500	0.50	1	29.07%	37.14%
250	0.25	2	33.65%	70.78%
125	0.125	3	18.85%	89.63%
75	0.075	3.5	6.85%	96.49%
63	0.063	4	1.01%	97.49%
31	0.031	5	0.00%	97.49%
16	0.016	6	0.00%	97.49%
8	0.008	7	1.25%	98.75%
4	0.004	8	0.00%	98.75%
2	0.002	9	0.00%	98.75%
1	0.001	10	1.25%	100.00%
<1	>0.001	>10	0.00%	100.00%
% Gravel	1.7%	>2000 µm		
% Sand	95.8%	>63 µm		
% Slit	1.3%	•		
% Clay	1.3%	>2 μm <2 μm		

Sample ID: Site A-2

Client ID:

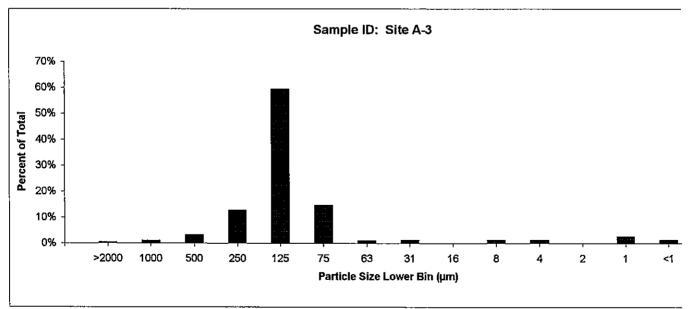
City of Buenaventura

Project ID:

Santa Clara River Estuary

Sample I.D:

Site A-3


Sample Date:

03/16/04

Analysis Date: Initiated 04/06/04

Particle Size	Particle Size		Incremental	Cumulative
(µm)	(mm)	phi	Percent	Percent
>2000	>Ż	-1	0.39%	0.39%
1000	1	0	0.96%	1.35%
500	0.50	1	3.21%	4.56%
250	0.25	2	12.72%	17.28%
125	0.125	3	59.38%	76.66%
75	0.075	3,5	14.72%	91.38%
63	0.063	4	0.93%	92.31%
31	0.031	5	1.28%	93.59%
16	0.016	6	0.00%	93,59%
8	0.008	7	1.28%	94.87%
4	0.004	8	1.28%	96.15%
2	0.002	9	0.00%	96.15%
1	0.001	10	2.56%	98.72%
<1	>0.001	>10	1.28%	100,00%

% Gravel	0.4%	>2000 µm
% Sand	91.9%	>63 µm
% Silt	3.8%	>2 µm
% Clay	3.8%	<2 µm

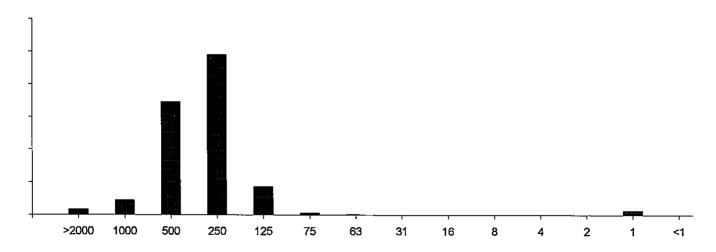
AMEC Bioassay Laboratory - 5550 Morehouse Dr., Suite B. San Diego, CA 92121

Client ID:

City of Buenaventura

Project ID:

Santa Clara River Estuary


Sample I.D:

Site B-1

Sample Date: __ Analysis Date:

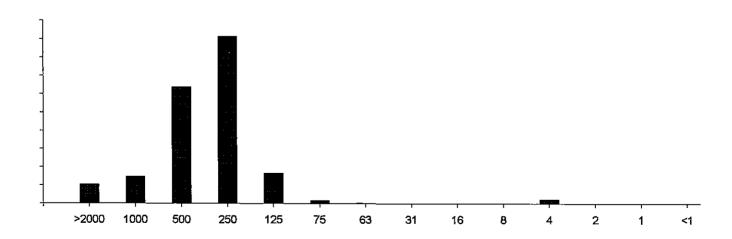
Particle Size	Particle Size	·	Incremental	Cumulative
(µm)	(mm)	phi	Percent	Percent
>2000	>2	-1	1.69%	1.69%
1000	1	0	4.41%	6.10%
500	0.50	1	34.46%	40.56%
250	0.25	2	48.97%	89.53%
125	0.125	3	8.51%	98.05%
75	0.075	3.5	0.62%	98.67%
63	0.063	4	0.05%	98.72%
31	0.031	5	0.00%	98.72%
16	0.016	6	0.00%	98.72%
8	0.008	7	0.00%	98.72%
4	0.004	8	0.00%	98.72%
2	0.002	9	0.00%	98.72%
1	0.001	10	1.28%	100.00%
<1	>0.001 	>10	0.00%	100.00%
% Gravel	1.7%	>2000 µm		
% Sand	97.0%	>63 µm		
% Silt	0.0%	>2 μm		
% Clay	1,3%	<2 μm		

Sample ID: Site B-1

Client ID: Project ID:

City of Buenaventura

Santa Clara River Estuary


Sample I.D:

Site B-2

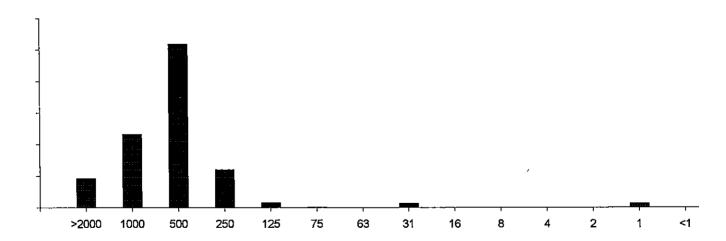
Sample Date: _ Analysis Date:

Particle Size	Particle Size		incremental	Cumulative
(µm)	(mm)	phi	Percent	Percent
>2000	>2	-1	5.11%	5.11%
1000	1	Ó	7.28%	12.39%
500	0.50	1	31,80%	44.19%
250	0.25	2	45.60%	89.79%
125	0.125	3	8.23%	98.03%
75	0.075	3,5	0.77%	98.80%
63	0.063	4	0.11%	98.91%
31	0.031	5	0.00%	98.91%
16	0.016	6	0.00%	98.91%
8	0.008	7	0.00%	98.91%
4	0.004	8	1.09%	100,00%
2	0.002	9	0.00%	100,00%
1	0.001	10	0.00%	100.00%
<1	>0.001	>10	0.00%	100.00%
% Gravel	5.1%	>2000 µm		
% Sand	93.8%	>63 µm		
% Silt	1.1%	>2 μm		
% Clay	0.0%	<2 μm		

Sample ID: Site B-2

Client ID: Project ID: City of Buenaventura

Santa Clara River Estuary


Sample I.D:

Site B-3

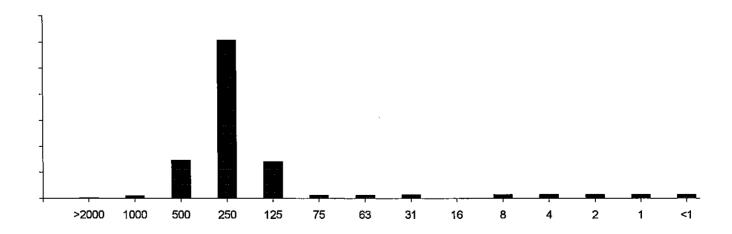
Sample Date: Analysis Date:

Particle Size	Particle Size		Incremental	Cumulative
(µm)	(mm)	phl	Percent	Percent
>2000	>2	-1	9.18%	9.18%
1000	1	ò	23.14%	32.32%
500	0.50	1	51,74%	84.06%
250	0.25	2	11.90%	95.96%
125	0.125	3	1.48%	97.44%
75	0.075	3.5	0.10%	97.54%
63	0.063	4	0.00%	97.54%
31	0.031	5	1.23%	98.77%
16	0.016	6	0.00%	98.77%
8	0.008	7	0.00%	98.77%
4	0.004	8	0,00%	98.77%
2	0.002	9	0.00%	98.77%
1	0.001	10	1.23%	100.00%
<1	>0.001	>10	0.00%	100.00%
% Gravel	9.2%	>2000 µm		
% Sand	88.4%	>63 µm		
% Slit	1.2%	>2 µm		
% Clay	1.2%	<2 μm		

Sample ID: Site B-3

Client ID: Project ID: City of Buenaventura

Santa Clara River Estuary


Sample I.D:

Site B-4

Sample Date: Analysis Date:

Particle Size	Particle Size		Incremental	Cumulative	
(µm)	(mm)	phi	Percent	Percent	
>2000	>2	-1	0.12%	0.12%	
1000	1	Ö	0.89%	1.01%	
500	0.50	1	14.51%	15.52%	
250	0.25	2	60.54%	76.06%	
125	0.125	3	13.93%	89,99%	
75	0.075	3,5	1.09%	91.09%	
63	0.063	4	1.16%	92.25%	
31	0.031	5	1.29%	93.54%	
16	0.016	6	0.00%	93.54%	
8	0.008	7	1.29%	94.83%	
4	0.004	8	1.29%	96.12%	
2	0.002	9	1.29%	97,42%	
1	0.001	10	1.29%	98,71%	
<1	>0.001	>10	1.29%	100.00%	
% Gravel	0.1%	>2000 µm			
		-			
% Sand	92.1%	>63 µm			
% Silt	5.2%	>2 µm			
% Clay	2.6%	<2 μm			

Sample ID: Site B-4

Client ID:

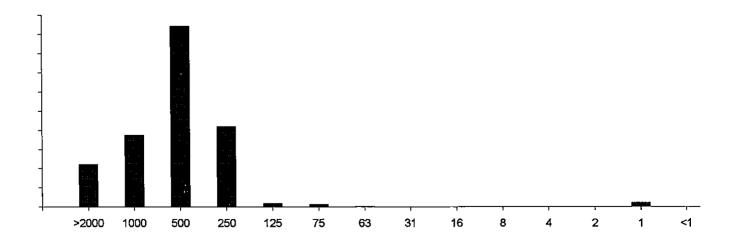
City of Buenaventura

Project ID: Santa Clara River Estuary

Sample I.D:

Site C-1

Sample Date:


03/16/04

Analysis Date:

Initiated 04/06/04

Particle Size	Particle Size		Incremental	Cumulative	
(µm)	(mm)	phl	Percent	Percent	
>2000	>2	-1	11.04%	11.04%	
1000	1	Ó	18.61%	29.64%	
500	0.50	1	46.96%	76.60%	
250	0.25	2	20.92%	97.51%	
125	0.125	3	0.86%	98.37%	
75	0.075	3.5	0,55%	98.92%	
63	0.063	4	0.04%	98,97%	
31	0.031	5	0.00%	98.97%	
16	0.016	6	0.00%	98.97%	
8	0.008	7	0.00%	98.97%	
4	0.004	8	0.00%	98.97%	
2	0.002	9	0.00%	98.97%	
1	0.001	10	1.03%	100.00%	
<1	>0.001	>10	0.00%	100.00%	
% Gravel	11.0%	>2000 µm			
% Sand	87.9%	>63 µm			
% Silt	0.0%	=			
% Silt % Clay	1.0%	>2 µm <2 µm			

Sample ID: Site C-1

Client ID:

City of Buenaventura

Project ID:

Santa Clara River Estuary

Sample I.D:

Site C-2

Sample Date:

03/16/04

Analysis Date: Initiated 04/06/04

Particle Size	Particle Size	-	incremental	Cumulative	
(µm)	(mm)	phi	Percent	Percent	
>2000	>2	-1	14.37%	14.37%	
1000	1	0	24.55%	38.92%	
500	0.50	1	43.68%	82.60%	
250	0.25	2	13.69%	96,29%	
125	0.125	3	1.12%	97.42%	
75	0.075	3.5	0.11%	97.53%	
63	0.063	4	0.04%	97.57%	
31	0.031	5	1.22%	98.78%	
16	0.016	6	0,00%	98.78%	
8	0.008	7	0.00%	98.78%	
4	0.004	8	0.00%	98.78%	
2	0.002	9	0.00%	98.78%	
1	0.001	10	1.22%	100.00%	
<1	>0,001	>10	0.00%	100.00%	
% Gravel	14.4%	>2000 µm			
% Sand	83.2%	>63 µm			
% Silt	1.2%	>2 μm			
% Clay	1.2%	<2 μm			

Sample ID: Site C-2

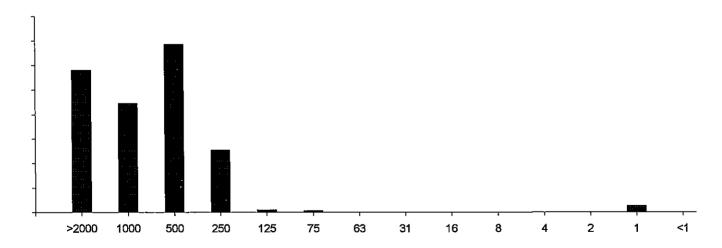
Client ID: Project ID:

City of Buenaventura

Santa Clara River Estuary

Sample I.D:

Site C-3


Sample Date:

03/16/04

Analysis Date: Initiated 04/06/04

Particle Size	Particle Size		Incremental	Cumulative	
(µm)	(mm)	phi	Percent	Percent	
>2000	>2	-1	29.02%	29.02%	
1000	1	0	22.17%	51.19%	
500	0.50	1	34.28%	85.47%	
250	0.25	2	12.63%	98.09%	
125	0.125	3	0.43%	98.52%	
75	0.075	3.5	0.26%	98.78%	
63	0.063	4	0.00%	98.78%	
31	0.031	5	0.00%	98.78%	
16	0.016	6	0.00%	98,78%	
8	0.008	7	0.00%	98.78%	
4	0.004	8	0.00%	98.78%	
2	0,002	9	0.00%	98.78%	
1	0.001	10	1.22%	100.00%	
<1	>0.001	>10	0.00%	100.00%	
% Gravel	29.0%	>2000 μm			
% Sand	69.8%	>63 µm			
% Silt	0.0%	>2 μm			
% Clay	1.2%	<2 μ m			

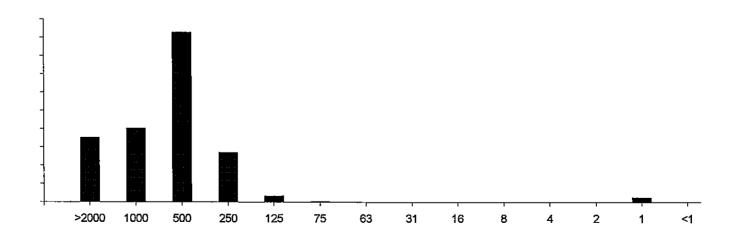
Sample ID: Site C-3

Client ID:

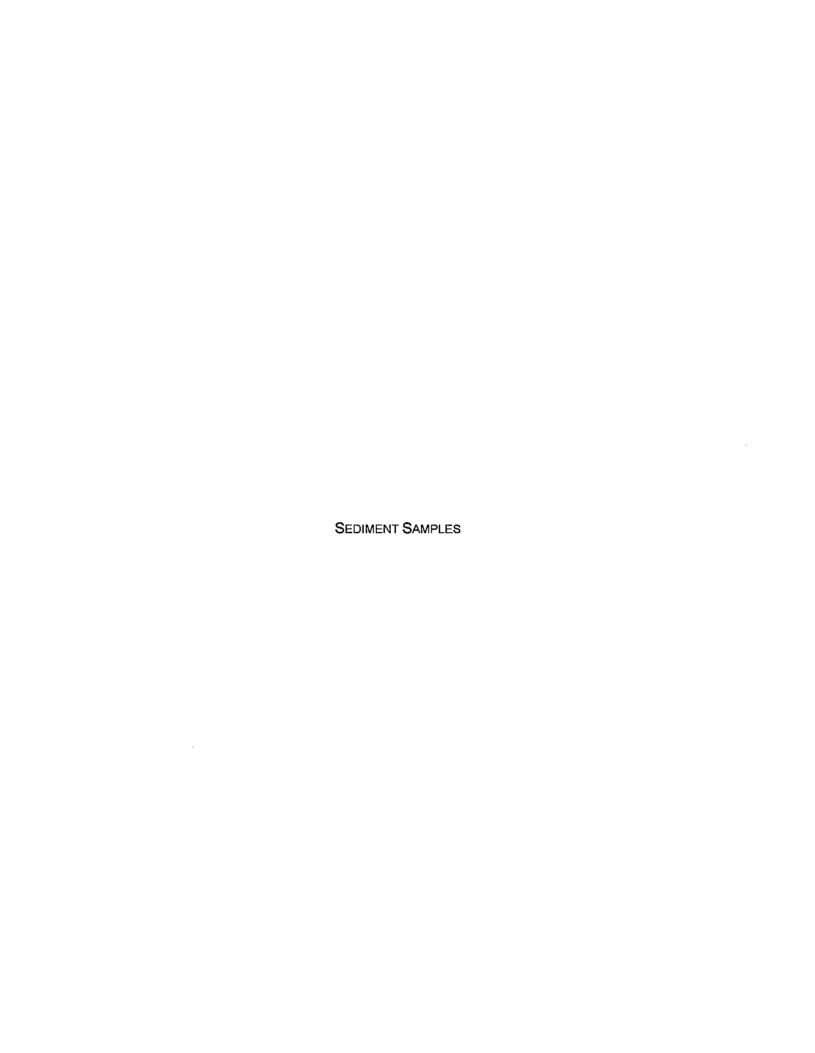
City of Buenaventura

Project ID:

Santa Clara River Estuary


Sample I.D:

Site D-1


Sample Date: Analysis Date:

Particle Size	Particle Size	-	Incremental	Cumulative	
(µm)	(mm)	phi	Percent	Percent	
>2000	>2	-1	17.44%	17.44%	
1000	1	0	19.94%	37.37%	
500	0.50	1	46.32%	83.69%	
250	0.25	2	13.42%	97.11%	
125	0.125	3	1.55%	98.66%	
75	0.075	3,5	0.13%	98.79%	
63	0.063	4	0.00%	98.79%	
31	0.031	5	0.00%	98.79%	
16	0.016	6	0.00%	98.79%	
8	0.008	7	0.00%	98.79%	
4	0.004	8	0.00%	98.79%	
2	0.002	9	0.00%	98.79%	
1	0.001	10	1.21%	100,00%	
<1	>0.001	>10	0.00%	100.00%	
% Gravel	17.4%	>2000 um			
		>2000 μm			
% Sand	81.3%	>63 µm			
% Silt	0.0%	>2 μm			
% Clay	1.2%	<2 µm			

Sample ID: Site D-1

APPENDIX F
ANALYTICAL CHEMISTRY DATA

Appendix Table F-1. Sediment Trace Metal and TOC Measurements

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Sample Collection Date: 16 March 2004

Sample	Copper (mg/kg)	Nickel (mg/kg)	Selenium (mg/kg)	Zinc (mg/kg)	TOC (mg/kg)
A-1	3.25	3.81	ND	12.1	2400
A-2	4.13	5.48	ND	16.2	4000
A-3	2.69	6.35	ND	11.50	3300
B-1	3.79	4.77	ND	15.7	2400
B-2	3.07	4.41	ND	12.4	2500
B-3	3.20	4.35	ND	12.5	3900
B-4	4.06	5.16	ND	15.4	3800
C-1	2.87	4.09	ND	11.5	1700
C-2	3.00	4.35	ND	12.1	6700
C-3	2.91	4.34	ND	11.5	1400
D-1	3.77	5.35	ND	13.7	8100

All results reported on a dry weight basis.

May 05, 2004

Supplemental Report

Chris Stransky AMEC Earth and Environmental 5510 Morehouse Drive, Suite 300 San Diego, CA 92121-3723

Subject:

Calscience Work Order No.:

Client Reference:

04-03-1864

City of Buenaventura / SCR

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 03/31/04 and analyzed in accordance with the attached chain-of-custody. This report has been reported to present data on a dry weight basis.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Program Manual, applicable standard operating procedures, and other related documentation. The original report of any subcontracted analysis is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calsorence Environmental

Laboratories, Inc. Robert Stearns

Project Manager

Michael J. Crisostomo

Quality Assurance Manager

AMEC Earth and Environmental 5510 Morehouse Drive, Suite 300 San Diego, CA 92121-3723 Date Received: Work Order No: Preparation: Method: 03/31/04 04-03-1864 N/A EPA 160.3

Project: City of Buenaventura / SCR

Page 1 of 2

Client Sample Number			Lab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
SCR A-1			04-03-1864-1	03/16/04	Solid	N/A	05/04/04	40504TSD1
P <u>arameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Solids, Total	92.2	0.1	1		%			
SCR A-2	<u>.</u>		04-03-1864-2	03/16/04	Solid	N/A	05/04/04	40504TSD1
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Solids, Total	83.5	0.1	1		%			
SCR A-3			04-03-1864-3	03/16/04	Solid	N/A	05/04/04	40504TSD1
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Solids, Total	81.9	0.1	1		%			
SCR B-1			04-03-1864-4	03/16/04	Solid	N/A	05/04/04	40504TSD1
Parameter Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Solids, Total	78.1	0.1	1		%			
SCR B-2	·		04-03-1864-5	03/16/04	Solid	N/A	05/04/04	40504TSD1
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Solids, Total	94.9	0.1	1		%			
SCR B-3			04-03-1864-6	03/16/04	Solid	N/A	05/04/04	40504TSD1
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Solids, Total	87.0	0.1	1		%			

RL - Reporting Limit ,

DF - Dilution Factor ,

AMEC Earth and Environmental 5510 Morehouse Drive, Suite 300 San Diego, CA 92121-3723 Date Received: Work Order No: Preparation: Method: 03/31/04 04-03-1864 N/A EPA 160.3

Project: City of Buenaventura / SCR

Page 2 of 2

Client Sample Number			Lab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
SCR B-4			04-03-1864-7	03/16/04	Solid	N/A	05/04/04	40504TSD1
Parameter Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Solids, Total	80.9	0.1	1		%			
SCR C-1			04-03-1864-8	03/16/04	Solid	N/A	05/04/04	40504TSD1
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Solids, Total	98.3	0.1	1		%			
SCR C-2			04-03-1864-9	03/16/04	Solid	N/A	05/04/04	40504TSD1
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Solids, Total	83.0	0.1	1		%			
SCR C-3			04-03-1864-10	03/16/04	Solid	N/A	05/04/04	40504TSD1
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Solids, Total	83.9	0.1	1		%			
SCR D-1			04-03-1864-11	03/16/04	Solid	N/A	05/04/04	40504TSD1
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			-
Solids, Total	83.7	0.1	1		%			

AMEC Earth and Environmental 5510 Morehouse Drive, Suite 300 San Diego, CA 92121-3723 Date Received: Work Order No: Preparation: Method: Units: 03/31/04 04-03-1864 EPA 3050B EPA 6020 mg/kg

Project: City of Buenaventura / SCR

Page 1 of 2

							Analyzed		
		04-03-18	64-1	03/16/04	Solid	04/02/04	04/02/04	040402L	.01
ported on a dry w	eight ba	sis.							-
Result	RL	DF	Qual	Parameter		Res	ult RL	DF	Qual
3.25		10.86		Selenium					
3.81	0.10	10.86		Zinc				10.86	
		04-03-18	64-2	03/16/04	Solid	04/02/04	04/02/04	040402L	_01
ported on a dry w	eight ba	sis.							
Result	-	DF	Qual	Parameter		Res	ult RL	DF	Qual
		_		Selenium					
5.48	0.11	11.9		Zinc				11.9	
		04-03-18	64-3	03/16/04	Solid	04/02/04	04/02/04	040402L	.01
ported on a drv w	eight ba	sis.					· 		
Result	-	DF	Qual	Parameter		Res	ult RL	DF	Qual
				Selenium					
6.35	0.12	12.2		Zinc				12.2	
		04-03-18	64-4	03/16/04	Solid	04/02/04	04/02/04	040402L	_01
ported on a drv w	veight ba	sis.					· · · · · · · · · · · · · · · · · · ·		
Result	-		Qual	Parameter		Res	ult RL	DF	Qual
	_	_							
-1.7.1			64-5	03/16/04	Solid	04/02/04	04/02/04	040402L	 _01
nodod en e de	uniakt k -								
			Qual	Parameter		Par	erilt Di	DE	Qual
			<u>ocuai</u>						<u>ranai</u>
4.42	0.10		GA G	-	Calid				
			04-0	03/16/04	20110	V4/V2/V4	U4/UZ/U4	U4U4U2L	
-	-			.		_	ı. - -		_
	_		Qual						<u>Qual</u>
								11.5	
	0.11	11.5		Zinc		12.	5 1.1	11.5	
	 -	04-03-18	64-7	03/16/04	Solid	04/02/04	04/02/04	040402L	L01
ported on a dry v	veight ba	ısis.							
Result	RL	<u>DF</u>	Qual	<u>Parameter</u>		Res	sult RL	<u>DF</u>	Qual
4.06	0.12	12.34		Selenium		ND		12.34	
		1							
	ported on a dry were result a.13 s.48 ported on a dry were result a.69 s.35 ported on a dry were result a.77 ported on a dry were result a.07 s.4.42 ported on a dry were result a.20 s.20 s.20 s.20 s.20 s.20 s.20 s.20 s	3.25 0.10 3.81 0.10 ported on a dry weight bath text	3.25 0.10 10.86 3.81 0.10 10.86 04-03-18 ported on a dry weight basis. Result RL DF 4.13 0.11 11.9 5.48 0.11 11.9 04-03-18 ported on a dry weight basis. Result RL DF 2.69 0.12 12.2 6.35 0.12 12.2 04-03-18 ported on a dry weight basis. Result RL DF 3.79 0.12 12.82 4.77 0.12 12.82 4.77 0.12 12.82 04-03-18 ported on a dry weight basis. Result RL DF 3.07 0.10 10.52 4.42 0.10 10.52 4.42 0.10 10.52 ported on a dry weight basis. Result RL DF 3.20 0.11 11.5 4.35 0.11 11.5 04-03-18 Reported on a dry weight basis. Result RL DF 3.20 0.11 11.5 04-03-18 Reported on a dry weight basis. Result RL DF 3.20 0.11 11.5 04-03-18 Reported on a dry weight basis. Result RL DF 3.20 0.11 11.5	3.25 0.10 10.86 3.81 0.10 10.86	3.25 0.10 10.86 Selenium Zinc	3.25	3.25	3.25	3.25

RL - Reporting Limit ,

DF - Dilution Factor

AMEC Earth and Environmental 5510 Morehouse Drive, Suite 300 San Diego, CA 92121-3723 Date Received: Work Order No: Preparation: Method: Units: 03/31/04 04-03-1864 EPA 3050B EPA 6020 mg/kg

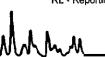
Project: City of Buenaventura / SCR

Page 2 of 2

Client Sample Number				Sample lumber	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
SCR C-1			04-03-18	64-8	03/16/04	Solid	04/02/04	04/02/04	040402	L01
Comment(s): -Results are rep	orted on a dry w	eight bas	sis.			-				
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>		Resu	ılt RL	DF	Qual
Copper	2.87	0.10	10.2		Selenium		ND	0.510	10.2	
lickel	4.09	0.10	10.2		Zinc		11.5	1.0	10.2	
SCR C-2		•	04-03-18	64-9	03/16/04	Solid	04/02/04	04/02/04	040402	L01
Comment(s): -Results are rep	orted on a dry w	eight bas	sis.							•
Parameter Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>		Resu	<u>ılt RL</u>	<u>DF</u>	Qual
Copper	3.00	0.12	12.04		Selenium		ND	0.602	12,04	
lickel	4.35	0.12	12.04		Zinc		12.1	1.2	12.04	
SCR C-3			04-03-18	64-10	03/16/04	Solid	04/02/04	04/02/04	040402	1.01
SCR C-3			04-00-10	04 -10	03/10/04	Juliu	04/02/04	04/02/04	VHUHUA	LUI
				04-10	03/10/04	John	04/02/04		040402	
Comment(s): -Results are rep				Qual	Parameter	Solid	Resu			
Comment(s): -Results are rep	ported on a dry w	eight bas	sis.			John			<u>DF</u>	Qual
Comment(s): -Results are rep Parameter Copper	ported on a dry w Result	eight bas	sis.		Parameter	Solid	Resu	<u>III RL</u> 0.595		
Comment(s): -Results are rep Parameter Copper	ported on a dry w Result 2.91	eight bas RL 0.11	bis. <u>DF</u> 11.9	Qual	<u>Parameter</u> Selenium	Solid	<u>Resu</u> ND	<u>III RL</u> 0.595	<u>DF</u> 11.9	Qual
Comment(s): -Results are rep Parameter Copper Nickel SCR D-1	ported on a dry w Result 2.91 4.34	veight bas RL 0.11 0.11	sis. <u>DF</u> 11.9 11.9 04-03-1 8	Qual	Parameter Selenium Zinc		<u>Resu</u> ND 11.5	<u>Ilt RL</u> 0.595 1.1	<u>DF</u> 11.9 11.9	Qual
Comment(s): -Results are repertured to the comment of the comment	ported on a dry w Result 2.91 4.34	veight bas RL 0.11 0.11	sis. <u>DF</u> 11.9 11.9 04-03-1 8	Qual	Parameter Selenium Zinc		<u>Resu</u> ND 11.5	ult RL 0.595 1.1 04/02/04	<u>DF</u> 11.9 11.9	Qual
Comment(s): -Results are reparameter Copper Nickel SCR D-1 Comment(s): -Results are reparameter	ported on a dry w Result 2.91 4.34	reight bas RL 0.11 0.11	bis. DF 11.9 11.9 04-03-18	Qual 64-11	Parameter Selenium Zinc 03/16/04		Resu ND 11.5 04/02/04	ult RL 0.595 1.1 04/02/04	DF 11.9 11.9 040402 DF	Qual
Comment(s): -Results are rep Parameter Copper Nickel	ported on a dry w Result 2.91 4.34 ported on a dry w Result	veight bas RL 0.11 0.11 veight bas RL	ois. DF 11.9 11.9 04-03-18 ois. DF	Qual 64-11	Parameter Selenium Zinc 03/16/04 Parameter		Resu ND 11.5 04/02/04 Resu	111 RL 0.595 1.1 04/02/04 111 RL 0.595	DF 11.9 11.9 04040 2	Qual
Comment(s): -Results are reparameter Copper Nickel SCR D-1 Comment(s): -Results are reparameter Copper	ported on a dry w Result 2.91 4.34 ported on a dry w Result 3.77	veight bas RL 0.11 0.11 veight bas RL 0.11	bis. DF 11.9 11.9 04-03-18 bis. DF 11.9	Qual 64-11 Qual	Parameter Selenium Zinc 03/16/04 Parameter Selenium		Resu ND 11.5 04/02/04 Resu ND	111 RL 0.595 1.1 04/02/04 111 RL 0.595	DF 11.9 11.9 040402 DF 11.9	Qual
Comment(s): -Results are represented by the comment of the comment	ported on a dry w Result 2.91 4.34 ported on a dry w Result 3.77	veight bas RL 0.11 0.11 veight bas RL 0.11	ois. DF 11.9 11.9 04-03-18 ois. DF 11.9 11.9	Qual 64-11 Qual	Parameter Selenium Zinc 03/16/04 Parameter Selenium Zinc	Solid	Resu ND 11.5 04/02/04 Resu ND 13.7 04/02/04	0.595 1.1 04/02/04 ult RL 0.595 1.1 04/02/04	DF 11.9 040402 DF 11.9 11.9	Qual L01 Qual
Comment(s): -Results are reperented to the comment of the comment	ported on a dry w Result 2.91 4.34 ported on a dry w Result 3.77 5.35	reight bas RL 0.11 0.11 reight bas RL 0.11 0.11	ois. DF 11.9 11.9 04-03-18 sis. DF 11.9 11.9 096-10-0	Qual 64-11 Qual 02-293	Parameter Selenium Zinc 03/16/04 Parameter Selenium Zinc N/A	Solid	Resu ND 11.5 04/02/04 Resu ND 13.7	0.595 1.1 04/02/04 ult RL 0.595 1.1 04/02/04	DF 11.9 040402 DF 11.9	Qual

RL - Reporting Limit

DF - Dilution Factor



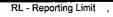
AMEC Earth and Environmental 5510 Morehouse Drive, Suite 300 San Diego, CA 92121-3723 Date Received: Work Order No: Preparation: Method: 03/31/04 04-03-1864 N/A EPA 9060

Project: City of Buenaventura / SCR

Page 1 of 2

Client Sample Number			Lab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
SCR A-1		_	04-03-1864-1	03/16/04	Solid	N/A	04/06/04	40406TOCL1
Comment(s): -Results Parameter	s are reported on a <u>Result</u>	dry weight basi	s. <u>DF</u>	Qual	<u>Units</u>			
Carbon, Total Organic	2400	540	1.08		mg/kg			
SCR A-2			04-03-1864-2	03/16/04	Solid	N/A	04/06/04	40406TOCL1
Comment(s): -Results Parameter	s are reported on a <u>Result</u>	dry weight basi <u>RL</u>	s. <u>DF</u>	Qual	<u>Units</u>			
Carbon, Total Organic	4000	600	1.2		mg/kg			
SCR A-3			04-03-1864-3	03/16/04	Solid	N/A	04/06/04	40406TOCL1
Comment(s): -Result: Parameter	s are reported on a <u>Result</u>	dry weight basi <u>RL</u>	s. <u>DF</u>	Qual	<u>Units</u>			
Carbon, Total Organic	3300	610	1.22		mg/kg			
SCR B-1			04-03-1864-4	03/16/04	Solid	N/A	04/06/04	40406TOCL1
	s are reported on a	dry weight basi						
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Carbon, Total Organic	2400	640	1.28		mg/kg			
SCR B-2			04-03-1864-5	03/16/04	Solid	N/A	04/06/04	40406TOCL1
Comment(s): -Result Parameter	s are reported on a <u>Result</u>	dry weight bas <u>RL</u>	is. <u>DF</u>	Qual	<u>Units</u>			
Carbon, Total Organic	2500	530	1.05		mg/kg			
SCR B-3			04-03-1864-6	03/16/04	Solid	N/A	04/06/04	40406TOCL1
Comment(s): -Result Parameter	s are reported on a <u>Result</u>	a dry weight bas <u>RL</u>	is. <u>DF</u>	<u>Qual</u>	<u>Units</u>			
Carbon, Total Organic	3900	580	1.15		mg/kg			

DF - Dilution Factor ,



AMEC Earth and Environmental 5510 Morehouse Drive, Suite 300 San Diego, CA 92121-3723 Date Received: Work Order No: Preparation: Method: 03/31/04 04-03-1864 N/A EPA 9060

Project: City of Buenaventura / SCR

Page 2 of 2

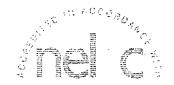
Project. City of buent	aventura / 3	OCK						rage z or z
Client Sample Number			Lab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
SCR B-4		(04-03-1864-7	03/16/04	Solid	N/A	04/06/04	40406TOCL1
Comment(s): -Results a	re reported on a <u>Result</u>	dry weight basis	s. DF	Qual	<u>Units</u>			
Carbon, Total Organic	3800	620	1.24		mg/kg			
SCR C-1			04-03-1864-8	03/16/04	Solid	N/A	04/06/04	40406TOCL1
Comment(s): -Results a Parameter	re reported on a <u>Result</u>	ı dry weight basi: <u>RL</u>	s. <u>DF</u>	<u>Qual</u>	<u>Units</u>			
Carbon, Total Organic	1700	510	1.02		mg/kg			
SCR C-2			04-03-1864-9	03/16/04	Solid	N/A	04/06/04	40406TOCL1
Comment(s): -Results a Parameter	re reported on a Result	dry weight basi <u>RL</u>	s. <u>DF</u>	Qual	<u>Units</u>			
Carbon, Total Organic	6700	600	1.2		mg/kg			
SCR C-3			04-03-1864-10	03/16/04	Solid	N/A	04/06/04	40406TOCL1
Comment(s): -Results a	are reported on a Result	a dry weight basi <u>RL</u>	s. <u>DF</u>	Qual	<u>Units</u>			
Carbon, Total Organic	1400	600	1.19		mg/kg			
SCR D-1			04-03-1864-11	03/16/04	Solid	N/A	04/06/04	40406TOCL1
Comment(s): -Results a Parameter	are reported on a	a dry weight basi <u>RL</u>	s. <u>DF</u>	Qual	<u>Units</u>			
Carbon, Total Organic	8100	600	1.19		mg/kg			
Method Blank		,	099-06-013-22	N/A	Solid	. N/A	04/06/04	40406TOCL1
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Carbon, Total Organic	ND	500	1		mg/kg			

DF - Dilution Factor ,

Quality Control - Duplicate

AMEC Earth and Environmental 5510 Morehouse Drive, Suite 300 San Diego, CA 92121-3723 Date Received: Work Order No: Preparation: Method: 03/31/04 04-03-1864 N/A EPA 160.3

Project:


City of Buenaventura / SCR

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
Quality Control Sample ID Matrix Instrument SCR D-1 Solid N/A	N/A	N/A	05/04/04	40504TSD1	
<u>Parameter</u>	Sample Conc	DUP Conc	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Solids, Total	83.7	84.6	1	0-25	

Quality Control - Spike/Spike Duplicate

AMEC Earth and Environmental 5510 Morehouse Drive, Suite 300 San Diego, CA 92121-3723 Date Received: Work Order No:

04-03-1864

03/31/04

Preparation: Method:

EPA 3050B EPA 6020

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
SCR B-2	Solid	ICP/MS A	04/02/04	04/02/04	040402801

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Copper	102	99	80-120	2	0-20	
Nickel	100	98	80-120	2	0-20	
Selenium	104	101	80-120	3	0-20	
Zinc	104	100	80-120	3	0-20	

Quality Control - PDS / PDSD

AMEC Earth and Environmental 5510 Morehouse Drive, Suite 300 San Diego, CA 92121-3723

Date Received: Work Order No: Preparation: Method: 03/31/04 04-03-1864 EPA 3050B EPA 6020

Quality Control Sample ID		Matrix Instrument		Date Prepared	D	ate Analyzed	PDS/PDSD Batch Number
SCR B-2	.s 	Solid	ICP/MS A	04/02/04		04/02/04	040402501
<u>Parameter</u>		PDS %REC	PDSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Copper		98	97	75-125	1	0-20	
Nickel		96	95	75 -125	1	0-20	
Selenium		99	97	75-125	2	0-20	
Zinc		98	97	75-125	1	0-20	

Quality Control - LCS/LCS Duplicate

AMEC Earth and Environmental 5510 Morehouse Drive, Suite 300 San Diego, CA 92121-3723 Date Received: Work Order No: Preparation: Method: N/A 04-03-1864 EPA 3050B EPA 6020

Quality Control Sample ID	Matrix Instrument		Da t Prep		Dai Analy		LCS/LCSD Bato Number	h
096-10-002-293	Solid	ICP/MS A	04/0	04/02/04		/04	.040402L01	·
<u>Parameter</u>	LCS	%REC LO	SD %REC	<u>%RE</u>	C_CL	RPD	RPD CL	Qualifiers
Copper	98		98	80	120	0	0-20	
Nickel	95		94	80	120	1	0-20	
Selenium	94		93	80	120	1	0-20	
Zinc	97	•	97	80	120	1	0-20	

Quality Control - Spike/Spike Duplicate

AMEC Earth and Environmental 5510 Morehouse Drive, Suite 300 San Diego, CA 92121-3723 Date Received: Work Order No:

03/31/04

04-03-1864 N/A

Preparation: Method:

EPA 9060

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
SCR A-1	Solid	TOC 4	N/A	04/06/04	40406TOCS1
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD RPD	CL Qualifiers
Carbon, Total Organic	97	93	70-130	4 0-25	5

Quality Control - Laboratory Control Sample

AMEC Earth and Environmental

5510 Morehouse Drive, Suite 300 San Diego, CA 92121-3723

Date Received: Work Order No: Preparation: Method: N/A 04-03-1864 N/A

EPA 9060

Project:

City of Buenaventura / SCR

Quality Control Sample ID	Control Sample ID Matrix Instrument Date		Date Analyzed	Lab File ID	LC	S Batch Number
099-06-013-22	Solid	TOC 4	04/06/04			40406TOCL1
Parameter		Conc Added	Conc Recovered	LCS %Rec	%Rec CL	<u>Qualifiers</u>
Carbon, Total Organic		6000	5700	96	80-120	

Glossary of Terms and Qualifiers

Work Order Number: 04-03-1864

<u>Qualifier</u> <u>Definition</u>

ND Not detected at indicated reporting limit.

WORK ORDER #: 04 - 03 - 1864

Cooler ______ of ____

SAMPLE RECEIPT FORM

CLIENT: ///MUC	DATE: 3/3//4
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Ckilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature.	LABORATORY (Other than Calscience Courier): C Temperature blank. C IR thermometer. Ambient temperature.
°C Temperature blank.	Initial:
CUSTODY SEAL INTACT:	
Sample(s): Cooler: No (Not Intact)	: Not Applicable (N/A):
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples Sample container label(s) consistent with custody papers Sample container(s) intact and good condition Correct containers for analyses requested Proper preservation noted on sample label(s) VOA vial(s) free of headspace. Tedlar bag(s) free of condensation	
COMMENTS:	

CALSCIENCE ENVIRONMENTAL LABORATORIES, INC.

7440 LINCOLN WAY **GARDEN GROVE, CA 92841-1432** TEL: (714) 895-5494 • FAX: (714) 894-7501

CHAIN OF	CUSTODY	RECORD
----------	----------------	--------

Date	3/31/	24		
Page	1	Of	2	

LABORATORY CLIENT													IBER:	1.	_		P.C	. NO.	:										
LABORATORY CLIENT AMEC	<u>. </u>						∤८ :	t/ .	oC 1	<u> </u>	1444	Mont.	٥١٥		SCR			ntario r		د داده	**********	<u> </u>	163554						
5510 1		vs · Dr					PR	ÓEC A	T CON	ITACI	Γ: 	- ,		•			LA	B USE	ONL	Y	8 8								
CITY	15	STATE A	a	긴기	Z	IP.		_('	عملا	15		<u>>+</u>	rang																
TEL:	FAX:		E-MAIL:	<u> </u>				MPLE	R(S))	SIGN. / 	ATUR	E)	C		OG CO	L DE	FCO	OLEF	REC	EIRT									
858 458-9044	858	587-3961	Chairs.	stranck	<u>, lar</u>	۱(د.زه	վ/	<u>//~</u>	<u>. */</u>	土	<u>, </u>		L		<u> </u>		额是	VP.		W.W.	#1348								
TURNAROUND TIME: \$4	48	HR 🔲 72 HR	☐ 5 DAY	, n	10 DAYS		١ ۲	•			R	EQ	UE	STE	DΑ	NA	LÝS	EŞ					i						
SPECIAL REQUIREMENTS (ADDITIO			LI S DAI	• -	IU DAIS	•	╁	,											-1-				\neg						
•	COELT R	•					ł					<u>a</u> .			1€	<u> </u>			" "										
SPECIAL INSTRUCTIONS:									İ	面		EnCore			EDB / DBCP (504.1) or (8011)	CAC, T22 METALS (6010B)	٠.	15)	لان	`			ŀ						
							1		19	021		副			9	99.5		(TO	~]			.	.						
									807	S (8		326			129	[ALS		ō	7,	- ~ / 		- [
							ł		ᇤ	S I	8	12/1	8	<u> </u>	7 년	뿔	5	14A	17	٠.١									
] ॣ	0	BTEX / MTBE (8021B)	HALOCARBONS (8021B)	VOCs (8260B)	VOCs (5035 / 8260B)	SVOCs (8270C)	PEST (8081A)		T22	PNAs (8310)	VOCs (T0·14A) or (T0·15)	J	Š	.								
LAB				LING		NO. OF	TPH (G)	품	PH (C	H	문	문	(O) H&1	ᇤ	ă		ည	ဗ္ဗ	ğ	ة كا غ	3 8	Å,	VAs	CS	PPRC.	رت)		ľ	
USE GEIMS ID		SAMPLE ID	DATE	ПМЕ	MATRIX	CONT.		122	<u>-</u>	主	>	>	22	<u> </u>		ن	⋴	۸	V										
	SCR	_A-I	3/16/64		Sea	t											,		X	X									
(.2)		A-2																		1									
	1 1	A-3					T			ŀ							1		11	1			- 1						
		B-1			İ														T				<u> </u>						
3 3		B-2																	П										
		13-3														-				7									
37 .2		B-4																					\exists						
\$		C-1																		\prod									
4		۲-۲		·																									
	1 V	८- ঽ	J.			J												•	1				\Box ,						
Relinquished by: (Signature)	4			Rece	ived by	1Signa	ture)		\sum							Da				Tim			S						
1/1																3	31	100			123	O.	ءً ــــ						
Relinquished by (Signature)				Rece	eived by:	(Signa	ture)									Da	te:	ا ر	'	Tim	e:		1						
Relinquished by: (Signature)	<u></u>			Rece	eived for	Labora	~//	Ä.	-	re)						2	te/	1/	,	Tim		10	CACO Committee (274) 898-800						
	7-2		Mallany and F			_/_	146	2W	Μ	_						4	<u> </u>	7			10/01								

CALSCIENCE ENVIRONMENTAL LABORATORIES, INC.

7440 LINCOLN WAY **GARDEN GROVE, CA 92841-1432** TEL: (714) 895-5494 • FAX: (714) 894-7501

		CH Date Page	9		F (ろ) て				<u></u>	CC	PD
1	i:		50			1 5			8]	<u>6</u>]	Z)
E	 :S1	ED.	A	NAI	LYS	MP =					ic.
	PEST (8081A)	PCBs (8082)	EDB / DBCP (504.1) or (8011)	CAC, T22 METALS (6010B)	PNAs (8310)	VOCs (TO-14A) or (TO-15)	Cu. Se, Zn, N:	100)		
							ኦ	×			
		-									
									· · · ·		
ł									· ·		<u> </u>

LABORAT	ORY CLIENT:	1EC						CL	ENT	PROJ	ECT I	NAME.	NUM	BER:	_/	S	• •	Р.С). NO	.:			-
ADDRESS	55 10 5 50 5 458- 9044 DUND TIME:	Morehous	e Dr					PR	OJEG	T CO	NTAC	T:	\r\^	tura	<u> </u>	<u> </u>		LA LA	8 US	EONL			Z
CITY	5m	Dreso	STATE	A		921	ZIP こ	SA	MPLE	F(S):	GIGN	IATUR	-)		ELT LO	ദ സ	DF.				LI (8 EIPI		
TEL: V 58	458- 9044	FAX. 5% 5%	37- 396	E-MAIL:	Strong	م جرما:	xmer] "		., .(0).	(5.5.		-,					9. 55			Chief the	ANSOLVADO.	Fec.
TURNARO	DUND TIME: 4	51	☐ 72 HR	□ 5 DAY	rs 🗆	10 DAYS	(• **	1				R	EQ	UES	TE	D A	NA	LYS	ES	•			
SPECIAL	REQUIREMENTS (ADD	ITIONAL COSTS MAY	APPLY)			10 0, 110	<u> </u>	ſ	ı							\prod					\Box	\top	\Box
	QCB REPORTING	COELT REPO	ORTING					-					Core			8011	<u>(8</u>		;	2			
										B	(21B)		띮	l) o (109		0.0	1			
										8021	S (80		12601			1.40	ALS			77			
										IBE (BON	30B)	32	2700	5 5	유	MET	2	14A)	J	ď		
LAB				SARI	PLING	1		l ē	TPH (D) or	BTEX / MTBE (8021B)	HALOCARBONS (8021B)	VOCs (8260B)	VOCs (5035 / 8260B) EnCore	SVOCs (8270C)	PCBs (8082)	EDB / DBCP (504.1) or (8011)	CAC, T22 METALS (6010B)	PNAs (8310)	VOCs (TO-14A) or (TO-15)	M	Ŋ	.	
USE ONLY	GEIMS ID	SAM	PLE ID	DATE	TIME	MATRIX	NO. OF CONT.	TPH (G)	TPH	BTE)	HAL	VOC	χÖ	S	PCR	EDB	CAC	PNA	VOC	3	17	ł	
		Sca	D-I	3/16/20	,	5ed)													N.	X		
																					\top		1
						<u> </u>		1							1	1					\top		
		-													_	-						1	
						1								+	+				:		+	+	+
		 						1					_	+		-					+	+	+
				 		 						_	\dashv	-	+-	╁					\dashv	\dashv	
						 					\dashv	- -		+-		 				\dashv	+	- +	
	1.					 						+	\dashv	_							+	+	+
Relinqui	ished by (Signature	Val			Rece	jyed by:	(Signa t	πίθ)				l			_	<u></u>	Dai	le:			Time:	<u>_</u>	
	1/1/20	XX		· · · · · ·					<u> </u>									31	10 G			24	O
Relinqui	ished by: (Signature				Rece	eived by:	(Signat	ture)	•								Dat	te:		' T	Time:		
Relinqui	shed by: (Signature	\			Rece	eived fo	Laborat	tory b	y: (Si	ignati	ıre)		_		.		Dat	b : ,	1.	+	Time:		
	DICTORDIFICAL	}	2				X4	HU	νX								5/:	2//	14		<u>/</u>	70	<u>v</u>

09/10/01 Revision

Appendix Table F-2. Ambient Water Trace Metal Measurements City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event Sample Collection Date: 16 March 2004

Comple	Form		Concentra	ation (μg/L)	
Sample	Form	Copper	Nickel	Selenium	Zinc
Field Blank	Total	0.19	0.26	0.13	1.89
A 2	Total	4.49	4.18	1.73	22.3
A-2	Dissolved	3.1	3.26	2.1	17.7
B-1	Total	3.75	3.26	0.61	22.5
D -1	Dissolved	2.93	1.31	0.57	22
B-3	Total	3	5.04	4.54	3.98
D-3	Dissolved	2.19	4.11	3.82	3.19
C-3	Total	1.95	6.26	2.51	2.43
	Dissolved	1.83	6.12	2.58	2.39

2020 Del Amo Boulevard Suite 200, Torrance, CA 90501 • (310) 533-5190 • FAX (310) 533-5003 • mborja@crglabs.com

May 5, 2004

AMEC Earth & Environmental 5510 Morehouse Drive San Diego, CA 92121

Re:

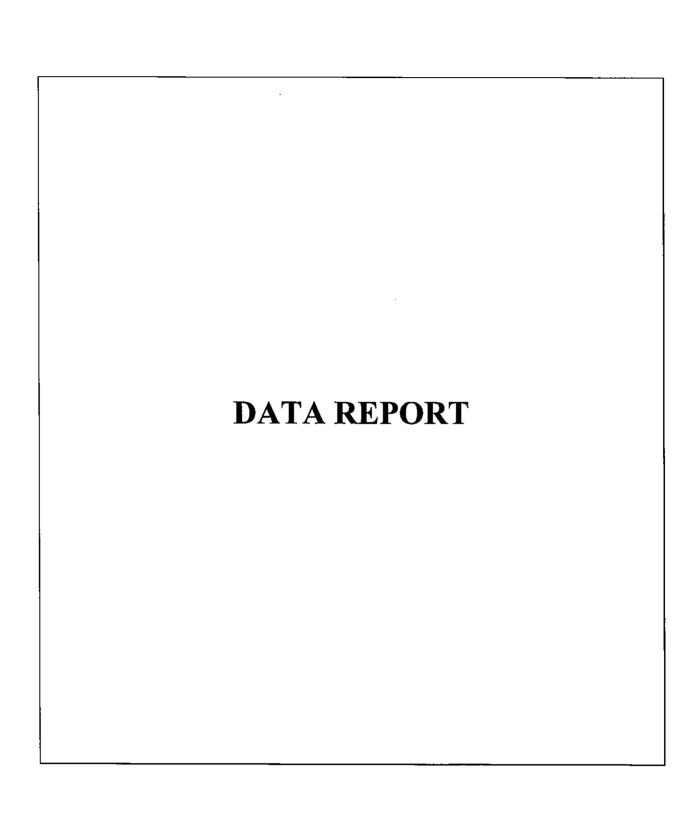
CRG Project ID # 2471

AMEC City of Buena Ventura/ SCRE Project

ATTN: Mr. Nick Buhbe

CRG Laboratories is pleased to provide you with the enclosed analytical data report for your City of Buena Ventura/ SCRE Project. According to the chain-of-custody, 6 samples were received intact and cool at CRG on March 18, 2004. Per your instructions he samples were processed and analyzed for:

Total and Dissolved Copper, Zinc, Selenium and Zinc By ICPMS Using EPA Methods 1640


Please don't hesitate to call if you have any questions and thank you very much for using our laboratory for your analytical needs.

Regards, Misty R. Borja Project Manager

Digitally signed by Milaty R. Borja DN: cn=Misty R. Borja, o=CRG Marine Laboratories, Inc., c=US Date: 2004.05.05 10:03:08 -08:00* Location: Torrance

Reviewed and Approved

CRG ID#: 16969	Replicate #: R1-Dis	ssolved Project ID:	2471	Batch ID: 2471	-9145	Matrix: Aqueous
Sample	Field Blank		CI	ient Name:	AMEC Ear	th & Environmental
Description:	City of Buena Ventura/ 16:00	SCRE	D.	olect Officer:	Howard Bailey	
Time Collected: Date Sampled:	16-Mar-04	Date Processed:	05-Apr-04	•	Analyst:	Pat Hershelman
Date Received:	18-Mar-04	Date Analyzed:	23-Apr-0		12222	
CONSTITUENT	RESULT	MDL	ML	UNITS	DII	LUTION FACTOR
CONSTITUENT Copper (Cu)	RESULT 0.19	0.005	ML 0.01	UNITS µg/L	DII	LUTION FACTOR 1
					DII	1 1
Copper (Cu)	0.19	0.005	0.01	μg/L	DI	1

CRG ID#: 16969	Replicate #: R1-To	tal Project ID:	2471	Batch ID: 2471	-9145	Matrix: Aqueous
Sample	Field Blank		(Client Name:	AMEC Ear	th & Environmental
Description:	City of Buena Ventura	SCRE				
Time Collected:	16:00	I	Project Officer:	Howard Bailey		
Date Sampled:	16-Mar-04	Date Processed:	05-Apr-	04	Analyst:	Pat Hershelman
Date Received:	18-Mar-04	Date Analyzed:	23-Apr-	04		
CONSTITUENT	RESULT	MDL	ML	UNITS	DII	LUTION FACTOR
Copper (Cu)	E 0.01	0.005	0.01	μg/L	,	1
Nickel (Ni)	0.03	0.005	0.01	μg/L		1
Selenium (Se)	0.05	0.01	0.015	μg/L		1
Zinc (Zn)	ND	0.005	0.01	µg/L		1

CRG ID#: 16970	Replicate #: RI	-Dissolved Project ID:	2471 I	Batch ID: 2471	-9145	Matrix: Aqueous	
Sample	SCRE-A2		Clie	ent Name:	AMEC Ear	th & Environmental	
Description:	City of Buena Vent	ura/SCRE					
Time Collected:	12:27		Pro	ject Officer:	Howard Bailey		
Date Sampled:	16-Mar-04	Date Processed:	05-Apr-04		Analyst:	Pat Hershelman	
Date Received:	18-Mar-04	Date Analyzed:	23-Арт-04				
CONSTITUENT	RESUL	T MDL	ML	UNITS	DII	LUTION FACTOR	
Copper (Cu)	3.1	0.005	0.01	μg/L		1	
Nickel (Ni)				_		_	
TAICKOI (TAI)	3.2	6 0.005	0.01	μg/L		1	
Selenium (Se)	3.2 2.1	0.005	0.01	μg/L μg/L		1 1	

CRG ID#: 16970	Replicate #: R1-To	otal Project ID:	2471	Batch ID: 2471	1-9145	Matrix: Aqueous	
Sample Description:	SCRE-A2 City of Buena Ventura	/scre	CII	ent Name:	AMEC Ear	th & Environmental	
Time Collected:	12:27		Pro	oject Officer:	Howard Bailey		
Date Sampled: Date Received:	16-Mar-04 18-Mar-04	Date Processed: Date Analyzed:	05-Арг-04 23-Арг-04		Analyst:	Pat Hershelman	
CONSTITUENT	RESULT	MDL	ML	UNITS	וות	LUTION FACTOR	
Copper (Cu)	4.49	0.005	0.01	µg/L		1	
Nickel (Ni)	4.18	0.005	0.01	µg/L		1	
Selenium (Se)	1.73	0.01	0.015	μg/L		1	
Zinc (Zn)	22.3	0.005	0.01	μg/L		1	

CRG ID#: 16971	Replicate #: R1-D	issolved Project ID:	2471	Batch ID: 247	1-9145	Matrix: Aqueous
Sample Description:	SCRE-A2Dup City of Buena Ventura	/SCRE	CI	ient Name:	AMEC Ear	th & Environmental
Time Collected:	12:27		Project Officer:		Howard Bailey	
Date Sampled: Date Received:	16-Mar-04 18-Mar-04	Date Processed: Date Analyzed:	05-Apr-0- 23-Apr-0-		Analyst:	Pat Hershelman
CONSTITUENT	RESULT	MDL	ML	UNITS	DII	LUTION FACTOR
Copper (Cu)	2.95	0.005	0.01	μg/L		1
Nickel (Ni)	1.38	0.005	0.01	μg/L		1
Selenium (Se)	0.35	0.01	0.015	μg/L		1
Zinc (Zn)	20.1	0.005	0.01	μg/L		1

CRG ID#: 16971	Replicate #: R1-To	tal Project ID:	2471	Batch ID: 2471	1-9145	Matrix: Aqueous
Sample	SCRE-A2Dup		(Client Name:	AMEC Ear	th & Environmental
Description:	City of Buena Ventura	SCRE .				
Time Collected:	12:27			Project Officer:	Howard Ba	iley
Date Sampled:	16-Mar-04	Date Processed:	05-Apr-	04	Analyst:	Pat Hershelman
Date Received:	18-Mar-04	Date Analyzed:	23-Apr-	04		
CONSTITUENT	RESULT	MDL	ML	UNITS	DI	LUTION FACTOR
Copper (Cu)	4.49	0.005	0.01	μg/L		1
Nickel (Ni)	4.12	0.005	0.01	µg/∟		1
Selenium (Se)	1.34	0.01	0.015	μg/L		1
Zinc (Zn)	22.2	0.005	0.01	μg/L		1

CRG ID#: 16972	Replicate #: R1-D	issolved Project ID:	2471 E	Batch ID: 247	1-9145	Matrix: Aqueous	
Sample	SCRE-B1		Clie	nt Name:	AMEC Ear	th & Environmental	
Description:	City of Buena Ventura	/SCRE					
Time Collected:	11:24		Proj	ect Officer:	Howard Bailey		
Date Sampled:	16-Mar-04	Date Processed:	05-Apr-04		Analyst:	Pat Hershelman	
Date Received:	18-Mar-04	Date Analyzed:	23-Apr-04				
CONSTITUENT	RESULT	MDL	ML	UNITS	DII	LUTION FACTOR	
Copper (Cu)	2.93	0.005	0.01	µg/∟		1	
Nickel (Ni)	1.31	0.005	0.01	μg/L		1	
Selenium (Se)	0.57	0.01	0.015	μg/L		1	

CRG ID#: 16972	Replicate #: R1-To	otal Project ID:	2471	Batch ID: 2471	-9145	Matrix: Aqueous	
Sample	SCRE-B1		CII	ient Name:	AMEC Ear	th & Environmental	
Description:	City of Buena Ventura	SCRE					
Time Collected:	11:24		Pr	oject Officer:	Howard Ba	iley	
Date Sampled:	16-Mar-04	Date Processed:	05-Арт-04	!	Analyst:	Pat Hershelman	
Date Received:	18-Mar-04	Date Analyzed:	23-Apr-04	Į.			
CONSTITUENT	RESULT	MDL	ML	UNITS	DII	LUTION FACTOR	
Copper (Cu)	3.75	0.005	0.01	μg/L		1	
Nickel (Ni)	3.26	0.005	0.01	µg/L		1	
Selenium (Se)	0.61	0.01	0.015	μg/L		1	

CRG ID#: 16973	Replicate #: RI-D	issolved Project ID:	2471 E	Batch ID: 2471	-9145	Matrix: Aqueous	
Sample	SCRE-B3		Clle	nt Name:	AMEC Ear	th & Environmental	
Description:	City of Buena Ventura	/SCRE					
Time Collected:	13:17		Рго	ect Officer:	Howard Bailey		
Date Sampled:	16-Маг-04	Date Processed:	05-Apr-04		Analyst:	Pat Hershelman	
Date Received:	18-Mar-04	Date Analyzed:	23-Apr-04				
CONSTITUENT	RESULT	MDL	ML	UNITS	DII	LUTION FACTOR	
Copper (Cu)	2.19	0.005	0.01	μg/L		1	
Nickel (Ni)	4.11	0.005	0.01	µg/L		1	
Selenium (Se)	3.82	0.01	0.015	μg/L		1	
Zinc (Zn)	3.19	0.005	0.01	μg/L		1	

CRG ID#: 16973	Replicate #: R1-To	otal Project ID:	2471	Batch ID: 2471	1-9145	Matrix: Aqueous
Sample	SCRE-B3		Cli	ent Name:	AMEC Ear	th & Environmental
Description:	City of Buena Ventura	/SCRE				
Time Collected:	13:17		Pro	ject Officer:	Howard Ba	iley
Date Sampled:	16-Mar-04	Date Processed:	05-Арт-04		Analyst:	Pat Hershelman
Date Received:	18-Mar-04	Date Analyzed:	23-Арт-04			
CONSTITUENT	RESULT	MDL	ML	UNITS	וומ	LUTION FACTOR
Copper (Cu)	3	0.005	0.01	μ g/ L		1
Nickel (Ni)	5.04	0.005	0.01	μg/L		1
Selenium (Se)	4.54	0.01	0.015	μg/L		1
Zinc (Zn)						

CRG ID#: 16974	Replicate #: R1-Di	ssolved Project ID:	2471	Batch ID: 2471	9145	Matrix: Aqueous
Sample	SCRE-C3		Clie	nt Name:	AMEC Ear	th & Environmental
Description:	City of Buena Ventura	SCRE				
Time Collected:	08:30		Pro	ject Officer:	Howard Ba	iley
Date Sampled:	16-Mar-04	Date Processed:	05-Apr-04		Analyst:	Pat Hershelman
Date Received:	18-Mar-04	Date Analyzed:	23-Apr-04			
CONSTITUENT	RESULT	MDL	ML	UNITS	DI	LUTION FACTOR
Copper (Cu)	1.83	0.005	0.04	11		
	1.03	0.005	0.01	μg/L		1
Nickel (Ni)	6.12	0.005	0.01	μg/∟ μg/∟		1
				. •		1 1 1

CRG ID#: 16974	Replicate #: R2-Di	ssolved Project ID:	2471	Batch ID: 247)	1-9145	Matrix: Aqueous
Sample	SCRE-C3		CII	ent Name:	AMEC Ear	th & Environmental
Description:	City of Buena Ventura	SCRE				
Time Collected:	08:30		Pro	oject Officer:	Howard Ba	iley
Date Sampled:	16-Mar-04	Date Processed:	05-Apr-04		Analyst:	Pat Hershelman
Date Received:	18-Mar-04	Date Analyzed:	23-Арг-04			
CONSTITUENT	RESULT	MDL	ML	UNITS	DII	LUTION FACTOR
Copper (Cu)	1.95	0.005	0.01	μg/L		1
Nickel (Ni)	6.26	0.005	0.01	μg/L		1
Selenium (Se)	2.51	0.01	0.015	μg/L		1
Zinc (Zn)	2.43	0.005	0.01	μg/L		4

CRG Marine Laboratories, Inc.

2020 Del Amo Blvd., Suite 200, Torrance, CA 90501-1206 (310) 533-5190 FAX (310) 533-5003 crglabs@sbcglobal.net

CRG ID#: 16974	Replicate #: R1-Te	otal Project ID:	2471 E	Batch ID: 2471	l-9145	Matrix: Aqueous
Sample Description:	SCRE-C3 City of Buena Ventura	/SCRE	Clle	nt Name:	AMEC Ear	th & Environmental
Time Collected:	08:30		Pro	ect Officer:	Howard Ba	iley
Date Sampled: Date Received:	16-Mar-04 18-Mar-04	Date Processed: Date Analyzed:	05-Apr-04 23-Apr-04		Analyst:	Pat Hershelman
CONSTITUENT	RESULT	MDL	ML	UNITS	DII	LUTION FACTOR
Copper (Cu)	1.89	0.005	0.01	μg/L		1
Nickel (Ni)	6.79	0.005	0.01	µg/L		1
Selenium (Se)	1.67	0.01	0.015	μg/L		1
` '						

CRG ID#: 16974	Replicate #: R2-To	tai Project ID:	2471	Batch ID: 2471	-9145	Matrix: Aqueous
Sample	SCRE-C3		(Client Name:	AMEC Ear	th & Environmental
Description:	City of Buena Ventura	SCRE				
Time Collected:	08:30		ı	Project Officer:	Howard Ba	iley
Date Sampled:	16-Mar-04	Date Processed:	05-Apr-	04	Analyst:	Pat Hershelman
Date Received:	18-Mar-04	Date Analyzed:	23-Арт-	04		
CONSTITUENT	RESULT	MDL	ML	UNITS	DI	LUTION FACTOR
Copper (Cu)	1.94	0.005	0.01	μg/L		1
Nickel (Ni)	6.79	0.005	0.01	μg/L,		1
Selenium (Se)	2.97	0.01	0.015	µg/L		1
Zinc (Zn)	0.9	0.005	0.01	μg/L		1

CRG ID#: 16864	Replicate #: B1	Project ID:	2471	Batch ID: 2471	l - 9145	Matrix: DI Water
Sample Description:	QAQC Procedural Blank			Client Name:	AMEC Ear	th & Environmental
Time Collected:	Procedura: Diank			Project Officer:	Howard Ba	iley
Date Sampled: Date Received:		Date Processed: Date Analyzed:	05-Apı 23-Apı		Analyst:	Pat Hershelman
CONSTITUENT	RESULT	MDL	ML	UNITS	וומ	LUTION FACTOR
Copper (Cu)	ND	0.005	0.01	μg/L		1
Nickel (Ni)	ND	0.005	0.01	μg/L		1
Selenium (Se)	ND	0.01	0.015	μg/L		1
Zinc (Zn)	ND	0.005	0.01	μg/L		1

CRG Marine Laboratories, Inc.

2020 Del Amo Blvd., Suite 200, Torrance, CA 90501-1206 (310) 533-5190 FAX (310) 533-5003 crglabs@sbcglobal.net

CRG ID#: 16954	Replicate #: LCM1	Project ID:	2471	Batch ID: 2471	-9145	Matrix: Seawater
Sample	QAQC		(Client Name:	AMEC Ear	th & Environmental
Description:	LCM-CRG Seawater				111 D-	
Time Collected:		Date Processed:		Project Officer:	Howard Ba Analyst:	Pat Hershelman
Date Sampled: Date Received:		Date Processed: Date Analyzed:	05-Apr- 23-Apr-		миануят:	Lat Heisheiman
CONSTITUENT	RESULT	MDL	ML	UNITS	DII	LUTION FACTOR
Copper (Cu)	0.84	0.005	0.01	µg/L		1
Nickel (Ni)	0.61	0.005	0.01	μg/L		1
Selenium (Se)	2.97	0.01	0.015	µg/L		1

CRG ID#: 16954	Replicate #: LCM2	Project ID:	2471	Batch ID: 2471	1-9145	Matrix: Seawater
Sample Description:	QAQC LCM-CRG Seawater			Client Name:	AMEC Ear	th & Environmental
Time Collected:			Project Officer:		Howard Bailey	
Date Sampled: Date Received:		Date Processed: Date Analyzed:	05-Ap 23-Ap		Analyst:	Pat Hershelman
CONSTITUENT	RESULT	MDL	ML	UNITS	DI	LUTION FACTOR
Copper (Cu)	1.02	0.005	0.01	µg/L		1
Nickel (Ni)	0.72	0.005	0.01	μg/L		1
Selenium (Se)	3.89	0.01	0.015	μg/L		1
Zinc (Zn)	2.07	0.005	0.01	μg/L		1

QAQC REPORT- ACCURACY Trace Elements

		TIACE LI			
CRG ID#: 16954	Replicate #: MS1	Project ID: 24	71 Batch ID 2471-	9145 Matrix:	Scawater
Sample Description:	QAQC LCM-CRG Seawater		Client Name:	AMEC Earth &	Environmental
			Project Officer:	Howard Bailey	
Date Sampled: Date Received:		Date Processed: Date Analyzed:	05-Apr-04 23-Apr-04	Analyst:	Pat Hershelman
CONSTITUENT	% RECOVERY	TRUE	ALUE AC	CEPTANCE RANGE	COMMENT
Copper (Cu)	87	20	μg/L	72 - 128%	PASS
Nickel (Ni)	95	20	μg/L	68 - 118%	PASS
Selenium (Se)	85	20	µg/L	55 - 110%	PASS
Zinc (Zn)	77	20	μg/L	62 - 108%	PASS

QAQC REPORT- ACCURACY Trace Elements

Trace Elements								
CRG ID#: 16954	Replicate #: MS2	Project ID: 247	1 Batch ID 2471	-9145 Matrix :	Seawater			
Sample Description:	QAQC LCM-CRG Seawater		Client Name:	AMEC Earth & E	Environmental			
			Project Officer:	: Howard Bailey				
Date Sampled: Date Received:		Date Processed: Date Analyzed:	05-Арт-04 23-Арт-04	Analyst: I	Pat Hershelman			
CONSTITUENT	% RECOVERY	TRUE V	ALUE AC	CCEPTANCE RANGE	COMMENT			
Copper (Cu)	88	20	ıg/L	72 - 128%	PASS			
Nickel (Ni)	96	20 1	ug/L	68 - 118%	PASS			
Selenium (Se)	87	20	ıg/L	55 - 110%	PASS			
Zinc (Zn)	79	20	ug/L	62 - 108%	PASS			

APPENDIX G
FIELD COLLECTION DATA

Appendix Table G-1. Field Sample Collection Summary

City of Beunaventura - Santa Clara River Estuary Wet Weather Sampling Event

Sample Collection Date: 16 March 2004

Site	Collection Time ^a	Latitude 34°	Longitude 119°	Mean Water Sample Depth (m)	Mean Sediment Grab Penetration Depth (cm)
A-1	1210	13.982	15.895	0.2	4-5
A-2	1227	13.885	15.840	0.3	4-5
A-3	1243	13.790	15.813	0.8	4-5
B-1	1124	14.091	15.782	0.3	5-6
B-2	1200	13.970	15.706	0.0	3-4
B-3	1317	13.917	15.655	0.1	4-5
B-4	1338	13894	15.570	0.0	6
C-1	0913	14.067	15.397	0.0	4-5
C-2	0902	14.054	15.396	0.0	4-5
C-3	0830	14.031	15.394	0.3	4-5
D-1	0919	14.070	15.341	0.1	3.4

^a Start of collection time at each site location

Oct 2003 - Oct 2004

BENTHIC SAMPLE COLLECTION DATA SHEET

Date:

Station	Station: A-1 Date: 3/16/04								
	Name:	•		Arri	ival Time	12:1	O		part Time:
Grab S	Sampler	Туре:		Lat	itude:	~ - -	82	Lo	ngitude: 114°15-895
Weath	er¹: 🗲_		il News	Wii	nd (kts/d	r)². 5W	,	Sa	ampler Initials: らいたららい
	. 10	351).	· · ·						
Grab Num.	Field Rep (A,B,C)	Sample Depth (ft)	Pen. Depth (cm)	% Intact/ Volume (L)	Sed. Comp	Sed. Color	Sed. Odor	Grab Sample Type ⁶	Comments: Sample Description, # of Macroinverts, Photo?
1		6"	4-5		Sandy	Solution Solution	NOINE		Amphipads photos.
2					Wiclay	, , , , , , , , , , , , , , , , , , ,			
3									
4									·
5									
6									
7									
8									
9									
10									

Sediment Odor: none, petroleum, hydrogen sulfide, other

¹ Weather List: clear, partly cloudy, continuous cloud layer, fog, haze, drizzle, rain, showers, thunderstorms ² Direction in compass headings: N, S, E, W, NE, NW, SE, SW

Sediment Composition: coarse sand, fine sand, silt/clay, gravel, shell hash Sediment Color: brown, tan, black, gray, olive green, red

⁶ Grab Type: infauna (INF), sediment chemistry (Chem), toxicity (Tox)

Oct 2003 - Oct 2004

BENTHIC SAMPLE COLLECTION DATA SHEET

Page g of 1

Station: A - Z		Date: 3/16/04
	Arrival Time: 12-27	Depart Time:
Grab Sampler Type:	Latitude: 32° 344 3.885	Longitude: 417° 15,840
Weather¹:	Wind (kts/dir) ² :	Sampler Initials:

Grab Num.	Field Rep (A,B,C)	Sample Depth (ft)	Pen. Depth (cm)	% Intact/ Volume (L)	Sed. Comp	Sed. Color	Sed. Odor	Grab Sample Type ⁶	Comments: Sample Description, # of Macroinverts, Photo?
1	A-2	1	4-5 cm		ı				Discharge channel of cut lot to main cuk channel 4-5'mm longer fine Brown sufface. Rest is uniform tangrey sond
2									Brown Sufface.
3		·				<u></u>			tangrey sand
4									
5							,		-
6									
7									
8									
9									
10									

Weather List: clear, partly cloudy, continuous cloud layer, fog, haze, drizzle, rain, showers, thunderstorms Direction in compass headings: N, S, E, W, NE, NW, SE, SW Sediment Composition: coarse sand, fine sand, silt/clay, gravel, shell hash Sediment Color: brown, tan, black, gray, olive green, red

Sediment Odor: none, petroleum, hydrogen sulfide, other

⁶ Grab Type: infauna (INF), sediment chemistry (Chem), toxicity (Tox)

Oct 2003 - Oct 2004

BENTHIC SAMPLE COLLECTION DATA SHEET

Page 9_ of 11_

Station: A-3		Date: 3/16/04
Vessel Name:	Arrival Time: 12:43	Depart Time:
Grab Sampler Type:	Latitude: 3340 13,790	Longitude: 1179° 15.813
Weather ¹ :	Wind (kts/dir) ² :	Sampler Initials:

Grab	Field	Sample	Pen.	%	Sed.	Sed.	Sed.	Grab	Comments: Sample
Num.	Rep (A,B,C)	Depth (ft)	Depth (cm)	Intact/ Volume (L)	Comp	Color 4	Odor	Sample Type ⁶	Description, # of Macroinverts, Photo?
1	A-3	2.5	4-5		Sama Life	TAN- BROWN	None		consistent mechican Sand
2						Sor W	ik		Ised, comp
3									
4									
5 -									-
6									
7									
8									
9									,
10									

Weather List: clear, partly cloudy, continuous cloud layer, fog, haze, drizzle, rain, showers, thunderstorms
 Direction in compass headings: N, S, E, W, NE, NW, SE, SW
 Sediment Composition: coarse sand, fine sand, silt/clay, gravel, shell hash

Sediment Composition: coalse sand, line sand, shortly, shortly, shortly, shortly, shortly, shortly, shortly, sediment Color: brown, tan, black, gray, olive green, red
 Sediment Odor: none, petroleum, hydrogen sulfide, other
 Grab Type: infauna (INF), sediment chemistry (Chem), toxicity (Tox)

Oct 2003 - Oct 2004

BENTHIC SAMPLE COLLECTION DATA SHEET

Station:

Page <u>5</u> of <u>1</u>

2/11/164

Date:

	<u> </u>	<u> </u>	<u> </u>			·			5//6/01
·	l Name:			Ar	rival Tim	e: ',	24		epart Time:
	Sampler	Type:	A. L. 2. L	La	titude: 3	26 14	.091	Lo	ongitude: 1170 11915,787
Weath	Weather!: Foggy			W	ind (kts/c	ir) ² : 5 V		S	sampler Initials:
	-							···	
Grab Num.	Field Rep (A,B,C)	Sample Depth (ft)	Pen. Depth (cm)	% Intact/ Volume (L)	Sed. Comp	Sed. Color	Sed. Odor	Grab Sample Type ⁶	Comments: Sample Description, # of Macroinverts, Photo?
1	B-1	1	5-6 m		uniter Sand	130000 Tun	Blow	Nenver	
2		*							·
3	,								
4									
5									
6									
7									
8									
9									
10							-		

¹ Weather List: clear, partly cloudy, continuous cloud layer, fog, haze, drizzle, rain, showers, thunderstorms ² Direction in compass headings: N, S, E, W, NE, NW, SE, SW

³ Sediment Composition: coarse sand, fine sand, silt/clay, gravel, shell hash

Sediment Color: brown, tan, black, gray, olive green, red

Sediment Odor: none, petroleum, hydrogen sulfide, other

Grab Type: infauna (INF), sediment chemistry (Chem), toxicity (Tox)

all

Santa Clara River Estuary Evaluation City of Buenaventura

Oct 2003 - Oct 2004

BENTHIC SAMPLE COLLECTION DATA SHEET

Page 6 of 11

Station: p 7		Date: 3/16/04
Vessel Name:	Arrival Time: 12.00	Depart Time:
Grab Sampler Type:	Latitude: 320 3, 970	Longitude: 119015.706
Weather!: Foggy	Wind (kts/dir) ² :	Sampler Initials:
10000		

Grab Num.	Field Rep (A,B,C)	Sample Depth (ft)	Pen. Depth (cm)	% Intact/ Volume (L)	Sed. Comp	Sed. Color	Sed. Odor	Grab Sample Type ⁶	Comments: Sample Description, # of Macroinverts, Photo?
1		Devate	3.4 (~		Sand	Tan	PONE		Dry, Edge of Reachs
2									•
3									
4									
5									
6									
7									
8		-							
9									
10			†						

Weather List: clear, partly cloudy, continuous cloud layer, fog, haze, drizzle, rain, showers, thunderstorms
 Direction in compass headings: N, S, E, W, NE, NW, SE, SW
 Sediment Composition: coarse sand, fine sand, silt/clay, gravel, shell hash
 Sediment Color: brown, tan, black, gray, olive green, red
 Sediment Odor: none, petroleum, hydrogen sulfide, other
 Grab Type: infauna (INF), sediment chemistry (Chem), toxicity (Tox)

Oct 2003 - Oct 2004

BENTHIC SAMPLE COLLECTION DATA SHEET

Station:

Page <u>ID</u> of]]

Static	າກ: 🖘								
	_ 8	-2						. D	Pate: 3/16/04
Vesse	el Name:			Ar	rival Tim	e: : -	7	D	epart Time:
Grab	Sampler	Type:		La	ند:titude	390	<i></i>	L	ongitude: 147°
Weati	her¹: 🧲	1	Muler	W	ind (kts/d	13 40 1 dir)2:	<u> 3. 17</u>	Į.	Sampler Initials:
<u> </u>	<u> </u>	994 (<u> </u>		<u> </u>	<u>5h</u>			SC, RG, 5 M
Grab	Field	Sample	Don	1 00	- 6	T- &			
Num.	Rep (A,B,C)	Depth (ft)	Pen. Depth (cm)	% Intact/ Volume (L)	Sed. Comp	Sed. Color	Sed. Odor	Grab Sample Type ⁶	Comments: Sample Description, # of Macroinverts, Photo?
1		3"	4-5 cm		Southy in 1 Brach	02 (F2	3 Nob	É	Toplayer sticky
2		٦		*					•
3					·			-	
4					-			,	*
5									-
6									
7									
8	-	-				·			
9									
10					•			_	
		·							

Sediment Color: brown, tan, black, gray, olive green, red Sediment Odor: none, petroleum, hydrogen sulfide, other

Weather List: clear, partly cloudy, continuous cloud layer, fog, haze, drizzle, rain, showers, thunderstorms

² Direction in compass headings: N, S, E, W, NE, NW, SE, SW 3 Sediment Composition: coarse sand, fine sand, silt/clay, gravel, shell hash

Grab Type: infauna (INF), sediment chemistry (Chem), toxicity (Tox)

Oct 2003 - Oct 2004

BENTHIC SAMPLE COLLECTION DATA SHEET

Statio	n: 3	-4	-	Date: 3//6 /69							
\` :	l Name:	· · · · · · · · · · · · · · · · · · ·		Arrival Time: Depart Time:							
Grab	Grab Sampler Type:			La	titude: 🔏	<u>70</u>	894.	Longitude: 117° 15.570			
Weatl	ner¹: Fo	444 (old)	Wi	ind (kts/d	lir) ² : 5\	J	S	ampler Initials: SC, RG, SM		
		33.3			-						
Grab Num.	Field Rep (A,B,C)	Sample Depth (ft)	Pen. Depth (cm)	% Intact/ Volume (L)	Sed. Comp	Sed. Color	Sed. Odor	Grab Sample Type ⁶	Comments: Sample Description, # of Macroinverts, Photo?		
1	B-4	٥٦	6cm	,	uniform Sand	Bycwy	Marie		Zmm five Brown lays		
2			•		7				/		
3			▶.	,							
4											
5											
6								-			
7									·		
8											
9				·,							
10											

Weather List: clear, partly cloudy, continuous cloud layer, fog, haze, drizzle, rain, showers, thunderstorms Direction in compass headings: N, S, E, W, NE, NW, SE, SW Sediment Composition: coarse sand, fine sand, silt/clay, gravel, shell hash Sediment Color: brown, tan, black, gray, olive green, red

⁵ Sediment Odor: none, petroleum, hydrogen sulfide, other

⁶ Grab Type: infauna (INF), sediment chemistry (Chem), toxicity (Tox)

Oct 2003 - Oct 2004

BENTHIC SAMPLE COLLECTION DATA SHEET

Page 3 of [

Station: S(R C-1		Date: 3/16/084
Vessel Name:	Arrival Time: 9:13	Depart Time:
Grab Sampler Type:	Latitude: 32° 14, 067	Longitude: 117°15, 397
Weather ¹ :	Wind (kts/dir) ² :	Sampler Initials: CS, P6,SM

Grab Num.	Field Rep (A,B,C)	Sample Depth (ft)	Pen. Depth (cm)	% Intact/ Volume (L)	Sed. Comp	Sed. Color	Sed. Odor	Grab Sample Type ⁶	Comments: Sample Description, # of Macroinverts, Photo?
1	C-1	0	4-5		Sond/ Gravel	Tan		-	Dry
2									•
3									
4									
5				_					
6									. "
7					,				
8			-		3,			i.	
9				-		·			
10				,					

¹ Weather List: clear, partly cloudy, continuous cloud layer, fog, haze, drizzle, rain, showers, thunderstorms ² Direction in compass headings: N, S, E, W, NE, NW, SE, SW

³ Sediment Composition: coarse sand, fine sand, silt/clay, gravel, shell hash
4 Sediment Color: brown, tan, black, gray, olive green, red
5 Sediment Odor: none, petroleum, hydrogen sulfide, other

⁶ Grab Type: infauna (INF), sediment chemistry (Chem), toxicity (Tox)

Oct 2003 - Oct 2004

BENTHIC SAMPLE COLLECTION DATA SHEET

Page Z of

Station: CSCR-C-	 Z.	Date: 3//6/04
Vessel Name:	Arrival Time: 9:02	Depart Time:
Grab Sampler Type:	Latitude: 326	Longitude: 147° 15.39 6
Weather1:	Wind (kts/dir) ² :	Sampler Initials: CS, IZ6, SM

Grab Num.	Field Rep (A,B,C)	Sample Depth (ft)	Pen. Depth (cm)	% Intact/ Volume (L)		Sed. Color	Sed. Odor	Grab Sample Type ⁶	Comments: Sample Description, # of Macroinverts, Photo?
1	C-2	No with	4-5		Course Sinds	Bran	- ^	Vanuec	Depositional matrial Fine social log 1-2 mm (Bru. Under Criarso Sand typen
2					5120				
3	-								
4									
5									
6									
7							v-		
8									
9									
10									

Weather List: clear, partly cloudy, continuous cloud layer, fog, haze, drizzle, rain, showers, thunderstorms
 Direction in compass headings: N, S, E, W, NE, NW, SE, SW
 Sediment Composition: coarse sand, fine sand, silt/clay, gravel, shell hash

Sediment Composition: coarse said, line said, strongly green, red
 Sediment Color: brown, tan, black, gray, olive green, red
 Sediment Odor: none, petroleum, hydrogen sulfide, other
 Grab Type: infauna (INF), sediment chemistry (Chem), toxicity (Tox)

Oct 2003 - Oct 2004

BENTHIC SAMPLE COLLECTION DATA SHEET

Page of

Station: C-3		Date: 43/16/03
Vessel Name: NA	Arrival Time: 8 30	Depart Time:
Grab Sampler Type:	Latitude: 320 4-631	Longitude: 1179° 15.394
Weather!: overcost	Wind (kts/dir)2: 5	Sampler Initials: \$571,057R6

Grab Num.	Field Rep (A,B,C)	Sample Depth (ft)	Pen. Depth (cm)	% Intact/ Volume (L)	Sed. Comp	Sed. Color	Sed. Odor	Grab Sample Type ⁶	Comments: Sample Description, # of Macroinverts, Photo?
1	C -3	1'	4.5cm	<u></u>	Scavel Sind	(ton)	NOW	Janveen	Amplified
2									
3									
4									
5									-
6									
7									
8									
9									
10									

Weather List: clear, partly cloudy, continuous cloud layer, fog, haze, drizzle, rain, showers, thunderstorms

² Direction in compass headings: N, S, E, W, NE, NW, SE, SW

³ Sediment Composition: coarse sand, fine sand, silt/clay, gravel, shell hash

⁴ Sediment Color: brown, tan, black, gray, olive green, red

Sediment Odor: none, petroleum, hydrogen sulfide, other
 Grab Type: infauna (INF), sediment chemistry (Chem), toxicity (Tox)

Oct 2003 - Oct 2004

BENTHIC SAMPLE COLLECTION DATA SHEET

Station:

Page 4 of H

Date:

Depart Time

	Name.	. *					9		
Grab S	Sampler	Type: √o-	منعنب	Lat	titude: 3	29 14,0	70	Lo	ongitude: 117/15,341
Neath	er¹:			Wi	nd (kts/d	lir)²:		5	ampler Initials:
Grab Num.	Field Rep (A,B,C)	Sample Depth (ft)	Pen. Depth (cm)	% Intact/ Volume (L)	Sed. Comp	Sed. Color	Sed. Odor	Grab Sample Type ⁶	Comments: Sample Description, # of Macroinverts Photo?
1	D-1	4"has	33-4		Cobble	Mixecl			Cobble top layer
2	D-1	4"hci Water redge	3-4		Sardy	Grey tin			Sandy
3		-	. :						
4									
5									
6									
7									
8								_	
9									
10		-							

¹ Weather List: clear, partly cloudy, continuous cloud layer, fog, haze, drizzle, rain, showers, thunderstorms ² Direction in compass headings: N, S, E, W, NE, NW, SE, SW ³ Sediment Composition: coarse sand, fine sand, silt/clay, gravel, shell hash

⁴ Sediment Color: brown, tan, black, gray, olive green, red Sediment Odor: none, petroleum, hydrogen sulfide, other

⁶ Grab Type: infauna (INF), sediment chemistry (Chem), toxicity (Tox)

Appendix Table G-2. Field Water Quality Measurements

City of Buenaventura - Santa Clara River Estuary Wet Weather Sampling Event

Sample Collection Date: 16 March 2004

Sample	Water Depth (m)	Temperature (°C)	Salinity (ppt)	pH (units)	DO (mg/L)
A-1	0.2	20.4	1.5	7.58	9.3
A-2	0.3	20.5	3.1	7.79	10.5
A-3	0.0 0.8	18.5 18.5	6.3 30.0	8.17 8.52	11.6 13.0
B-1	0.3	19.8	1.4	7.46	8.7
B-2			no water present		
B-3	0.1	20.2	14.4	8.64	12
B-4	0.0	19.0	12.7	7.44	11.3
C-1			no water present		
C-2			no water present	ı	
C-3	0.3	15.2	1.7	7.62	10.9
D-1	0.1	16.4	1.5	8.05	10.9

Field Water Quality Measurement Log

2003 - 2004

Sample Collection	on Date:	3/16/	<u> 54_</u>			Sampler:	SC, RG, SV9
Sample ID	Depth (ft)	Temp °C	Salinity (ppt)/	Cond. (umhos- cm)	рН	DO (mg/L)	Comments/ Observations
	4"	20.4	1.5		7.58	9.3	Discharge channel Clear channel
λ 1							Clear Channel
A-1	<u> </u>			- ·- ·-			
	1/2	20.5	3,1		7.79	10.5	Discharge
A-2	1						hannel & new outlet to main channel
/ J .		-	 				
Surface_7	-	15.5	6.3	 	8.17	11,6	Mouth entiones
Sortace_7	2.5'	16.5	30.0		8.52	13.0	
,,,			<u> </u>	<u> </u>			
						<u> </u>	
	-						
		<u> </u>	 				
-		 	-				
		-		1			<u></u>
	-		+]
		 	 	 -			
	1		1	Ł	1		

Field Water Quality Measurement Log

2003 - 2004

Sample Collect	ion Date:	3/16	<u>/04</u>			Sampler:	SC,GR,SM
Sample ID	Depth (ft)	Temp °C	Salinity (ppt)/	Cond. (umhos- cm)	рН	DO (mg/L)	Comments/ Observations
B-1	1'	19,8	1.4		7.46	8.7	Ducharge channed fork
B-3	4"	70.7	14,4		8.64	12.00	In main channel
	ų*	19.0	12.7		7,44	11.3	Side chamel near South bank
B-4						-	
						. ق	
		*			·	. ¹ 4 <i>15</i> 2.	

Field Water Quality Measurement Log

2003 - 2004

Sample Collection Date: 3116/04 Sampler: CS RG,SM Sample ID Cond. Depth Temp Salinity (umhospН DO Comments/ (ft) °C (ppt)/ cm) (mg/L) Observations 15,2 7,62 10.9 8.05 10.9 16.4 D-1

APPENDIX H
CHAIN-OF-CUSTODY FORMS

Earth & Environmental, Inc. AMEC San Diego Bloassay Laboratory 5550 Morehouse Drive, Suite B San Diego, CA 92121 Phone: 858-458-9044 FAX 858-587-3961

Date	3/16/04	_ Page	ι_	of_	2_
------	---------	--------	----	-----	----

Sample Collection by: Chris Stransky, Rub Gambe	<u> </u>	ANALYSIS REQUIRED		
Company AMEC Address City Son Dieso State Zip Contact Phone No	Address City Contact	State Zip	2, Green Size	'J St
	ER NUMBER OF CONTAINERS	COMMENTS	190	
SCRE- A-15 3/16/64 Sed Bog			XX	x X
A-25				
A-35				
3-15				
B-Z5				
3-35				
J B-45 J			1 1	
PROJECT INFORMATION SAMPLE RE	CEIRT	RELINQUISHED BY	<u> </u>	RELINQUISHED BY
CHENT TO STANDARD		(). A		
CIL of Brenaventura		(Signature)	1100	(Signature) (Time)
P.O. NO. 7		(Printed Name) Chris Stranshy	3/1 (Date)	(Printed Name) (Date)
SHIPPED VIA:	N/COLD	(Company) AMEC	 	(Company)
CONFORMS TO RECORD		RECEIVED BY		RECEIVED BY (LABORATORY)
SPECIAL INSTRUCTIONS/COMMENTS:	-			ans 2100
·		(Signature)		(Signature 2167) 2167
		(Printed Name)	(Date)	(Printed Nafre) - 04 - 0016 -> 21 (Date)
		(Company)		AMEC Bioassay Lab Log-In No.

Earth & Environmental, Inc. AMEC San Diego Bioassay Laboratory 5550 Morehouse Drive, Suite B San Diego, CA 92121 Phone: 858-458-9044 FAX 858-587-3961

Date 3/10/04	_ Page _	7_	_of	Z _	
--------------	----------	----	-----	------------	--

Sample Collection by: Chris Stransky, Ash Gar	Mail Report to (if different)	ANALYSIS REQUIRED
Company AMEC Address City Son Dieso StateZip Contact Phone No	Company Address City State Zip Contact	TDC, Grain Stat TDC, Grain Stat TDx - Echausterite Ceper Ceper
SAMPLE ID DATE TIME MATRIX COM	ONTAINER NUMBER OF COMMENTS TYPE CONTAINERS	19x 19c
SCRE - C-15 P/16/64 Sed to C-25 C-35	leafure zous	
FIIODEST INI OTHER TOTAL	E RECEIPT RELINQUISHED BY	RELINQUISHED BY
P.O. NO. Promocitora CHAIN OF CUSTODY REC'D. GOOD CONDI	SEALS (Signature) (Frinted Name)	(Time) (Signature) (Time) 2100 (Printed Name) (Date) 3 (L/Out (Company)
SHIPPED VIA: CONFORMS TO RECO SPECIAL INSTRUCTIONS/COMMENTS:	(Company) RECEIVED BY (Signature) (Printed Name) (Company)	(Date) (Printed Maria) AMEC Bloassay Lab Log-In No.

Earth & Environmental, Inc. AMEC San Diego Bioassay Laboratory 5550 Morehouse Drive, Suite B San Diego, CA 92121 Phone: 858-458-9044 FAX 858-587-3961

Date 2 10/04 Page 11 of Z

Sample Collection by	s Strai	rsky, fr	b Gan	Noer N	Mail Report to	(If different)			А	NALY:	SIS REQI	JIRED		,	
Company AMFC Address City Sm Diego Contact Phone No.	State	Zi	ip	C	Address Dity Contact	State Zip		10x - aa-c, My-c, Mo-c, Mo-c, Mo-c, Me-C, Mo-C,	ch-c, Selenashun	Bryalue WER		:			
SAMPLE ID	DATE		MATRIX	CONTAINER TYPE	NUMBER OF CONTAINERS	COMMENTS	70	704-	3	βĊ		<u> </u>	\bot		
SCRE-A-lu	3/16/04		AQ				X					-	_		
SCRE-A-2W			_					<u> </u>	× .	<u> </u>		1-1	+		
SCRE-A-3W			-				X	x	×						
SCRE-B-IW SCRE B-Zw							<u> </u>								
SCRE B-3W							人,	L X	X	人					
SCRE B-4w			4	_						_			_		_
PROJECT INFORMATI	ION		SAMI	PLE RECE	EIPT	RELINQUISHED BY		RELI	NQUISH	ED BY					
CLIENT Col. of Brenze		TOTAL N	0. OF CO	NTAINERS	s	(Signature)	400 ^{(Tin}	πe) (Signa	ature)		_				(Time)
P.O. NO.	11-10			DY SEALS		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3/16/02	ate) (Printe	ed Name)	<u> </u>					(Date)
SHIPPED VIA:		-	RMS TO R			(Company) AMEC		(Odin)	рану)		ORATORY				
SPECIAL INSTRUCTIONS/COI	MMENTS:					RECEIVED BY		$- \alpha$	NA	n 4	DA E	2	\geq	20	(Time)
						(Signature) (Printed Name)	(Tir (Da	ne) (Signa ate) (Print	ed Name)	1 th	のた <u>)</u> 31 <i>つ</i>	20		3/16/	(Date)
						(Company)		AME	C Bloassa	ay Lab L	og-In No.	シン	<u> </u>		

Earth & Environmental, Inc. AMEC San Diego Bloassay Laboratory 5550 Morehouse Drive, Suite B San Diego, CA 92121 Phone: 858-458-9044 FAX 858-587-3961

Date 1000 Page 6 01	Date	3/10/04	Page _	7- of Z	
---------------------	------	---------	--------	---------	--

Sample Collection by: Chris Shau	nsky, Leb Ga	Mall Report to	o (if different)		ANALYSIS REQUIRED	
CompanyAME_C Address State City State Contact Phone No		Company Address City Contact	StateZip	ptt, Do, salin-14, and.	Mp-c, Me-c, pp-G CR-c, Selvantrum Brunter WER	
SAMPLE ID DATE	TIME MATRIX C	ONTAINER NUMBER OF CONTAINERS	COMMENTS	+ × × × × ×	mpret - Brully	
SCRE C-1 W 3/16/04	AQ			×		_
SCRE CZW				XX	***	
SCRE C-3W				X		
				1		
PROJECT INFORMATION	SAMPL	E RECEIPT	RELINQUISHED BY		RELINQUISHED BY	
City of Burwentura P.O. No.	CHAIN OF CUSTOD	- .	(Signature)	2.100	(Signature)	(Time)
	REC'D. GOOD COND	DITION/COLD		3/16/64	(Printed Name) (Company)	
SHIPPED VIA: AMEC SPECIAL INSTRUCTIONS/COMMENTS:	CONFORMS TO REC	CORD	RECEIVED BY		RECEIVED BY (LABORATORY)	2100
OI ZONE MOTHOUTONO, COMMENTO			(Signature)	(Time)	(Signalyre) Hot2	2/10(Mge)
			(Printed Name)	(Date)		(Date)
			(Company)		AMEC Bloassay Lab Log-in No.	

CALSCIENCE ENVIRONMENTAL LABORATORIES, INC.

7440 LINCOLN WAY GARDEN GROVE, CA 92841-1432 TEL: (714) 895-5494 • FAX: (714) 894-7501

CHAIN OF CUSTODY RECORD

Date	3/31/0	×4		
Page	1	of	2	

LABORATO	RYCLIENTAMEC											ROJE						5	c 77		P.O	NO.	•					
ADDRESS:	600	2-1	D-							PRO	กำเรา	CON	TAC.	r٠			7	<u>)(</u>	<u>. K</u>		LAE	USE	ONL	Y				
CITY .	<u>5510]</u>	Oran	STATE				Z	IP.			- 0	hr-	١ ٩	<	5+	ran	باي	/] [] - [] [<u> </u>	· [_]	
	Son I	1.250	(4	le	97	121				SAI	/PLE	7(S)?)(SIGN	ATUR	E)	Ť	OELI	LOG	COD	E	CO	OLEF	REC	EIPT	Ī			1
TEL: '\$7.58'	458 - 9044 UND TIME: 51-0	FAX:	587-3961	E-MAI	. 5 . 5 	ranck	, Qan	nec.	(co	$\frac{I_{i}}{I}$	/li	3(S))(7][ΤEΝ	/P =			· ——	<u> </u>	_°C	l
TURNAROU	JND TIME: _51 d	ard								-			-			UE	ST	ED	1A	IAN	.YS	ES						ł
	E DAY 🔲 24 HR	□ 48	HR ∐ 72 HR	؛ لــا	DAYS		10 DAYS					T			_								•-			\neg	-	l
	EQUIREMENTS (ADDITION CONTROL CONT														و ا				(1)				2	ļ				ł
	STRUCTIONS:		NEI OKTINO										<u></u>		ᅙ				(80	10B		[2]	Ŋ	- 				ĺ
												BTEX / MTBE (8021B)	HALOCARBONS (8021B)	æ	VOCs (5035 / 8260B) EnCore	()	æ		EDB / DBCP (504.1) or (8011)	CAC, T22 METALS (6010B)		VOCs (TO-14A) or (TO-15)	7, 2					
	,									···	TPH (D) or _	/ MTB	CARBC	VOCs (8260B)	(5035	SVOCs (8270C)	PEST (8081A)	PCBs (8082)	DBCP	T22 M	PNAs (8310)	(ТО-17	-	- U				İ
LAB					SAMPLI	NG			OF	TPH (G)	D) H.	ă	Ę	ဗ္ဗ	ည္တ	ő	IS:	SBS	78/	AC,	NAs	S)O	Cooper	-1-			ı	ĺ
USE	GEIMS 1D		SAMPLE ID	DA	TE	ПМЕ	MATRIX	CO	NT.	11	TP	<u> </u>	로	۶	=	22	5.	<u>-</u>	H	3	<u>-</u>	N.	<u></u>					
\$ ₁	· · · · · · · · · · · · · · · · ·	SCR	A -1	3/11	104		5+,0	1]			·								X	X				-
		1	A-Z					Ш															1	4				, ·
e s Siste			A-3																									
			R-1																									
			13-2																								j	
	-		13-3																									
			13-U				1							·														
			C-1				1									-								\mathcal{T}				
			(-L																							·		
	A . C		(-3		<u>, </u>			1	<i>i</i>					_									j V	V				٤
Relinquis	shed by: (Signature)	4				Rece	eived_by	(9)	gnat	ure)		\supset	—— ——			_				Dat		1 -1		Tin		,		000
Delinevia	/ / / /					Rece	eived by:	· (Śić	nati	ure)							•			Dat	31 e:	10	1	Tin	<u>) 건 3</u> ne:	<u>>O</u>		1
Heiinquis	shed by: (Signature)			,		11000	orrod by	. (0)	9,,,,,,,,,	07																		
Relinquis	shed by: (Signature)					Rece	eived for	Lab	orat	ory b	y: (S	ignatu	ле)	•••			_			Dat	e:			Tin	ne:			Ç
							. <u>.</u>					٠.							_	Ĺ				<u> </u>				١ ١

CALSCIENCE ENVIRONMENTAL LABORATORIES, INC.

7440 LINCOLN WAY GARDEN GROVE, CA 92841-1432 TEL: (714) 895-5494 • FAX: (714) 894-7501

CHAIN OF CUSTODY RECORD

Date	3/31/0	4		
Page	~ ~	of	2_	

LABORA	ATORY CLIENT: A ME	C		•				1	-اه	CLIENT PROJECT NAME / NUMBER: (: L, ol - Build of SCR PROJECT CONTACT: PROJECT CONTACT: CLIENT PROJECT NAME / NUMBER: C. L, ol - Build of SCR PROJECT CONTACT: Contact of Conta													
ADDRES	"55 10 N	roishouse Dr	,		_		PR	OJÉG	T CON	TAC	Γ:			-			LAE		ONL		<u>—</u> ¬ ґ		\neg
CITY	Son D	STATE A			977	ال م	SAI	JPI E	اسر <u>ر)</u> B(S) (SIGN	ATURE	`	COEL	TLOG	COD	F			REC				=-
TEL: 9'55	- 458- 9044	FAX: SY58 587- 39(1)	E-MAIL:	5+100	م جريا	Mec]	***	, I(O). (51011	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,					* .	MP =		, <u></u>		. <u>.</u>	.oc.
							\vdash		-		R	FOL	IEST	ED	Δ.			FS					
		☐ 48 HR ☐ 72 HR	☐ 5 DAY	<u> </u>	10 DAYS		<u> </u>				1												\dashv
	L REQUIREMENTS (ADDITION WOOD REPORTING D						ŀ					a			+	i			\dot{z}				
	LINSTRUCTIONS:	LOEL) REPORTING					ł					힐			(801	(BO)		5)			1	1	
									66	21B) or	.09)		TO-1	<				
							ŀ		3021	8		N97			04.1	ALS		or ('	7		ł		1
		•							BE (8	8	e	2 5	[₹	2	P (5	MET	6	14A)	•	Ų)		
	•						_) or	M	AR	826	203	88 12	808	DBC	22	1831	T0-1	V				
LAB	LAB SAMPLING NO. OF H H X 3																						
USE	GEIMS ID	SAMPLE ID	DATE	TIME	MATRIX	CONT.	TP	TP	BT	호	<u> </u>	ة خ	5 2	2	ᆸ	73	P	۸۵	2				
		Sca D-1	3/16/24		5-1	}													ᅩ	×			
				_							-											.	
1 -																,							
									-				-									\neg	
			-								-	+	+								\dashv	\dashv	
		·									_	+	\perp	_						· .		\dashv	
]								-												
				•	l								-	_								\neg	
2.5	- /_ /		ii									_	+										
Beling	uished by: (Signature)		<u> </u>	Rece	l ived by:	(Signat	α ιο)									Dat	e:		<u> </u>	Tim	e:		 i
'''''	/ (m	W)		_		_				3/	31	lo c	1	1	2	10	
Reling	uished by: (Signature)			Rece	ived by:	(Signat	ure)			-						Dat		•		Tim			
Reling	elinquished by: (Signature) Received for Laboratory by: (Signature) Date: Time:																						
l																							[`

City of Buenaventura Water-Effect Ratio Report March 04 Wet Weather Sampling Event Santa Clara River Estuary

Prepared by Nautilus Environmental 5550 Morehouse Drive, Suite 150 San Diego, California 92121 (858) 587-7333

INTRODUCTION

As part of a continued monitoring and characterization effort of the Santa Clara River Estuary (SCRE), a water-effect ratio (WER) was determined for copper using ambient water samples collected on March 16, 2004. The WER was conducted following guidance and procedure published in EPA Method 822-R-01-005 (Streamlined Water-Effect Ratio Procedure for Discharge of Copper). Blue mussel larvae (*Mytilus galloprovincialis*) bioassays were initiated on March 17, 2004 at the AMEC Earth & Environmental Bioassay Laboratory (AMEC) located in San Diego, CA. However, these tests did not meet test acceptability criteria, and bioassays were re-initiated on March 19, 2004. The embryo development test was chosen for this WER due to its sensitivity to copper; toxicity to bivalve larvae is the primary driver for EPA's derivation of water quality criterion for copper in marine waters (3.1 µg/L, US EPA 2000). Measurements of copper concentrations in support of the WER were performed by Calscience Environmental Laboratories (CEL) located in Garden Grove, CA.

In addition to the WER, ambient water toxicity was evaluated using other freshwater (e.g. alga *Selenastrum capricornutum*, the water flea *Ceriodaphnia dubia*, and the fathead minnow *Pimephales promelas*) and marine organisms (e.g. giant kelp *Macrocystis pyrifera*, the opossum shrimp *Americamysis bahia* (formerly *Mysidopsis bahia*), and the Pacific topsmelt *Atherinops affinis*). Results for these bioassays were presented in a previous report issued in May 2004.

METHODS AND MATERIALS

SAMPLE COLLECTION, TRANSPORT, AND PREPARATION

Ambient water samples were collected from four of the eleven ambient monitoring locations (specifically sites A-2, B-1, B-3, and C-3). Sites for water collection were selected based on location within the estuary and water depth (i.e. centrally located sites with enough water to provide an adequate sample volume for testing). Sample collection time, global positioning system (GPS) coordinates, water depth, temperature, dissolved oxygen (DO), salinity, and pH were recorded in a field logbook and is summarized in Appendix E.

All equipment used for water collection was cleaned thoroughly with Alconox soap and rinsed with site water. Collections were performed using a hand pump connected to ½" clear PVC tubing. The end of the tubing was held at mid-depth to collect the water and pumped into 20-L plastic-lined buckets; a total of five buckets were collected at each site. AMEC personnel transported all samples to the laboratory where samples were placed in a 4°C cold room overnight. The same day, the contents of all sample containers from each were composited and water quality parameters of temperature, DO, conductivity, salinity, pH, total residual chlorine, alkalinity, and hardness were measured and recorded in a logbook. A portion of each composited sample was removed, amended with hypersaline brine (to raise the salinity to 30 ppt), and spiked with nominal copper concentrations of 0, 4.3, 7.1, 12, 20, 33, and 55 µg/L. For comparison, polished laboratory seawater (PSW) was also spiked with copper on the same day with final concentrations of 0, 1.8, 3.0, 5.1, 8.4, 14, 23, and 39 µg/L. Laboratory seawater was polished by filtration through a Gelman 0.20-um filter. Spiked samples were placed in a 15°C temperature-controlled room and allowed to equilibrate overnight. Subsamples of all test concentrations were collected prior to test initiation for analytical verification of copper concentrations.

BIOASSAY PROTOCOLS

Test conditions and Quality Assurance/Quality Control (QA/QC) requirements for the blue mussel embryo development test are summarized in Table 1.

Table 1. Test Conditions and QA/QC Summary for the 48-Hour Bivalve Embryo Development Test.

Test organism Mytilus galloprovincialis

Test organism source Field Collected by Nautilus Personnel

Test duration 48 Hours

Test solution renewal None

Feeding

Test initiation date and time Within 24 hours of copper addition to samples

Test chamber 30-ml glass scintillation vial

Test solution volume 10 ml

Test temperature $15 \pm 1^{\circ}$ C

Dilution water None

Test concentrations

(µg/L copper added to brine-amended sample)^a

0, 4.3, 7.1, 12, 20, 33, and 55

Number of organisms/chamber 250-300

Number of replicates 5

Photoperiod 16 hours light/8 hours dark

Aeration None

Test Protocol ASTM Designation E 724-98

Test acceptability criteria for controls ≥ 90% normal

Reference toxicant Copper chloride

Reference toxicant test concentrations (µg/L)

Polished Seawater b 0, 1.8, 3.0, 5.1, 8.4, 14, 23, and 39

Natural Seawater ^c 0, 2.5, 5.0, 10, 20, and 40

^a Due to low sample salinities, addition of hypersaline brine was required to raise the salinity of each sample to 30 ppt. As a result, modest dilution of the samples occurred; the highest testable concentrations were 66, 67, 75, and 66 percent sample for sites A-2, B-1, B-3, and C-3, respectively. An additional control composed of hypersaline brine and deionized water was tested concurrent to each sample to ensure observed adverse effects were not due to the addition of brine.

^b The polished seawater copper reference toxicant test was used for calculation of the water-effect ratio for each estuary sample.

^c The copper reference toxicant test using natural seawater is performed concurrently with all bivalve embryo tests conducted at Nautilus to evaluate variability in test procedures and sensitivity of organisms over time.

STATISTICAL ANALYSES

Analysis of ambient water and reference toxicant data was conducted using ToxCalc[®] Comprehensive Toxicity Data Analysis and Database Software, Version 5.0. Statistical differences from the control and No Observed Effect Concentrations (NOEC) were determined for each test using Dunnett's, Wilcoxon Rank Sum, or Steel's Many-One Rank Tests. Median Effect Concentration (EC₅₀) values were determined using Maximum Likelihood Probit (linear regression), or Trimmed Spearman-Karber Analyses. The choice of statistical method used was dependent upon specific assumptions met by the data.

CHEMICAL ANALYSES

Analysis of total and dissolved copper in selected estuary samples was performed by CEL (Appendix D).

WATER-EFFECT RATIO CALCULATION FOR COPPER

A combination of nominal and measured concentrations of copper was used for WER calculations presented in this report. Copper was measured in copper-spiked test concentrations that bracketed dose-responses, and these values were substituted for nominal concentrations for calculation of EC_{50} values. The WER was calculated for each site by dividing the EC50 for copper in the sample, by the EC50 for copper in Scripps polished seawater.

RESULTS AND DISCUSSION

A detailed data summary is contained in Appendix A. Statistical analyses and raw data can be found in Appendix B, and reference toxicant data are located in Appendix C. Analytical chemistry data reports and field collection data can be found in Appendices D, and E, respectively. Finally, chain-of-custody information is provided in Appendix F.

Copper EC_{50} values and WER calculations are summarized in Table 2. Mean normal development was 89 to 97 percent in the unspiked estuary samples, compared to 88 to 89 percent in the corresponding brine controls. Total copper EC_{50} values calculated for estuary samples based on measured copper concentrations ranged from 24.8 to 84.4 μ g/L. For comparison, the mean EC_{50} calculated for polished seawater spiked with copper was 14.0 μ g/L. The calculated WER values ranged from 1.77 to 6.03, with a

geometric mean of 2.94.

Table 2. Total Copper WER Values for Santa Clara River Estuary Samples Calculated using Scripps Polished Seawater (measured concentrations) ^a

Sample	EC ₅₀ (μg/L Total Cu)	Water-Effect Ratio
Site A-2	>53.4	>3.81
Site B-1	84.4	6.03
Site B-3	25.7	1.84
Site C-3	24.8	1.77
Polished Scripps Seawater ^a	14.0	NA
Scripps Seawater ^b	11.3	NA

^a Seawater from Scripps (see footnote b) was polished at AMEC by passing it through a 0.2-μm filter.

QA/QC

The bivalve development tests conducted on estuary samples resulted in lab controls with mean normal development of 87 to 89 percent, just below the 90 percent criterion. However, the results were deemed acceptable for reporting purposes because: 1) the mean values for normal development were close to the criterion; and 2) the range of values among control replicates included several values exceeding the criterion.

The reference toxicant test conducted met test acceptability criteria, and the EC₅₀ fell within two standard deviations of laboratory control chart mean (Appendix C).

^b Seawater from the Scripps Institute of Oceanography was sand filtered on-site prior to collection.

This seawater was used used to conduct a standard copper reference toxicant test included here and in the laboratory reference toxicant control chart.

LITERATURE CITED

- American Society for Testing and Materials (ASTM), 1999. Standard guide for conducting static acute toxicity tests starting with embryos of four species of saltwater bivalve molluscs. ASTM Designation: E 724-98.
- Tidepool Scientific Software, 1992-1994. ToxCalc Comprehensive Toxicity Data Analysis and Database Software, Version 5.0.
- U.S. EPA. 2000. Water Quality Standards; Establishment of Numeric Criteria for Priority Toxic Pollutants for the State of California. Federal Register Volume 65 No. 97, May 2000.
- U.S. EPA, 2001. Streamlined Water-Effect Ratio Procedure for Discharges of Copper. U.S EPA Office of Water, Washington DC. (EPA-822-R-01-005), March 2001.

APPENDIX A
TEST RESULT SUMMARY

Appendix Table A-1. Water-Effect Ratio Summary Results

City of Buenaventura

Santa Clara River Estuary Wet Weather Sampling Event Test Initiation Date: March 19, 2004

Test Species: Mytilus galloprovincialis

Site ID	Nominal Spiked Copper (μg/L) a	Measured Total Copper (μg/L) b	Mean Percent Normal Development c	EC50 (μg/L total copper) d
	Lab Control	NM	87	
	Brine Control	NM	89	
	0 (Unspiked Sample)	4.49	96	
A-2	4.3	NM	91	
	7.1	NM	92	>53.4
(66% sample)	12	NM	91	
	20	NM	84	
	33	NM	85	
	55	53.4	81	
	Lab Control	NM	88	
	Brine Control	NM	89	
	0 (Unspiked Sample)	3.75	97	
5.4	4.3	NM	91	84.4
B-1	7.1	NM	89	
(67% sample)	12	NM	90	(69.7-124.2)
	20	20.2	84	
	33	33.3	80	
	55	50.2	66	
	Lab Control	NM	89	
	Brine Control	NM	88	
	0 (Unspiked Sample)	3.00	93	
	4.3	NM	92	
B-3	7.1	NM	92	25.6 25.
(75% sample)	12	NM	92	(24.9-26.4)
	20	NM	77	
	33	31.0	21	
	55	51.2	0.40	
	Lab Control	NM	89	
	Brine Control	NM	88	
	0 (Unspiked Sample)	1.95	89	
	4.3	NM	79	
C-3	4.3 7.1	NM	80	24.8
(66% sample)	12	NM	70	(24.5-25.1)
			70 87	
	20	20.1		
	33	31.6	1.0	
	55	NM	0.00	
	Lab Control	NM	90	
	1.8	NM	89	
l -b	3.0	NM	85	
Laboratory Polished	5.1	NM	88	14.0
Seawater (PSW)	8.4	9.1	87	
	14	13.7	52	
	23	22.5	0.00	
	39	NM	0.00	
	Lab Control	NM	90	
	2.5	NM	92	
Copper Reference	5.0	NM	91	11.3
Toxicant Test	10	NM	62	
	20	NM	0.00	
	40	NM	0.40	

^a Nominal spiked concentrations do not include the background concentrations of copper in the field samples.

Values in **bold** indicate a significant decrease in normal development was observed in that test concentration relative to the control. NM - Not measured

^b Total measured copper includes spiked plus background concentrations of copper in each sample.

^c Values presented for mean percent normal development in unspiked samples are results from the screening tests initiated concurrently on March 19, 2004 for the highest testable concentration for each sample following amendment with hypersaline brine.

^d Total copper concentrations were measured in test concentrations exhibiting a dose-response. These measured values were substituted for nominal values in order to calculate EC₅₀ values. EC₅₀ values were based on comparison to the brine controls.

APPENDIX B
STATISTICAL ANALYSIS SUMMARIES
& RAW BENCH DATASHEETS

			Bivalve La	arval Surv	ival and Developr	nent Test-Propo	rtion Normal
Start Date:	03/19/2004		Test ID:	0403-122	b	Sample ID:	BUENA-City of Buenaventura
End Date:	03/21/2004	+	Lab ID:	AEESD-A	MEC Bioassay SD	Sample Type:	OTH-Other sample type
Sample Date:	03/16/2004	ļ	Protocol:	ASTM 87		Test Species:	MG-Mytilis galloprovincialis
Comments:	Sample A-	2, WEF			d sample (Measure	ed Values)	
Conc-ug/L	1	2	3	4	5		
L-Lab Control	0.8400	0.9300	0.8381	0.8515	0.9100		
B-Control	0.9180	0.9000	0.8700	0.8716	0.8900		
4.3	0.9600	0.8800	0.8200	0.9200	0.9505		
7.1	0.9159	0.9200	0.8900	0.9307	0.9535		
11.9	0.9310	0.8800	0.8900	0.9100	0.9300		
19.8	0.8200	0.8800	0.8800	0.8100	0.8100		
33	0.8200	0.8100	0.8400	0.8800	0.9100		
53.4	0.7100	0.8300	0.8200	0.8100	0.8700		

		_	Tra	ansform:	Arcsin So	uare Roo	t		1-Tailed		Number	Total
Conc-ug/L	Mean	N-Mean ⁻	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
L-Lab Control	0.8739	0.9820	1.2121	1.1567	1.3030	5.597	5				64	506
B-Control	0.8899	1.0000	1.2337	1.2019	1.2804	2.657	5					
4.3	0.9061	1.0182	1.2699	1.1326	1.3694	7.634	5	-1.415	2.409	0.0985	47	501
7 1	0.9220	1.0361	1.2902	1.2327	1.3534	3.406	5	-1.911	2.409	0.0985	39	494
11.9	0.9082	1.0206	1.2648	1.2171	1.3051	3.161	5	-1.289	2.409	0.0985	47	516
19.8	0.8400	0.9439	1.1613	1.1198	1.2171	4.409	5	1.242	2.409	0.0985	80	500
33	0.8520	0.9574	1.1790	1.1198	1.2661	5.208	5	0.809	2.409	0.0985	74	500
53.4	0.8080	0.9079	1.1205	1.0021	1.2019	6.533	5	2.239	2.409	0.0985	96	500

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribi	ution (p >	0.01)		0.96011		0.91		-0.1894	-0.4077
Bartlett's Test indicates equal var	iances (p =	0.65)			4.21183		16.8119			
The control means are not signific	cantly diffe	rent(p = 0)).54)		0.64177		2.30601			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	53.4	>53.4			0.07165	0.08172	0.02023	0.00418	0.00167	6, 28

			Max	imum Likeliho	od-Probit	t				
Parameter	Value	SE	95% Fiducial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	Iter
Slope	0.8942	0.88386	-0.8382 2.62657	0.12648	7.61233	9.48773	0.11	3.13665	1.11832	50
Intercept	2.19521	1.45767	-0.6618 5.05225							
TSCR	0.09711	0.00897	0.07953 0.1147		1.0 ¬				$\overline{}$	
Point	Probits	ug/L	95% Fiducial Limits		0.9					
EC01	2.674	3.42811			4					
EC05	3.355	19.8235			0.8					
EC10	3.718	50.5205			0.7					
EC15	3.964	94.9703			9 0.6			/		
EC20	4.158	156.837			ž -		/	/		
EC25	4.326	241.188			Q 0.5 -		/			
EC40	4.747	713.389			8 0.4		/			
EC50	5.000	1369.77					/			
EC60	5.253	2630.09			0.3 -		/			
EC75	5.674	7779.33			0.2 -					
EC80	5.842	11963.2			0.1 -					
EC85	6.036	19756.5	i		-		•			
EC90	6.282	37138.9			0.0 -		400	40000	400000	
EC95	6.645	94649.1				1	100	10000	1000000	
EC99	7.326	547323	}				Dose u			

Dose ug/L

		1	Bivalve La	rval Survi	ival and Developr	nent Test-Propo	rtion Normal
Start Date:	03/19/2004	4	Test ID:	0403-122		Sample ID:	BUENA-City of Buenaventura
End Date:	03/21/2004	4	Lab ID:	AEESD-AI	MEC Bioassay SD	Sample Type:	OTH-Other sample type
Sample Date:	03/16/2004	4	Protocol;	ASTM 87		Test Species:	MG-Mytilis galloprovincialis
Comments:	Sample A	-2, WER	Study, 40	6% Spiked	d sample	·	
Conc-ug/L	1	2	3	4	5		
L-Lab Control	0.8400	0.9300	0.8381	0.8515	0.9100		
B-Control	0.9180	0.9000	0.8700	0.8716	0.8900		
4.3	0.9600	0.8800	0.8200	0.9200	0.9505		
7.1	0.9159	0.9200	0.8900	0.9307	0.9535		
11.9	0.9310	0.8800	0.8900	0.9100	0.9300		
20	0.8200	0.8800	0.8800	0.8100	0.8100		
33	0.8200	0.8100	0.8400	0.8800	0.9100		
55	0.7100	0.8300	0.8200	0.8100	0.8700		

	Transform: Arcsin Square Root					_	1-Tailed		Number	Total		
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
L-Lab Control	0.8739	0.9820	1.2121	1.1567	1.3030	5.597	5					
B-Control	0.8899	1.0000	1.2337	1.2019	1.2804	2.657	5				58	531
4.3	0.9061	1.0182	1.2699	1.1326	1.3694	7.634	5	-0.945	2.409	0.0924	47	501
7.1	0.9220	1.0361	1.2902	1.2327.	1.3534	3.406	5	-1.474	2.409	0.0924	39	494
11.9	0.9082	1.0206	1.2648	1.2171	1.3051	3.161	5	-0.811	2.409	0.0924	47	516
20	0.8400	0.9439	1.1613	1.1198	1.2171	4.409	5	1.888	2.409	0.0924	80	500
33	0.8520	0.9574	1.1790	1.1198	1.2661	5.208	5	1.426	2.409	0.0924	74	500
*55	0.8080	0.9079	1.1205	1.0021	1.2019	6.533	5	2.952	2.409	0.0924	96	500

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)					0.97174		0.91		-0.3223	0.0925
Bartlett's Test indicates equal vari	iances (p =	= 0.40)			6.24353		16.8119			
The control means are not signific	cantly diffe	rent (p =	0.54)		0.64177		2.30601			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	33	55	42.6028		0.064	0.07187	0.0205	0.00368	6.6E-04	6, 28

····				Mar	kimum Likeliho	od-Probi	•				
Parameter	Value	SE	95% Fidu	icial Limits	Control		Critical	P-value	Mu	Sigma	lter
Slope	1.27103	0.52274	0.24646	2.2956	0.10923	9.05345	9.48773	0.06	2.68671	0.78676	50
Intercept	1.5851	0.84297	-0.0671	3.23731							
TSCR	0.09192	0.00938	0.07354	0.1103		1.0 -					
Point	Probits	ug/L	95% Fidu	icial Limits		0.9					
EC01	2.674	7.18506	0.00218	17.7418		-			/		
EC05	3.355	24.6947	1.18918	37.4742		0.8		<i> </i>			
EC10	3.718	47.6911	24.1045	79.2903		0.7 -		- 11			
EC15	3.964	74.351	52.4631	460.041		9, 0.6		- 11			
EC20	4.158	105.818	68.742	2634.71		Response 0.6 0.4		-1I			
EC25	4.326	143.235	83.5004	12223.6		<u>a</u> 0.5		- 11			
EC40	4.747	307.178	131.13	607305		- 0.4 کھ		-11			
EC50	5.000	486.087	170.457	6423898		0.3 -					
EC60	5.253	769.197	220.976	6.8E+07		0.2					
EC75	5.674	1649.59	339.132	4.9E+08		-					
EC80	5.842	2232.9	401.706	4.9E+08		0.1		1		1	
EC85	6.036	3177.9	489.207	4.9E+08		0.0	7 7 7 THIN	Wirring.	* * * * * * * * * * * * * * * * * * *		
EC90	6.282	4954.39	626.644	4.9E+08		0.0	01 1	100	0 10000	00 1E+09	
EC95	6.645	9568.03		4.9E+08							
EC99	7.326	32884.9	1795.56	4.9E+08				Dose			

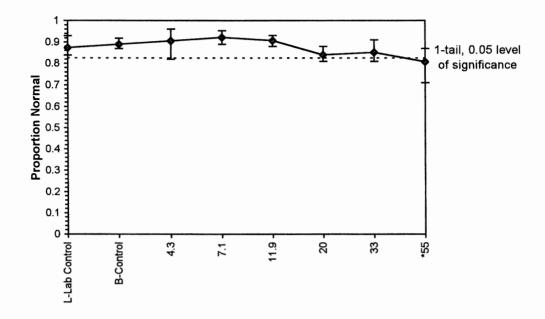
Reviewed by:

Page 1 ToxCalc v5.0

Bivalve Larval Survival and Development Test-Proportion Normal

Start Date: 03/17/2004 End Date: 03/19/2004 Test ID: 0403-122

Sample ID: Lab ID: AEESD-AMEC Bioassay SD Sample Type: **BUENA-City of Buenaventura** OTH-Other sample type


Sample Date: 03/16/2004

Test Species:

MG-Mytilis galloprovincialis

03/16/2004 Protocol; ASTM 93 Sample A-2, WER Study, 199% Spiked sample Comments:

Dose-Response Plot

Test: BV-Bivalve Larval Survival and Development Test

End Date: 03/21/2004

Species: MG-Mytilis galloprovincialis

Start Date: 03/19/2004

Sample ID: BUENA-City of Buenaventura

Test ID: 0403-122 Protocol: ASTM 87

Sample Type: OTH-Other sample type

Lab ID: AEESD-AMEC Bioassay SD

				Initial	Final	Total	Number	
os	ID	Rep	Group	Density	Density	Counted	Normal	Notes
	1		L-Lab Control			100	84	
	2		L-Lab Control			100	93	
	3	3	L-Lab Control			105	88	
	4	4	L-Lab Control			101	86	
	5	5	L-Lab Control			100	91	
	6	1	B-Control			122	112	
	7	2	B-Control			100	90	
	8	3	B-Control			100	87	
	9	4	B-Control			109	95	
	10	5	B-Control			100	89	
	11	1	4.3			100	96	
	12	2	4			100	88	
	13	3	4.3			100	82	
	14	4	4.3			100	92	
	15	5	4.3			101	96	
	16	1	7.1			107	98	
	17	2	7.1			100	92	
	18	3	7.1			100	89	
	19	4	7.1			101	94	
	20	5	7.1			86	82	
	21	1	12			116	108	
	22	2	11.9			100	88	
	23	3	11.9			100	89	
	24	4	11.9			100	91	
	25	5	11.9			100	93	
	26	1	20			100	82	
	27	2	20			100	88	
	28	3	20			100	88	
	29	4	20			100	81	
	30	5	20			100	81	
	31	1	33			100	82	
	32	2	33			100	81	
	33	3	33			100	84	
	34	4	33			100	88	
	35	5	33			100	91	
	36	1	55			100	71	
	37	2	55			100	83	
	38	3	55			100	82	
	39	4	55			100	81	
	40	5	55			100	87	

Comments: Sample A-2, WER Study, 400% Spiked sample

Reviewed by:

Page 1

Test: BV-Bivalve Larval Survival and Development Test
Species: MG-Mytilis galloprovincialis
Sample ID: BUENA-City of Buenaventura
Start Date: 03/1/2004
Initial Final Total Number

Test ID: 0403-122
Protocol: ASTM 87
Sample Type: OTH-Other sample type
Lab ID: AEESD-AMEC Bioassay SD

Otali	<u> </u>	المون	2001	Eliu Date. 03/1			SD-AIVIEC BIC	I
	١,,		0	Initial	Final	Total	Number	Nata
Pos	ID	Rep	Group	Density	Density	Counted	Normal	Notes
1						116	108	18
2				_		109	95	12 12
3						101	94 82	
4						86	82	102
5						107	98 86	18
6						101	86	NS.
7	<u></u>					100	88	MT
8							SE - SE	08
. 9						100	84 81	MT
10						100		SH
- 11						160	82	SH
12						122	82	MT
13						122	112	185
14						101	96	18
15						100	91	MT
16						100	91	SA
17						100	97	
18						100	96	
19						100	88	16
_ 20						001	ବ୍ୟ	HZ
21						100	82	NC
22						100	84	MC
~ 23						100	82	MT
24						100	92	NC.
25						100	33	SH
26						106	89	uc
27						ιco	89	nc
- 28						100	88	MT
~ 29						100	છે (MT
30						100	88	uc
31						100	89	uc
32						100	92	MC
- 33						100	71	5#
34	1					100	93	uc
35						001	90	MC.
36						100	91	WC UC
× 37	 					100	88	MT
38	 					100	81	
- 39						100		NT
40	 					100	81	MT
			-1- 4 0 \4/55	 Study, 100% S			78	luc

Comments: Sample A-2, WER Study, 100% Spiked sample

4 to

Bivalve Development Bioassay Worksheet

Client: Test No.: Test Species:	City of Durnavent 0403-106-10 M. salleprovincialis	tura (refest)	Start Date/Time: End Date/Time: Date Received:	3/19/04 3/21/04 3/19/04	170
Sample Type: Test Chamber Ty	30ml Shell Vials	Watter eff	Peds retio		
	Time:				
Number of Spaw		Female ————————————————————————————————————			
Spawn Condition Fertilization Time	1.44				
Egg Stock Densit	ty Calculation:				
Eggs Counted (x)	27 28 26 21 27 31 31 28 29 25 27 26,6	- - - - Overall Mean;	268		
'n	Mean: <u>76.8</u> x 42 =	eggs/ml			
Initial S Inoculum S	tock - 1176 eggs/ml	Stock Dilution F			
Percent Division	Upon Inoculation:96				
Time of Inoculation	on: <u>1630</u>				
Comments:			AMEC Bioassay La 5550 Morehouse D	Orive, Suite B	
Reviewed/ Date:	A 415165		San Diego, C A 92 ^o (858) 458-9 044	121	

AMEC Earth & Environmental Bioassay Laboratory 5550 Morchouse Dr. Suite B San Diego, CA 92121

Physical and Chemical Measurements of Test Solutions Salt Water Bioassays

Client: Contact:	Duenaventura - WER AZ	Analyst:	TR
Test No.:	0403-1226	Test Start: Test End:	3/19/04
		Date Collected:	3/21/04 3/15/04

		DO			pl·l			Salinity		Temp		
Sample ID 45/L or Conc.		(mg/L)			(pH units)		(ppt)			°C		
		24	48		24	48	0		48	0	24	48
LC	8.2	8.6	(A)	8.06	7.94805	\oplus	30	24 3089 218	A	14.5		
BC	8.0	8.6	7.9	7,90	7.94	7.93	30	30.8	31.1	14.8	150	\bigcirc
4.3	7.7	8.9	9.1	8.15	8.22	821	30	31.0	3(.1	14.8	19.9	14.5
7.1	7.6	8.8	91	8.15	8.23	8.27	30	31.3	314	14,8		14.7
11.9	7.6	8.9	80	8.14	8.23	3.24	30	31.6	B1.5	14.8	15.0	14.8
20	7.7	8,9	8.1	8.14	8,22	8.25	30	31.2	31.4	14.8	450	14.9
	7.6	8,4	B.0	8.15	g 23	8.21	30	31.6	31.8	14.8	150	15:0
15	7.6	ક.વ	8.1	8.16	€.23	8.24	30				149	15.1
					3			31.8	32,0	14.8	150	15.1
	I											

Comments:	Dsurrogate cup for mater of	vality measurem	ents spilled pric	or to test
	Territing lor	rined sample		
QA Check:	A 4/19/05			

Brine Dilution Worksheet

Client: City of Buenaventura Analyst: JR

Sample ID: Santa Clara River Estuary A2 Test Date: 03/17/2004

al shape

Test No: 0403 - 100 0403 - 122b Test Type: Bivalve Embryo Dev.

Salinity of Effluent 3.1
Salinity of Brine 85
Target Salinity 30
Test Dilution Volume 150

Salinity Adjustment Factor: TS - SE TS = target salinity

SB - TS SE = salinity of effluent

SB = salinity of brine

Salinity Adjustment Factor = 0.49

Concentration %	Effluent Volume (mL)	Salinity Adjustment	Brine Volume (mL)	Dilute to to: (mL)
Control	NA	NA	NA	150
6.25	9.4	0.49	4.6	150
12.5	18.8	0.49	9.2	150
25	37.5	0.49	18.3	150
50	75	0.49	37	150
67	101	0.49	49	150

 DI Volume

 Brine Control
 90
 0.55
 49
 150

total brine 167.3

Brine Control Salinity Adjustment Factor

Brine Control Calculation: TS - 0

OC: ME 4/28/04

AMEC Earth and Environmental, Inc. San Diego Bioassay Laboratory 5550 Morehouse Drive. Suite B San Diego, CA 92121

		E	Bivalve La	rval Survi	val and D	Developmer	t Test-Pro	oortion Normal
Start Date:	03/19/2004	4	Test ID:	0403-123b)	Sa	mple ID:	BUENA-City of Buenaventura
End Date:	03/21/2004	4	Lab ID:	AEESD-AM	MEC Bioa	issay SD Sa	imple Type:	OTH-Other sample type
Sample Date:	03/16/2004	4	Protocol;	ASTM 87		Te	st Species:	MG-Mytilis galloprovincialis
Comments:	Sample B				sample ((Measured V	'alues)	
Conc-ug/L	1	2	3	4	5			
L-Lab Control	0.8600	0.8100	0.9300	0.9400	0.8400			
B-Control	0.9180	0.8700	0.8716	0.9000	0.8900			
4.3	0.8700	0.9200	0.9600	0.9300	0.8700			
7.1	0.8600	0.9600	0.8500	0.8700	0.9000			
11.9	0.8900	0.9500	0.8900	0.8700	0.8900			
20.2	0.9000	0.8800	0.8200	0.8000	0.8200			
33.3	0.6700	0.7300	0.8500	0.8700	0.9000			
50.2	0.6900	0.5900	0.6500	0.6800	0.6900			

		_	Tra	ansform:	Arcsin So	uare Roo	t		1-Tailed		Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
L-Lab Control	0.8760	0.9844	1.2185	1.1198	1.3233	7.382	5				62	500
B-Control	0.8899	1.0000	1.2337	1.2019	1.2804	2.654	5					
4.3	0.9100	1.0226	1.2721	1.2019	1.3694	5.617	5	-1.071	2.409	0.1204	45	500
7.1	0.8880	0.9978	1.2362	1.1731	1.3694	6.455	5	-0.353	2.409	0.1204	56	500
11.9	0.8980	1.0091	1.2491	1.2019	1.3453	4.436	5	-0.611	2.409	0.1204	51	500
20.2	0.8440	0.9484	1.1677	1.1071	1.2490	5.275	5	1.017	2.409	0.1204	78	500
33.3	0.8040	0.9035	1.1215	0.9589	1.2490	11.037	5	1.942	2.409	0.1204	98	500
*50.2	0.6600	0.7416	0.9488	0.8759	0.9803	4.670	5	5.398	2.409	0.1204	170	500

Auxiliary Tests		Statistic		Critical		Skew	Kurt			
Shapiro-Wilk's Test indicates nor		0.96806		0.91		0.09342	-0.5676			
Bartlett's Test indicates equal var	Bartlett's Test indicates equal variances (p = 0.53)						16.8119			
The control means are not signific		0.35364		2.30601						
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	33.3	50.2	40.8859		0.0882	0.10011	0.0622	0.00624	6.7E-06	6, 28

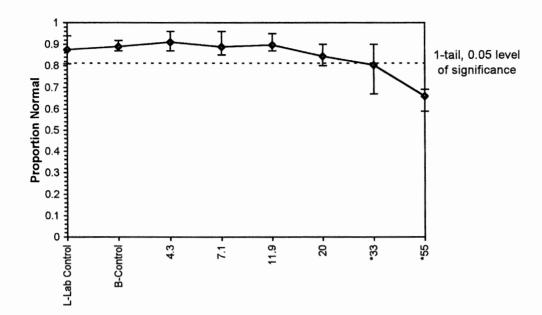
				Ma	ximum Likeliho	od-Probit	t				
Parameter	Value	SE	95% Fidu	cial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	2.94281	0.54134	1.88178	4.00385	0.124	4.58951	9.48773	0.33	1.92658	0.33981	4
Intercept	-0.6696	0.87806	-2.3906	1.05145							
TSCR	0.10761	0.00753	0.09285	0.12238		1.0 ¬					
Point	Probits	ug/L	95% Fidu	cial Limits		<u>, , </u> †		,		İ	
EC01	2.674	13.6791	6.97975	18.884		0.9		/	/ /		
EC05	3.355	23.3151	15.922	28.2033		0.8 -		11	/ /		
EC10	3.718	30.9807	24.4879	35.2492		0.7 -		- 11			
EC15	3.964	37.5306	32.2618	41.5807		0.7		-	/		
EC20	4.158	43.7104	39.1948	48.5885		9 , 0.6 -		- 11 /	/		
EC25	4.326	49.817	45.0602	57.0857		Response					
EC40	4.747	69.2607	59.7437	91.8362		ds:		///			
EC50	5.000	84.4456	69.6727	124.209		2 0.4	i	///			
EC60	5.253	102.96	80.9723	168.572		0.3		///			
EC75	5.674	143.145	103.615	280.986		-		*			
EC80	5.842	163.143	114.199	344.352		0.2		///			
EC85	6.036	190.007	127.876	436.574		0.1 -					
EC90	6.282	230.177	147.394	588.634		0.0					
EC95	6.645	305.856	181.865	917.023		0.0	1 1 1 1 1 1 1	400	4000	40000	
EC99	7.326	521.31	269.541	2107.99		1	1 10	100 Dose u		10000	

Dose ug/L

			Bivalve La	arval Surv	vival and Develop	ment Test-Propo	ortion Normal
Start Date:	03/19/2004	1	Test ID:	0403-123		Sample ID:	BUENA-City of Buenaventura
End Date:	03/21/2004	1	Lab ID:	AEESD-A	MEC Bioassay SD	Sample Type:	OTH-Other sample type
Sample Date:	03/16/2004	1	Protocol:	ASTM 87		Test Species:	MG-Mytilis galloprovincialis
Comments:	Sample B	-1, WER	Study, -	% Spike	d sample		
Conc-ug/L	1	2	3	4	5		
L-Lab Control	0.8600	0.8100	0.9300	0.9400	0.8400		
B-Control	0.9180	0.8700	0.8716	0.9000	0.8900		
4.3	0.8700	0.9200	0.9600	0.9300	0.8700		
7.1	0.8600	0.9600	0.8500	0.8700	0.9000		
11.9	0.8900	0.9500	0.8900	0.8700	0.8900		
20	0.9000	0.8800	0.8200	0.8000	0.8200		
33	0.6700	0.7300	0.8500	0.8700	0.9000		
55	0.6900	0.5900	0.6500	0.6800	0.6900		

		_	Tra	ansform:	Arcsin Sc	uare Roo	t	_	1-Tailed		Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
L-Lab Control	0.8760	0.9844	1.2185	1.1198	1.3233	7.382	5					
B-Control	0.8899	1.0000	1.2337	1.2019	1.2804	2.654	5				55	500
4.3	0.9100	1.0226	1.2721	1.2019	1.3694	5.617	5	-0.839	2.409	0.1103	45	500
7.1	0.8880	0.9978	1.2362	1.1731	1.3694	6.455	5	-0.054	2.409	0.1103	56	500
11.9	0.8980	1.0091	1.2491	1.2019	1.3453	4.436	5	-0.336	2.409	0.1103	51	500
20	0.8440	0.9484	1.1677	1.1071	1.2490	5.275	5	1.441	2.409	0.1103	78	500
*33	0.8040	0.9035	1.1215	0.9589	1.2490	11.037	5	2.451	2.409	0.1103	98	500
*55	0.6600	0.7416	0.9488	0.8759	0.9803	4.670	5	6.223	2.409	0.1103	170	500

Auxiliary Tests		Statistic		Critical		Skew	Kurt			
Shapiro-Wilk's Test indicates non	Shapiro-Wilk's Test indicates normal distribution (p > 0.01)						0.91		0.0661	0.05609
Bartlett's Test indicates equal vari	iances (p =	= 0.24)			7.98698		16.8119			
The control means are not signific		0.35364		2.30601						
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	20	33	25.6905		0.07776	0.08731	0.0635	0.00524	1.1E-06	6, 28


				Maxii	mum Likeliho	od-Probi	:				
Parameter	Value	SE	95% Fidu	cial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	2.44199	0.41549	1.62763	3.25635	0.11	3.16113	9.48773	0.53	2.00321	0.4095	3
Intercept	0.10817	0.67898	-1.2226	1.43898							
TSCR	0.102	0.0079	0.08651	0.1175		1.0 ¬					
Point	Probits	ug/L	95% Fidu	cial Limits							
EC01	2.674	11.2349	5.41669	16.2964		0.9			// /		
EC05	3.355	21.362	14.0478	26.681		0.8 -		/	I/		
EC10	3.718	30.0895	23.1032	35.0683		0.7			/ /		
EC15	3.964	37.9133	31.8097	42.845		0.7		- //	/ /		
EC20	4.158	45.5583	40.012	51.4974		9 0.6 -		//			
EC25	4.326	53.3345	47.3719	62.0103		Response 0.5 0.0 1.4.0		///	/		
EC40	4.747	79.3354	67.0595	107.053		d S		 /			
EC50	5.000	100.743	81.0481	151.626		2 0.4 -		///			
EC60	5.253	127.926	97.5231	215.707		0.3	,	///			
EC75	5.674	190.291	132.09	389.203		-		#			
EC80	5.842	222.771	148.878	492.294		0.2		///			
EC85	6.036	267.692	171.103	647.612		0.1					
EC90	6.282	337.296	203.766	914.772		-					
EC95	6.645	475.099	263.859	1527.04		0.0		400	4000	40000	
EC99	7.326	903.353	428.056	3996.75		1	10	100 Dose u		10000	

Reviewed by: 4/15/05

Dose ug/L

Bivalve Larval Survival and Development Test-Proportion Normal										
Start Date:	03/19/2004	Test ID:	0403-123	Sample ID:	BUENA-City of Buenaventura					
End Date:	03/21/2004	Lab ID:	AEESD-AMEC Bioassay SD	Sample Type:	OTH-Other sample type					
Sample Date	: 03/16/2004	Protocoj:	ASTM 87	Test Species:	MG-Mytilis galloprovincialis					
Comments:	Sample R-1	WER Study 16	Ale Sniked sample	•						

Dose-Response Plot

Reviewed by: 4/4/09

Page 2

ToxCalc v5.0

Test: BV-Bivalve Larval Survival and Development Test

Species: MG-Mytilis galloprovincialis

Sample ID: BUENA-City of Buenaventura Start Date: 03/19/2004

Test ID: 0403-123 Protocol: ASTM 87

Sample Type: OTH-Other sample type

Initial Final Total Number	Start	Date:	03/19	/2004 E	nd Date: 03/2	21/2004	Lab ID: AEESD-AMEC Bioassay SD				
Pos ID Rep Group Density Counted Normal Notes 79 2 2 L-Lab Control 100 86 50 3 3 L-Lab Control 100 93 66 4 4 L-Lab Control 100 94 43 5 5 L-Lab Control 100 84 42 6 1 B-Control 100 87 46 7 2 B-Control 100 87 47 8 3 B-Control 100 87 47 8 3 B-Control 100 87 49 10 5 B-Control 100 89 64 11 1 4.3 100 89 64 11 1 4.3 100 89 64 11 1 4.3 100 96 53 14 4 4.3											
56 1 1 L-Lab Control 100 86 79 2 2 L-Lab Control 100 81 50 3 3 L-Lab Control 100 93 66 4 4 L-Lab Control 100 94 42 6 1 B-Control 100 91.8 46 7 2 B-Control 100 87 47 8 3 B-Control 100 87.16 45 9 4 B-Control 100 87.16 45 9 4 B-Control 100 89 49 10 5 B-Control 100 89 40 11 1 4.3 100 87 70 12 2 4.3 100 92 57 13 3 4.3 100 93 60 15 5 4.3 100 87	Pos	ID	Rep	Group			1		Notes		
79 2 2 L-Lab Control 100 81 560 3 3 L-Lab Control 100 93 66 4 4 L-Lab Control 100 94 43 5 5 L-Lab Control 100 84 42 6 1 B-Control 100 87 47 8 3 B-Control 100 87 47 8 3 B-Control 100 87 49 10 5 B-Control 100 89 64 11 1 43 100 89 64 11 1 43 100 87 70 12 2 4.3 100 92 57 13 3 4.3 100 92 57 13 3 4.3 100 93 69 15 4.3 100 87 76 16 <td>56</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	56	1	1								
66 4 4 L-Lab Control 100 94 43 5 5 L-Lab Control 100 84 42 6 1 B-Control 100 91.8 46 7 2 B-Control 100 87 47 8 3 B-Control 100 90 49 10 5 B-Control 100 90 49 10 5 B-Control 100 90 49 10 5 B-Control 100 89 64 11 1 4.3 100 87 70 12 2 4.3 100 92 57 13 3 4.3 100 93 69 15 5 4.3 100 97 76 16 1 7.1 100 86 72 17 2 7 100 96 48	79	2	2								
66 4 4 4 L-Lab Control 100 94 43 5 5 L-Lab Control 100 84 42 6 1 B-Control 100 91.8 46 7 2 B-Control 100 87 47 8 3 3 B-Control 100 90 49 10 5 B-Control 100 90 49 11 1 4.3 100 87 70 12 2 4.3 100 87 71 33 3 4.3 100 92 57 13 3 3 4.3 100 93 69 15 5 4.3 100 93 69 15 5 4.3 100 87 76 16 1 7.1 100 86 77 17 2 7 100 96 48 18 3 7.1 100 86 72 17 1 9 4 7.1 100 85 77 19 4 7 1 100 87 92 20 5 7.1 100 87 92 21 1 1 11.9 100 89 92 22 2 15 7.1 100 89 90 2 3 3 11.9 100<	50	3	3								
43 5 5 5 L-Lab Control 100 84 42 6 1 B-Control 100 91.8 46 7 2 B-Control 100 87 47 8 3 B-Control 100 87.16 45 9 4 B-Control 100 90 49 10 5 B-Control 100 89 64 11 1 4.3 100 87 70 12 2 4.3 100 92 57 13 3 4.3 100 96 53 14 4 4.3 100 93 69 15 5 4.3 100 87 70 12 2 7 100 86 72 17 2 7 100 86 72 17 2 7 100 86 72	66	4	4					94			
42 6 1 B-Control 100 91.8 46 7 2 B-Control 100 87 47 8 3 B-Control 100 87.16 45 9 4 B-Control 100 90 49 10 5 B-Control 100 89 64 11 1 4.3 100 87 70 12 2 4.3 100 92 57 13 3 4.3 100 96 53 14 4 4.3 100 93 69 15 5 4.3 100 93 69 15 5 4.3 100 93 69 15 5 4.3 100 93 69 15 7.1 100 96 48 18 3 7.1 100 96 55 21 1	43	5	5								
46 7 2 B-Control 100 87.16 45 9 4 B-Control 100 90 49 10 5 B-Control 100 89 64 11 1 4.3 100 87 70 12 2 4.3 100 92 57 13 3 4.3 100 93 69 15 5 4.3 100 87 76 16 1 7.1 100 86 72 17 2 7 100 96 48 18 3 7.1 100 86 72 17 2 7 100 96 48 18 3 7.1 100 85 77 19 4 7.1 100 87 62 20 5 7.1 100 89 80 24 4	42	6	1								
45 9 4 B-Control 100 90 49 10 5 B-Control 100 89 64 11 1 4.3 100 87 70 12 2 4.3 100 92 57 13 3 4.3 100 96 53 14 4 4.3 100 93 69 15 5 4.3 100 93 76 16 1 7.1 100 86 72 17 2 7 100 96 48 18 3 7.1 100 85 77 19 4 7.1 100 85 77 19 4 7.1 100 89 71 22 11.9 100 89 72 12 11.9 100 89 80 24 4 11.9 100	46	7	2	B-Control			100				
49 10 5 B-Control 100 89 64 11 1 4.33 100 87 70 12 2 4.3 100 92 57 13 3 4.3 100 96 53 14 4 4.3 100 93 69 15 5 4.3 100 87 76 16 1 7.1 100 86 72 17 2 7 100 96 48 18 3 7.1 100 85 77 19 4 7.1 100 87 62 20 5 7.1 100 89 71 22 11.19 100 89 72 12 1.19 100 89 80 24 4 11.9 100 89 61 26 1 20 100	47	8	3	B-Control			100	87.16			
64 11 1 4.3 100 87 70 12 2 4.3 100 92 57 13 3 4.3 100 93 69 15 5 4.3 100 87 76 16 1 7.1 100 86 77 17 2 7 100 96 48 18 3 7.1 100 85 77 19 4 7.1 100 87 62 20 5 7.1 100 87 62 21 1 19 100 89 71 12 2 11.9 100 95 59 23 3 11.9 100 89 80 24 4 11.9 100 89 81 26 1 20 100 89 82 25 5 1.9 </td <td>45</td> <td>9</td> <td>4</td> <td>B-Control</td> <td></td> <td></td> <td>100</td> <td>90</td> <td></td>	45	9	4	B-Control			100	90			
70 12 2 4.3 100 92 57 13 3 4.3 100 96 53 14 4 4.3 100 93 69 15 5 4.3 100 87 76 16 1 7.1 100 86 72 17 2 7 100 96 48 18 3 7.1 100 85 77 19 4 7.1 100 90 55 21 1 11.9 100 89 71 22 2 11.9 100 89 80 24 4 11.9 100 89 80 24 4 11.9 100 89 81 26 1 20 100 89 81 26 1 20 100 89 81 26 1 20 </td <td>49</td> <td>10</td> <td>5</td> <td>B-Control</td> <td></td> <td></td> <td>100</td> <td>89</td> <td></td>	49	10	5	B-Control			100	89			
57 13 3 4.3 100 96 53 14 4 4.3 100 93 69 15 5 4.3 100 87 76 16 1 7.1 100 86 72 17 2 7 100 96 48 18 3 7.1 100 85 77 19 4 7.1 100 87 62 20 5 7.1 100 89 71 22 2 11.9 100 89 71 22 2 11.9 100 89 71 22 2 11.9 100 89 80 24 4 11.9 100 87 63 25 5 11.9 100 89 64 28 3 20 100 80 44 29 4 20	64	11	1	4.3			100	87			
57 13 3 4.3 100 96 53 14 4 4.3 100 93 69 15 5 4.3 100 87 76 16 1 7.1 100 96 48 18 3 7.1 100 96 48 18 3 7.1 100 96 48 18 3 7.1 100 96 48 18 3 7.1 100 85 77 19 4 7.1 100 87 62 20 5 7.1 100 89 71 22 2 11.9 100 89 59 23 3 11.9 100 89 80 24 4 11.9 100 87 63 25 5 11.9 100 89 64 26 1	70	12	2	4.3							
69 15 5 4.3 100 87 76 16 1 7.1 100 86 72 17 2 7 100 96 48 18 3 7.1 100 85 77 19 4 7.1 100 87 62 20 5 7.1 100 89 55 21 1 11.9 100 89 71 22 2 11.9 100 89 80 24 4 11.9 100 89 61 26 1 20 100 89 61 26 1 20 100 89 61 26 1 20 100 89 61 26 1 20 100 89 64 27 2 20 100 82 44 29 4 20 100 82 60 31 1 33 100 67	57	13	3	4.3							
69 15 5 4.3 100 87 76 16 1 7.1 100 86 72 17 2 7 100 96 48 18 3 7.1 100 85 71 19 4 7.1 100 87 62 20 5 7.1 100 89 55 21 1 11.9 100 89 71 22 2 11.9 100 89 80 24 4 11.9 100 87 63 25 5 11.9 100 87 63 25 5 11.9 100 87 61 26 1 20 100 89 61 26 1 20 100 89 64 28 3 20 100 82 44 29 4 20 </td <td>53</td> <td>14</td> <td>4</td> <td>4.3</td> <td></td> <td></td> <td>100</td> <td>93</td> <td></td>	53	14	4	4.3			100	93			
76 16 1 7.1 100 86 72 17 2 7 100 96 48 18 3 7.1 100 85 77 19 4 7.1 100 87 62 20 5 7.1 100 89 55 21 1 11.9 100 89 71 22 2 11.9 100 89 71 22 2 11.9 100 89 80 24 4 11.9 100 87 63 25 5 11.9 100 89 61 26 1 20 100 89 61 26 1 20 100 89 54 28 3 20 100 82 41 29 4 20 100 82 42 4 20 100 </td <td>69</td> <td>15</td> <td>5</td> <td>4.3</td> <td></td> <td></td> <td></td> <td>87</td> <td></td>	69	15	5	4.3				87			
48 18 3 7.1 100 85 77 19 4 7.1 100 87 62 20 5 7.1 100 90 55 21 1 11.9 100 89 71 22 2 11.9 100 89 59 23 3 11.9 100 87 63 25 5 11.9 100 87 63 25 5 11.9 100 89 61 26 1 20 100 89 61 26 1 20 100 88 54 28 3 20 100 82 41 29 4 20 100 82 40 31 1 33 100 67 58 32 2 33 100 67 58 32 2 33 100 85 78 34 4 33 100 87	76	16	1	7.1				86			
77 19 4 7.1 100 87 62 20 5 7.1 100 90 55 21 1 11.9 100 89 71 22 2 11.9 100 89 59 23 3 11.9 100 89 80 24 4 11.9 100 87 63 25 5 11.9 100 89 61 26 1 20 100 89 62 27 2 20 100 89 54 28 3 20 100 82 41 29 4 20 100 82 44 30 5 20 100 82 60 31 1 33 100 67 58 32 2 33 100 73 67 33 3 33 100 85 78 34 4 33 100 89	72	17	2	7			100	96			
62 20 5 7.1 100 90 55 21 1 11.9 100 89 71 22 2 11.9 100 95 59 23 3 11.9 100 89 80 24 4 11.9 100 87 63 25 5 11.9 100 89 61 26 1 20 100 90 68 27 2 20 100 88 54 28 3 20 100 82 41 29 4 20 100 80 44 30 5 20 100 82 60 31 1 33 3 100 85 78 34 4 33 100 87 65 35 5 33 100 90 74 36 1 55 100 69 51 37 2 55 100	48	18	3	7.1			100	85			
55 21 1 11.9 100 89 71 22 2 11.9 100 95 59 23 3 11.9 100 89 80 24 4 11.9 100 87 63 25 5 11.9 100 89 61 26 1 20 100 90 68 27 2 20 100 88 54 28 3 20 100 82 41 29 4 20 100 82 60 31 1 33 100 67 58 32 2 33 100 73 67 33 3 33 100 85 78 34 4 33 100 87 65 35 5 33 100 69 51 37 2 55 100 69 51 37 2 55 100 65	77	19	4	7.1			100	87			
71 22 2 11.9 100 95 59 23 3 11.9 100 89 80 24 4 11.9 100 87 63 25 5 11.9 100 89 61 26 1 20 100 90 68 27 2 20 100 88 54 28 3 20 100 82 41 29 4 20 100 82 44 30 5 20 100 82 60 31 1 33 100 67 58 32 2 33 100 67 58 32 2 33 100 85 78 34 4 33 100 87 65 35 5 33 100 69 51 37 2 55 100 69 51 37 2 55 100 65	62	20	5	7.1			100	90			
59 23 3 11.9 100 89 80 24 4 11.9 100 87 63 25 5 11.9 100 89 61 26 1 20 100 90 68 27 2 20 100 88 54 28 3 20 100 82 41 29 4 20 100 80 44 30 5 20 100 82 60 31 1 33 100 67 58 32 2 33 100 73 67 33 3 33 100 85 78 34 4 33 100 87 65 35 5 33 100 69 51 37 2 55 100 69 51 37 2 55 100 65 52 39 4 55 100 68 </td <td>55</td> <td>21</td> <td>1</td> <td>11.9</td> <td></td> <td></td> <td>100</td> <td>89</td> <td></td>	55	21	1	11.9			100	89			
80 24 4 11.9 100 87 63 25 5 11.9 100 89 61 26 1 20 100 90 68 27 2 20 100 88 54 28 3 20 100 82 41 29 4 20 100 80 44 30 5 20 100 82 60 31 1 33 100 67 58 32 2 33 100 73 67 33 3 33 100 85 78 34 4 33 100 87 65 35 5 33 100 90 74 36 1 55 100 69 51 37 2 55 100 65 52 39 4 55 100 68	71	22	2	11.9			100	95			
63 25 5 11.9 100 89 61 26 1 20 100 90 68 27 2 20 100 88 54 28 3 20 100 82 41 29 4 20 100 80 44 30 5 20 100 82 60 31 1 33 100 67 58 32 2 33 100 73 67 33 3 33 100 85 78 34 4 33 100 87 65 35 5 33 100 90 74 36 1 55 100 69 51 37 2 55 100 65 52 39 4 55 100 68	59	23	3	11.9			100	89			
61 26 1 20 100 90 68 27 2 20 100 88 54 28 3 20 100 82 41 29 4 20 100 80 44 30 5 20 100 82 60 31 1 33 100 67 58 32 2 33 100 73 67 33 3 33 100 85 78 34 4 33 100 87 65 35 5 33 100 90 74 36 1 55 100 69 51 37 2 55 100 59 75 38 3 55 100 65 52 39 4 55 100 68	80	24	4	11.9			100	87			
68 27 2 20 100 88 54 28 3 20 100 82 41 29 4 20 100 80 44 30 5 20 100 82 60 31 1 33 100 67 58 32 2 33 100 73 67 33 3 33 100 85 78 34 4 33 100 87 65 35 5 33 100 69 51 37 2 55 100 69 51 37 2 55 100 65 52 39 4 55 100 68	63	25	5	11.9			100	89			
54 28 3 20 100 82 41 29 4 20 100 80 44 30 5 20 100 82 60 31 1 33 100 67 58 32 2 33 100 73 67 33 3 33 100 85 78 34 4 33 100 87 65 35 5 33 100 90 74 36 1 55 100 69 51 37 2 55 100 65 75 38 3 55 100 65 52 39 4 55 100 68	61	26	1	20			100	90			
41 29 4 20 100 80 44 30 5 20 100 82 60 31 1 33 100 67 58 32 2 33 100 73 67 33 3 33 100 85 78 34 4 33 100 87 65 35 5 33 100 90 74 36 1 55 100 69 51 37 2 55 100 59 75 38 3 55 100 65 52 39 4 55 100 68	68	27	2	20			100	88			
44 30 5 20 100 82 60 31 1 33 100 67 58 32 2 33 100 73 67 33 3 33 100 85 78 34 4 33 100 87 65 35 5 33 100 90 74 36 1 55 100 69 51 37 2 55 100 59 75 38 3 55 100 65 52 39 4 55 100 68	54	28	3	20			100	82			
60 31 1 33 100 67 58 32 2 33 100 73 67 33 3 33 100 85 78 34 4 33 100 87 65 35 5 33 100 90 74 36 1 55 100 69 51 37 2 55 100 59 75 38 3 55 100 65 52 39 4 55 100 68	41	29	4				100	80			
58 32 2 33 100 73 67 33 3 33 100 85 78 34 4 33 100 87 65 35 5 33 100 90 74 36 1 55 100 69 51 37 2 55 100 59 75 38 3 55 100 65 52 39 4 55 100 68	44	30	5	20			100	82			
67 33 3 33 100 85 78 34 4 33 100 87 65 35 5 33 100 90 74 36 1 55 100 69 51 37 2 55 100 59 75 38 3 55 100 65 52 39 4 55 100 68	60	31	1	33			100	67			
67 33 3 33 100 85 78 34 4 33 100 87 65 35 5 33 100 90 74 36 1 55 100 69 51 37 2 55 100 59 75 38 3 55 100 65 52 39 4 55 100 68	58	32	2	33			100	73			
78 34 4 33 100 87 65 35 5 33 100 90 74 36 1 55 100 69 51 37 2 55 100 59 75 38 3 55 100 65 52 39 4 55 100 68	67	33	3	33							
65 35 5 33 100 90 74 36 1 55 100 69 51 37 2 55 100 59 75 38 3 55 100 65 52 39 4 55 100 68	78	34	4	33							
74 36 1 55 100 69 51 37 2 55 100 59 75 38 3 55 100 65 52 39 4 55 100 68	65	35	5	33				90			
51 37 2 55 100 59 75 38 3 55 100 65 52 39 4 55 100 68	74	36	1	55							
75 38 3 55 100 65 52 39 4 55 100 68	51	37	2	55							
52 39 4 55 100 68	75	38	3	55							
	52	39	4	55							
	73	40	5								

Comments: Sample B-1, WER Study, 100% Spiked sample

Reviewed by: &

			s galloprovin			Protocol: AS		
			-City of Buer	naventura 🗼	L i	Sample Type	e: OTH-Other	sample type
Start	Date:	03/17/20	004	End Date: 03/	Q /2004	Lab ID: AEES	SD-AMEC Bi	oassay SD
				Initial	Final	Total	Number	
Pos	ID	Rep	Group	Density	Density	Counted	Normal	Notes
41						100	ඉට	MT
42								
43						00\	84	2/
44						100	82	MT
45								
46								
47								
48						100	85	27
49						-	<u> </u>	
50						100	93	37
51						lw.	29 59	SH
52	<u> </u>					100		Sit
53						100	68 93	30
54						100	82	
55	1					100	83	MT SS
56	1	1 1				1100	86	20
57	†					((0))	910	37
58	<u> </u>					100	73	MT
59						100	89	132
60						100	67	W4
61	t					100	90	SO
62						100	90	SN
63	 					OO	89	80
64	1					100	187	2/
65					<u></u>		90	20
66		 				188	94	(2)
67	† · · · · ·					1150	85	SD
68		1 1				100	88	· · · · · · · · · · · · · · · · · · ·
69	<u> </u>	t				100	87	SD
70	†	1 1				100	42	138
71		 				100	92	22
72		 				100	96	55
73		 				160	69	Sit
74	 	1 1					69	517
75	 	+				100		1
76	 	 		 		100	80	SA SA
77	 	 		 		100	87	53
78	 	 	***************************************	 		7	<u>a</u>	
79	 	 		+		100	81	SD
10		1				100	87	SA Sn

Comments: Sample B-1, WER Study, 100% Spiked sample

Reviewed by HISIOS

AMEC Earth & Environmental Bioassay Laboratory 5550 Morchouse Dr. Suite B San Diego, CA 92121

Physical and Chemical Measurements of Test Solutions Salt Water Bioassays

Client:	Buenaventura WER B-1	
Contact:	NA	-
Test No.:	0403-1236	-

Analyst: \sqrt{n} Test Start: $\sqrt{3}/\sqrt{5}$

Test End:

3/19/04 3/21/04

Date Collected: 7/

Sample ID 75/L					pl·l (pH units))		Salinity (ppt)		Temp °C		
or Conc. 776	8.Z				24	48	0	24	48	0	24	48
ВС	7.6	8.6	7.9	8.06	8.05	(A)	30	29.8	A	14.8	15.0	(A)
4.3	7,6	9.0	3.0	8.06	7.94	7.93	30	30.8	3!3	14.4	15.0	14.5
7.1	7.7	3.9	8.0	8.16	8.23	831	30	30.5	30.7 31.2	14.8	0.24	15.1
11.9	7.7	9.0	81	8.5	7.23	8.35	30	30.9 31.2	31.3	14.8	15.0	15.2
70 33	7.7	9.0	8-1	8.17	8.23	8.36	30	31.4	31.5	14.8	15.0	15.1
75	7.7	9.0	8.0	8.18	8.24	9.35	30	31.8	31.9	14.8	150	150
		10,1	9.0	8.18	8,24	8.35	30	8.18	32.0	14.8	15.0	151

Comments:	A summate aux for water quality measurem	rents shilled orner to test
	termination termination	
	& copper added to lever brings sample	
	2 coffer of and to day to this sample	
QA Check:	4/15/05	

Brine Dilution Worksheet

Client: City of Buenaventura Analyst: JR

Sample ID: Santa Clara River Estuary B1 Test Date: 03/17/12004

Test No: 0403 - 107, 0403 - 123b Test Type: Bivalve Embryo Dev.

Salinity of Effluent 1.4
Salinity of Brine 85
Target Salinity 30
Test Dilution Volume 150

Salinity Adjustment Factor: TS - SE TS = target salinity

SB - TS SE = salinity of effluent

total brine

175.8

SB = salinity of brine

Salinity Adjustment Factor = 0.52

Concentration %	Effluent Volume (mL)	Salinity Adjustment	Brine Volume (mL)	Dilute to to: (mL)
Control	NA	NA	NA	150
6.25	9.4	0.52	4.9	150
12.5	18.8	0.52	9.8	150
25	37.5	0.52	19.5	150
50	75	0.52	39	150
66	99	0.52	51	150

 DI Volume

 Brine Control
 94
 0.55
 51
 150

Brine Control Salinity Adjustment Factor

Brine Control Calculation: TS - 0

60: mc 4/28/04

SB - TS

AMEC Earth and Environmental, Inc. San Diego Bioassay Laboratory 5550 Morehouse Drive. Suite B San Diego, CA 92121

			Bivalve La	arval Surv	ival and Develop	ment Test-Propo	rtion Normal		
Start Date:	03/19/200	4	Test ID:	0403-124k)	Sample ID:	BUENA-City of Bu	uenaventura	
End Date:	03/21/2004	4	Lab ID:	AEESD-AI	MEC Bioassay SI	Sample Type:	OTH-Other samp	le type	
Sample Date:	03/16/2004	4	Protocol;	ASTM 87		Test Species:	MG-Mytilis gallop	rovincialis	
Comments:	Sample B	-3, WER	Study, 40	9% Spiked	sample (Measu	ed Values)			
Conc-ug/L	1	2	3	4	5				
L-Lab Control	0.9100	0.8900	0.8300	0.8900	0.9200				
B-Control	0.8400	0.8800	0.8900	0.8600	0.9300				
4.3	0.9400	0.9300	0.9400	0.9100	0.8800				
7.1	0.9100	0.9200	0.9200	0.9600	0.8700				
11.9	0.9000	0.9600	0.9200	0.9300	0.9000				
19.8	0.8000	0.7900	0.7400	0.8400	0.6800				
31	0.0600	0.1700	0.1196	0.3100	0.3700				
51.2	0.0000	0.0000	0.0000	0.0000	0.0200				
		· · · · · · · · · · · · · · · · · · ·			A		4 Tailed	Number	Taka

			Tra	ansform:	Arcsin So	uare Roo	t		1-Tailed		Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
L-Lab Control	0.8880	1.0091	1.2323	1.1458	1.2840	4.313	5				56	500
B-Control	0.8800	1.0000	1.2199	1.1593	1.3030	4.456	5					
4.3	0.9200	1.0455	1.2866	1.2171	1.3233	3.525	5	-1.061	2.409	0.1233	40	500
7.1	0.9160	1.0409	1.2811	1.2019	1.3694	4.669	5	-0.954	2.409	0.1233	42	500
11.9	0.9220	1.0477	1.2909	1.2490	1.3694	3.847	5	-1.146	2.409	0.1233	39	500
*19.8	0.7700	0.8750	1.0733	0.9695	1.1593	6.780	5	3.107	2.409	0.1233	115	500
*31	0.2059	0.2340	0.4540	0.2475	0.6539	36.903	5	15.207	2.409	0.1233	390	492
*51.2	0.0040	0.0045	0.0754	0.0500	0.1419	52.262	5	22.604	2.409	0.1233	422	424

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribi	ution (p >	0.01)		0.97315		0.91		0.02033	1.90237
Bartlett's Test indicates equal var	iances (p =	= 0.03)			13.7941		16.8119			
The control means are not signific	cantly diffe	rent (p =	0.72)		0.36478		2.30601			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	11.9	19.8	15.3499		0.08823	0.09917	1.20397	0.00655	3.7E-21	6, 28

											-,
				Maxim	um Likeliho	od-Probi	t				
Parameter	Value	SE	95% Fidu	icial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	iter
Slope	8.9206	0.49268	7.95494	9.88625	0.112	1.59375	9.48773	0.81	1.40915	0.1121	3
Intercept	-7.5705	0.70582	-8.9539	-6.1871							
TSCR	0.0881	0.00639	0.07558	0.10062		1.0 -				**	
Point	Probits	ug/L	95% Fidu	icial Limits							
EC01	2.674	14.0725	12.9309	15.0781		0.9 -			//		
EC05	3.355	16.779	15.7253	17.7003		0.8 -			1		
EC10	3.718	18.4286	17.4455	19.2892		0.7 -			T		
EC15	3.964	19.6322	18.705	20.4478		_			1		
EC20	4.158	20.6447	19.7652	21.424		Response 0.6 - 0.5 - 0.4 - 0.4			- 1		
EC25	4.326	21.5548	20.7169	22.3044		5 05 -			- 1		
EC40	4.747	24.03	23.2846	24.7278		dy			- 1		
EC50	5.000	25.6539	24.9377	26.3556		2 0.4 -			- 1		
EC60	5.253	27.3876	26.6616	28.1395		0.3 -			1		
EC75	5.674	30.5326	29.6749	31.5031		-					
EC80	5.842	31.8786	30.927	32.9853		0.2 -					
EC85	6.036	33.5226	32.4336	34.8223		0.1 -			P		
EC90	6.282	35.7121	34.4103	37.3054							
EC95	6.645	39.2231	37.5288	41.3537		0.0 -	 			400	
EC99	7 326	46 7668	44 0885	50 2523		•	1	10		100	

Dose ug/L

EC99

7.326 46.7668 44.0885 50.2523

Start Date:	03/19/2004			0403-124	ival and Developr	Sample ID:	BUENA-City of Buenaventura	
End Date:	03/21/2004	4	Lab ID:	AEESD-A	MEC Bioassay SD	•	OTH-Other sample type	
Sample Date:	03/16/2004	4	Protocol:	ASTM 87	·	Test Species:	MG-Mytilis galloprovincialis	
Comments:	Sample B	-3, WER	Study, 4	9% Spiked	l sample	•	, , ,	
Conc-ug/L	1	2	3	4	5			
L-Lab Control	0.9100	0.8900	0.8300	0.8900	0.9200			
B-Control	0.8400	0.8800	0.8900	0.8600	0.9300			
4.3	0.9400	0.9300	0.9400	0.9100	0.8800			
7.1	0.9100	0.9200	0.9200	0.9600	0.8700			
11.9	0.9000	0.9600	0.9200	0.9300	0.9000			
20	0.8000	0.7900	0.7400	0.8400	0.6800			
33	0.0600	0.1700	0.1196	0.3100	0.3700			
55	0.0000	0.0000	0.0000	0.0000	0.0200			

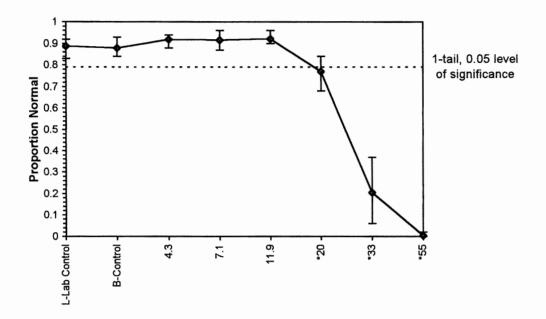
		_	Tra	ansform:	Arcsin Sc	quare Roo	t		1-Tailed		Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
L-Lab Control	0.8880	1.0091	1.2323	1.1458	1.2840	4.313	5					
B-Control	0.8800	1.0000	1.2199	1.1593	1.3030	4.456	5				60	500
4.3	0.9200	1.0455	1.2866	1.2171	1.3233	3.525	5	-1.301	2.409	0.1234	40	500
7.1	0.9160	1.0409	1.2811	1.2019	1.3694	4.669	5	-1.195	2.409	0.1234	42	500
11.9	0.9220	1.0477	1.2909	1.2490	1.3694	3.847	5	-1.386	2.409	0.1234	39	500
*20	0.7700	0.8750	1.0733	0.9695	1.1593	6.780	5	2.860	2.409	0.1234	115	500
*33	0.2059	0.2340	0.4540	0.2475	0.6539	36.903	5	14.943	2.409	0.1234	390	492
*55	0.0040	0.0045	0.0754	0.0500	0.1419	52.262	5	22.330	2.409	0.1234	422	424

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distrib	ution (p >	0.01)		0.97034		0.91		0.08214	1.87071
Bartlett's Test indicates equal vari	iances (p =	= 0.03)			13.7022		16.8119			
The control means are not signific	cantly diffe	rent (p =	0.72)		0.36478		2.30601			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	11.9	20	15.4272		0.09047	0.10259	1.19837	0.00657	4.1E-21	6, 28

				Maxir	num Likeliho	od-Probit	t				
Parameter	Value	SE	95% Fidu	cial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	lte
Slope	8.17266	0.44134	7.30763	9.0377	0.12	2.07565	9.48773	0.72	1.42694	0.12236	3
Intercept	-6.6619	0.64329	-7.9228	-5.4011							
TSCR	0.09026	0.00648	0.07756	0.10295		1.0 -					
Point	Probits	ug/L	95% Fidu	cial Limits					1		
EC01	2.674	13.877	12.6613	14.9603		0.9					
EC05	3.355	16.8144	15.6666	17.8282		0.8 -					
EC10	3.718	18.6267	17.5413	19.5855		0.7			ľ		
EC15	3.964	19.9585	18.9248	20.8752		0.7			- 1		
EC20	4.158	21.0846	20.0961	21.9667		ു 0.6 -					
EC25	4.326	22.1011	21.1527	22.9548		Response 9.0 0.4 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1				ł	
EC40	4.747	24.8854	24.0282	25.6891		gs					
EC50	5.000	26.7267	25.8987	27.5354		₩ 0.4 -			I		
EC60	5.253	28.7041	27.8657	29.5666		0.3			-	l	
EC75	5.674	32.3202	31.3389	33.4208		-			1		
EC80	5.842	33.8785	32.7927	35.1307		0.2 -					
EC85	6.036	35.79	34.549	37.2599		0.1 -			<i>P</i>		
EC90	6.282	38.349	36.8642	40.1548							
EC95	6.645	42.4822	40.5401	44.9129		0.0	7	40	1 1	400	
EC99	7.326	51.4748	48.3601	55.5178		1		10 Dose ւ		100	

Reviewed by: 4 KIRS

Bivalve Larval Survival and Development Test-Proportion Normal


Start Date: 03/19/2004 Test ID: 0403-124 Sample ID: BUENA-City of Buenaventura

End Date: 03/21/2004 Lab ID: AEESD-AMEC Bioassay SD Sample Type: OTH-Other sample type

Sample Date: 03/16/2004 Protocol: ASTM 87 Test Species: MG-Mytilis galloprovincialis

Comments: Sample B-3, WER Study, 100% Spiked sample

Dose-Response Plot

Reviewed by:

Test: BV-Bivalve Larval Survival and Development Test

Species: MG-Mytilis galloprovincialis Sample ID: BUENA-City of Buenaventura

Start Date: 03/19/2004 End Date: 03/21/2004

Test ID: 0403-124 Protocol: ASTM 87

Sample Type: OTH-Other sample type

Lab ID: AEESD-AMEC Bioassay SD

Start	Date.	03/19	/2004 I	End Date: U3/2			SD-AMEC BIG	passay SD
				Initial	Final	Total	Number	
Pos	ID	Rep	Group	Density	Density	Counted	Normal	Notes
86	1	1	L-Lab Control			100	91	
90	2	2	L-Lab Control			100	89	
113	3	3	L-Lab Control			100	83	
107	4	4	L-Lab Control			100	89	
117	5	5	L-Lab Control			100	92	
93	6	1	B-Control			100	84	
100	7	2	B-Control			100	88	
119	8	3	B-Control			100	89	
103	9	4	B-Control			100	86	
112	10	5	B-Control			100	93	
92	11	1	4.3			100	94	
87	12	2	4.3			100	93	
108	13	3	4.3			100	94	
116	14	4	4.3			100	91	
89	15	5	4.3			100	88	
111	16	1	7.1			100	91	
96	17	2	7.1			100	92	
115	18	3	7.1			100	92	
114	19	4	7.1			100	96	
99	20	5	7.1			100	87	
105	21	1	11.9			100	90	
88	22	2	11.9			100	96	
106	23	3	11.9			100	92	
81	24	4	11.9			100	93	
118	25	5	11.9			100	90	
109	26	1	20			100	80	
84	27	2	20			100	79	
83	28	3	20			100	74	
94	29	4	20			100	84	
120	30	5	20			100	68	
101	31	1	33			100	6	
91	32	2	33			100	17	
97	33	3	33			92	11	
85	34	4	33			100	31	
102	35	5	33			100	37	
110	36	1	55			94	0	
82	37	2	55			38	0	
104	38	3	55			92	0	
98	39	4	55			100	0	

Comments: Sample B-3, WER Study, 100% Spiked sample

Reviewed by

Test: BV-Bivalve Larval Survival and Development Test Test ID: 0403-124 Species: MG-Mytilis galloprovincialis Protocol: ASTM 87 Sample ID: BUENA-City of Buenaventura Sample Type: OTH-Other sample type Start Date: 03/17/2004 End Date: 03/19/2004 Lab ID: AEESD-AMEC Bioassay SD Total Initial Final Number Pos ID Rep Group Density Density Counted Normal Notes 93 81 160 82 38 83 74 100 MT 84 100 79 MT 85 31 MT 100 +7.91 86 100, Ja MT RG 87 88 RG 100 89 190 90 3 illo 91 MT 00 99 SI 92 iou 93 100 94 NT 190 95 1120 96 (1) 97 92 MT 11 31 98 100 99 100 30 1D) 101 00 MT 102 100 37 MT 103 86 W $\geq \mathcal{U}$ 104 Si105 106 107 108 109 100 MI 110 \circ 111 112 113 114 115 116 117 118 119 120

Comments: Sample B-3, WER Study, 100% Spiked sample

Reviewed by

00

68

MT

AMEC Earth & Environmental Bioassay Laboratory 5550 Morehouse Dr. Suite B San Diego, CA 92121

Physical and Chemical Measurements of Test Solutions Salt Water Bioassays

Contact:

Contact:

Test No.:

Denaventura WER B-3

NA

(403-124h)

Analyst: JR
Test Start: 3//5/60

Test End:

3/19/04

Date Collected:

3/19/04

Samola ID .41	DO			pl·l			Salinity			Temp		
Sample ID As/L	Section Actions	(mg/L)	12000000000000	(pI-I units)			(ppt)			°C		
or Conc.	0	24	48	0	24	48	0	24	48	0	24	48
LC	8.2	8.6	(力)	8.06	8.05	(D)	30	29.8	\bigcirc	14.8	15.0	(A)
RC	7.6	8.9	7.9	8.06	7.97	7.42	30	31.5	31.6	14.8	14.7	
4.3	7.5	9.0	9.1	8.22	8.29	8.35	30	30.7	31.0	14.8		14.4
7.1	7.6	8.8	8.0	8.22	8,30	8.36	30		3(.1	14.8	14.7	14.8
11.9	7.6	જ,બ	8.1	8.72	8.30	8.37	30	30.9			14.6	14.7
70	7.6	9.0	9.1	8.23			30	311	31.3	14.8	14.7	14.7
IJ	7.7	9.0	81	8.22	8.30	9.35		31.3	314	14.8	14.7	14.7
75	7.7		81		6.29	9.29	30	31.5	31. Y	14.8	14.6	14.7
70	,	9.0	31	8.22	529	8.31	30	8.18.	31.9	14.8	14.7	147

Comments:	A surrogate cup for Termination	or water quality measurements	spilled	prior to test
	101111110011011	to 15% brined sample	0	
QA Check:	A 4 10 105	······································	,	

Brine Dilution Worksheet

Analyst: TR City of Buenaventura Client:

Test Date: 03/14/12004 Sample ID: Santa Clara River Estuary B3

0403-108,0403-1240 Test No: Test Type: Bivalve Embryo Dev.

Salinity of Effluent 12.1 Salinity of Brine 85 30 **Target Salinity Test Dilution Volume** 150

Salinity Adjustment Factor: TS - SE TS = target salinity

> SB - TS SE = salinity of effluent

SB = salinity of brine

Salinity Adjustment Factor = 0.33

Concentration %	Effluent Volume (mL)	Salinity Adjustment	Brine Volume (mL)	Dilute to to: (mL)
Control	NA	NA	NA	150
6.25	12.5 94	0.33	4.1	150
12.5	18.8	0.33	6.1	150
25	37.5	0.33	12.2	150
50	75	0.33	24	150
75	113	0.33	37	150

DI Volume

Brine Control 68 0.55 37 150	Brine Control	37 150

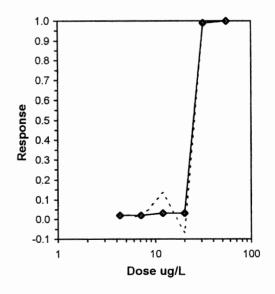
total brine 120.4

Brine Control Salinity Adjustment Factor

Brine Control Calculation: SB - TS

60.mc 4/28/09

AMEC Earth and Environmental, Inc. San Diego Bioassay Laboratory 5550 Morehouse Drive. Suite B San Diego, CA 92121

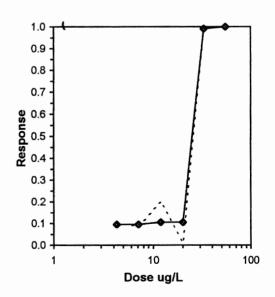

		Е	Bivalve La	rval Survi	val and D	evelo	pment Tes	t-Prop	ortion Normal
Start Date:	03/19/2004	1	Test ID:	0403-125b)		Sample	ID:	BUENA-City of Buenaventura
End Date:	03/21/2004	1	Lab ID:	AEESD-AI	MEC Bioa	ssay S	D Sample	Туре:	OTH-Other sample type
Sample Date:	03/16/2004	1	Protocol:	ASTM 87			Test Spe	ecies:	MG-Mytilis galloprovincialis
Comments:	Sample C	-3, WER	Study, 18	6 % Spiked	sample (Measu	red Values)	
Conc-ug/L	1	2	3	4	5				
L-Lab Control	0.8600	0.8532	-0.7723	0.7685	<u> </u>	have	W B-30	she to	1055 of replicati
B-Control	0.8900	0.9300	0.8400	0.8800	0.8600				· · · · · · · · · · · · · · · · · · ·
4.3	0.7228	0.9020	0.8020	0.8265	0.6990				
7.1	0.8942	0.6923	0.8431	0.8173	0.7647				
11.9	0.8158	0.5000	0.6566	0.8431	0.6907				
20.1	0.8800	0.8400	0.8700	0.9000	0.8500				
31.6	0.0233	0.0200	0.0000	0.0000	0.0000				
55	0.0000	0.0000	0.0000	0.0000	0.0000				

			Transform: Arcsin Square Root					Rank	1-Tailed	Number	Total
Conc-ug/L	Mean	N-Mean -	Mean	Min	Max	CV%	N	Sum	Critical	Resp	Number
L-Lab Control	-0.8135	- 0.9244	1.1268	1.0689	1.1873	5.719	4			78	418
B-Control	0.8800	1.0000	1.2199	1.1593	1.3030	4.456	5				
4.3	0.7905	0.8982	1.1019	0.9901	1.2523	9.525	5	23.00	15.00	106	505
7.1	0.8023	0.9117	1.1159	0.9828	1.2396	8.748	5	23.00	15.00	102	516
11.9	0.7012	0.7969	1.0004	0.7854	1.1636	15.194	5	19.00	15.00	151	512
20.1	0.8680	0.9864	1.2001	1.1593	1.2490	2.970	5	31.00	15.00	66	500
*31.6	0.0087	0.0098	0.0893	0.0500	0.1531	59.708	5	15.00	15.00	477	481
*55	0.0000	0.0000	0.0710	0.0594	0.0982	22.154	5	15.00	15.00	272	272

Auxiliary Tests	Statistic	Critical	Skew Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.97235	0.908	-0.1646 0.94659
Bartlett's Test indicates unequal variances (p = 6.51E-03)	17.8919	16.8119	
The control means are significantly different (p = 0.05)	2.35662	2.36462	
Humathasia Toot (4 tail 0.05) NOEC LOEC ChV	TU		

Hypothesis Test (1-tail, 0.05)NOECLOECChVTUWilcoxon Rank Sum Test20.131.625.2024

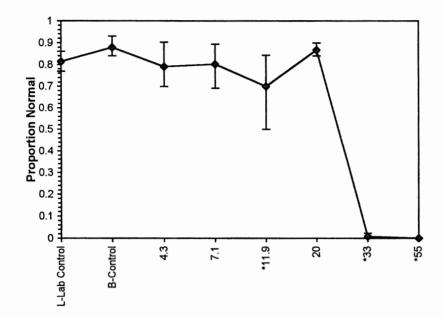
Trim Level	EC50	95%	CL	
0.0%				
5.0%	25.067	24.957	25.178	
10.0%	25.067	24.957	25.178	
20.0%	25.067	24.957	25.178	
Auto-2.1%	24.825	24.517	25.138	


		E	Bivalve La	rval Surv	ival and Deve	lopment Test-Proport	ion Normal
Start Date:	03/19/2004	1	Test ID:	0403-125		Sample ID:	BUENA-City of Buenaventura
End Date:	03/21/2004	1	Lab ID:	AEESD-A	MEC Bioassay	SD Sample Type:	OTH-Other sample type
Sample Date:			Protocol;			Test Species:	MG-Mytilis galloprovincialis
Comments:	Sample C	-3, WER	Study, 40	€ % Spiked	d sample		
Conc-ug/L	1	2	3	4	5		
L-Lab Control	0.8600	0.8532	0.7723	0.7685	- shave	w B-3 due to	loss of replicate
B-Control	0.8900	0.9300	0.8400	0.8800	0.8600	•	
4.3	0.7228	0.9020	0.8020	0.8265	0.6990		
7.1	0.8942	0.6923	0.8431	0.8173	0.7647		
11.9	0.8158	0.5000	0.6566	0.8431	0.6907		
20	0.8800	0.8400	0.8700	0.9000	0.8500		
33	0.0233	0.0200	0.0000	0.0000	0.0000		
55	0.0000	0.0000	0.0000	0.0000	0.0000		
* - Replicate m	nissing, exc	luded fro	m analysi	S			

			Transform: Arcsin Square Root					Rank	1-Tailed	Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Resp	Number
L-Lab Control	0.8135	0.9244	1.1268	1.0689	1.1873	5.719	4				
B-Control	0.8800	1.0000	1.2199	1.1593	1.3030	4.456	5			60	500
4.3	0.7905	0.8982	1.1019	0.9901	1.2523	9.525	5	19.00	16.00	106	505
7.1	0.8023	0.9117	1.1159	0.9828	1.2396	8.748	5	20.00	16.00	102	516
*11.9	0.7012	0.7969	1.0004	0.7854	1.1636	15.194	5	16.00	16.00	151	512
20	0.8680	0.9864	1.2001	1.1593	1.2490	2.970	5	25.00	16.00	66	500
*33	0.0087	0.0098	0.0893	0.0500	0.1531	59.708	5	15.00	16.00	477	481
*55	0.0000	0.0000	0.0710	0.0594	0.0982	22.154	5	15.00	16.00	272	272

Auxiliary Tests	Statistic	Critical	Skew k	Curt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.96915	0.91	-0.1465 1.1	11057
Bartlett's Test indicates unequal variances (p = 4.61E-03)	18.7478	16.8119		
The control means are significantly different (p = 0.05)	2.35662	2.36462		
Hypothesis Test (1-tail, 0.05) NOEC LOEC ChV	TU			

Steel's Many-One Rank Test 20 33 25.6905


				Trimmed Spearman-Karber
Trim Level	EC50	95%	CL	
0.0%				
5.0%				
10.0%	24.868	24.280	25.470	1.0 —
20.0%	24.996	24.774	25.221	4
Auto-9 5%	24 735	24 101	25 386	0.9

Reviewed by

Bivalve Larval Survival and Development Test-Proportion Normal **BUENA-City of Buenaventura** Start Date: 03/19/2004 Test ID: 0403-125 Sample ID: OTH-Other sample type End Date: 03/21/2004 Lab ID: AEESD-AMEC Bioassay SD Sample Type: Sample Date: 03/16/2004 Protocol: ASTM 87 **Test Species:** MG-Mytilis galloprovincialis Sample C-3, WER Study, 496% Spiked sample Comments:

Dose-Response Plot

Page 2

ToxCalc v5.0

Test: BV-Bivalve Larval Survival and Development Test

Species: MG-Mytilis galloprovincialis

Start Date: 03/19/2004

Sample ID: BUENA-City of Buenaventura

End Date: 03/21/2004

Test ID: 0403-125

Protocol: ASTM 87

Sample Type: OTH-Other sample type

Lab ID: AEESD-AMEC Bioassay SD

Das	Pos ID		0	Initial	Final	Total	Number	Nata
Pos		Rep	Group	Density	Density	Counted	Normal	Notes
\vdash	1	1	L-Lab Control			400	00	
	2	2	L-Lab Control			100	86	
<u> </u>	3	3	L-Lab Control			109	93	
 	4	4	L-Lab Control			101	78	
\vdash	5	5	L-Lab Control			108	83	
\vdash	6	1	B-Control			100	89	
	7	2	B-Control			100	93	
	8	3	B-Control			100	84	
	9	4	B-Control			100	88	
	10	5	B-Control			100	86	
	11	1	4.3			101	73	
	12	2	4			102	92	
	13	3	4.3			101	81	
	14	4	4.3			98	81	
	15	5	4.3			103	72	
	16	1	7.1			104	93	
	17	2	7.1			104	72	
	18	3	7.1			102	86	
	19	4	7.1			104	85	
	20	5	7.1			102	78	
	21	1	12			114	93	
	22	2	11.9			100	50	
	23	3	11.9			99	65	
	24	4	11.9			102	86	
	25	5	11.9			97	67	
	26	1	20			100	88	
	27	2	20			100	84	
	28	3	20			100	87	
	29	4	20			100	90	
	30	5	20			100	85	
	31	1	33			86	2	
	32	2	33			100	2	
	33	3	33			95	0	
	34	4	33			100	0	
	35	5	33			100	0	
	36	1	55			51	0	
	37	2	55			61	0	
	38	3	55			26	0	
	39	4	55			71	0	
	40	5	55			63	0	

Comments: Sample C-3, WER Study 100% Spiked sample

Reviewed by:

Test: BV-Bivalve Larval Survival and Development Test Test ID: 0403-125 Species: MG-Mytilis galloprovincialis Protocol: ASTM 87 Sample ID: BUENA-City of Buenaventura Sample Type: OTH-Other sample type Start Date: 03/17/2004 End Date: 03/49/2004 Lab ID: AEESD-AMEC Bioassay SD Initial Final Total Number Pos ID Rep Group Density Density Counted Normal Notes -400 OBI RS W SD D SLR SD O O RS DD S10 -128 -86 023 83+028 86 31 728 03+000 RS Q.S RS.

Comments: Sample C-7, WER Study, 198% Spiked sample

Reviewed by: CANA

B

ØS

<u>50</u>

AMEC Earth & Environmental Bioassay Laboratory 5550 Morchouse Dr. Suite B San Diego, CA 92121

Physical and Chemical Measurements of Test Solutions Salt Water Bioassays

Client:

Buenaventura WER C-3

JI

Contact:

NA

Analyst: Test Start:

3/19/04

Test No.:

0403-1256

Test End:

121/04

Date Collected:

3/19/04

S 1 ID 1		DO			pl·l			Salinity			Temp	
Sample ID MS/L	(0.000000000000000000000000000000000000	(mg/L)	 		(pH units))		(ppt)			°C	
or Conc. 7	0	24	48	0	24	48	0	24	48	0	24	48
LC	8.2	8.6	(A)	8.06	8.05	(A)	30	298	A	14.F	15.0	(A)
BC	7,6	8.9	7.9	8.06	7,97	792	30	31.5	31.6	14.8	14.7	14.4
4,3	725	8.9	7.9	8,30	8.41	8.41	30	31.0	31,1	14.8		
7.1	7.6	8.9	30	8.29	8,40	8.44C+69e	70		31.7	14.8	<u>H.7</u>	150
11.9	7.7	9.0	81	8.29	8,39	8.45	70	3/13		14.8	14.6	150
70	7.7	8.9	8.1	8,29	8,39	9.46	30	31.4	31.4		14.6	15:1
33	7.6	89	6.1	8.29	8.39	8.48	30	31.5	31.4	14.8	14.6	15.1
70	7,5	9,0	8.1	8.42				31.8	31.7	14.8	147	15.0
			0,1	6.12	8.39	8.41	30	32.2	32.3	14.8	14.6	150

Comments:

A sumporte cup for water grality measurements spilled prior to test

* copper added to 661 brined sample

QA Check:

415/05

Brine Dilution Worksheet

Client: City of Buenaventura Analyst:

Sample ID: Santa Clara River Estuary C3 Test Date: 03/47/12004

soft

Test No: 0403-109, 0403-125b Test Type: Bivalve Embryo Dev.

Salinity of Effluent 1.7
Salinity of Brine 85
Target Salinity 30
Test Dilution Volume 150

Salinity Adjustment Factor: TS - SE TS = target salinity
SB - TS SE = salinity of effluent

SB = salinity of brine

Salinity Adjustment Factor = 0.51

Concentration %	Effluent Volume (mL)	Salinity Adjustment	Brine Volume (mL)	Dilute to to: (mL)
Control	NA	NA	NA	150
6.25	9.4	0.51	4.8	150
12.5	18.8	0.51	9.6	150
25	37.5	0.51	19.3	150
50	75	0.51	39	150
66	99	0.51	51	150
	_			

 DI Volume

 Brine Control
 93
 0.55
 51
 150

total brine 174.3

Brine Control Salinity Adjustment Factor

Brine Control Calculation: TS - 0
SR - TS

QC:MC 4/28/04

AMEC Earth and Environmental, Inc. San Diego Bioassay Laboratory 5550 Morehouse Drive. Suite B San Diego, CA 92121 APPENDIX C
REFERENCE TOXICANT DATA

					ival and Developr	nent Test-Propo	
Start Date:	03/19/2004	4	Test ID:	0403-126	D	Sample ID:	BUENA-City of Buenaventura
End Date:	03/21/2004	4	Lab ID:	AEESD-A	MEC Bioassay SD	Sample Type:	OTH-Other sample type
Sample Date:	03/16/2004	4	Protocol:	ASTM 87		Test Species:	MG-Mytilis galloprovincialis
Comments:	Polished 8	Seawate	r Reftox -	Cu WER (I	Measured Values)	·	
Conc-ug/L	1	2	3	4	5		
L-Lab Control	0.9100	0.9000	0.8600	0.8800	0.9300		
1.8	0.8800	0.8500	0.9200	0.9300	0.8514		
3	0.8131	0.7941	0.9000	0.9300	0.8137		
5.1	0.9000	0.8900	0.9200	0.8900	0.8073		
9.1	0.8900	0.8242	0.7872	0.9500	0.8900		
13.7	0.3100	0.5100	0.8200	0.6300	0.3300		
22.5	0.0000	0.0000	0.0000	0.0000	0.0000		
39	0.0000	0.0000	0.0000	0.0000	0.0000		

		_	Transform: Arcsin Square Root						1-Tailed	Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Resp	Number
L-Lab Control	0.8960	1.0000	1.2445	1.1873	1.3030	3.580	5			52	500
1.8	0.8863	0.9891	1.2304	1.1731	1.3030	4.924	5	25.00	16.00	53	474
3	0.8502	0.9489	1.1800	1.0998	1.3030	7.648	5	22.00	16.00	77	511
5.1	0.8815	0.9838	1.2230	1.1164	1.2840	5.165	5	25.50	16.00	61	509
9.1	0.8683	0.9691	1.2080	1.0914	1.3453	8.127	5	24.00	16.00	63	485
*13.7	0.5200	0.5804	0.8095	0.5905	1.1326	27.840	5	15.00	16.00	240	500
*22.5	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	5	15.00	16.00	500	500
*39	0.0000	0.0000	0.0506	0.0500	0.0530	2.654	5	15.00	16.00	489	489

Auxiliary Tests	Statistic	Critical	Skew Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)	0.91336	0.919	0.67619 4.17279
Consolition of continuous assessed by a self-time of			

Equality of variance cannot be confirmed

Hypothesis Test (1-tail, 0.05) NOEC

Steel's Many-One Rank Test 9.1 NOEC ChV LOEC TU

6.036 15.2464

6.282 15.5638

6.645 16.0464

7.326 16.9925

					Maximum	Likeliho	od-Probit					
Parameter	Value	SE	95% Fidu	cial Limi	ts	Control	Chi-Sq	Critical	P-value	Mu	Sigma	Iter
Slope	27.3927	443.08	-841.04	895.83		0.104	4.34644	11.0705	0.5	1.14533	0.03651	35
Intercept	-26.374	503.658	-1013.5	960.797								
TSCR	0.12344	0.00661	0.11049	0.13639			1.0 -			_, • •	·	
Point	Probits	ug/L	95% Fidu	cial Limi	ts		,,1			1		
EC01	2.674	11.4922			•		0.9			1		
EC05	3.355	12.1698					0.8 -			1		
EC10	3.718	12.5472					0.7			1		
EC15	3.964	12.8084					4					
EC20	4.158	13.0199					Response 0.5 0.4 -			1		
EC25	4.326	13.2041					5 0.5			1		
EC40	4.747	13.6799					g Si			1	j	
EC50	5.000	13.9743					2 0.4			Ť		
EC60	5.253	14.2751					0.3			1		
EC75	5.674	14.7895					4					
EC80	5.842	14.9987					0.2			1		

100

EC85

EC90

EC95

EC99

0.0

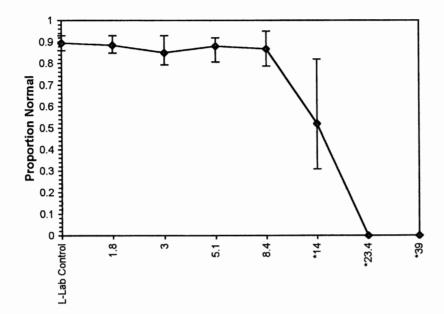
10

Dose ug/L

			Bivalve La	arval Survi	val and Developr	nent Test-Propo	rtion Normal
Start Date:	03/19/2004		Test ID:	0403-126		Sample ID:	BUENA-City of Buenaventura
End Date:	03/21/2004	ļ	Lab ID:	AEESD-A	MEC Bioassay SD	Sample Type:	OTH-Other sample type
Sample Date:	03/16/2004	ļ	Protocol:	ASTM 87		Test Species:	MG-Mytilis galloprovincialis
Comments:	Polished S	Seawate	r Reftox - (Cu WER		•	
Conc-ug/L	1	2	3	4	5		
L-Lab Control	0.9100	0.9000	0.8600	0.8800	0.9300		
1.8	0.8800	0.8500	0.9200	0.9300	0.8514		
3	0.8131	0.7941	0.9000	0.9300	0.8137		
5.1	0.9000	0.8900	0.9200	0.8900	0.8073		
8.4	0.8900	0.8242	0.7872	0.9500	0.8900		
14	0.3100	0.5100	0.8200	0.6300	0.3300		
23.4	0.0000	0.0000	0.0000	0.0000	0.0000		
39	0.0000	0.0000	0.0000	0.0000	0.0000		

		_	Tra	ansform:	Arcsin Sc	quare Roo	Rank	1-Tailed	Number	Total	
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Resp	Number
L-Lab Control	0.8960	1.0000	1.2445	1.1873	1.3030	3.580	5			52	500
1.8	0.8863	0.9891	1.2304	1.1731	1.3030	4.924	5	25.00	16.00	53	474
3	0.8502	0.9489	1.1800	1.0998	1.3030	7.648	5	22.00	16.00	77	511
5.1	0.8815	0.9838	1.2230	1.1164	1.2840	5.165	5	25.50	16.00	61	509
8.4	0.8683	0.9691	1.2080	1.0914	1.3453	8.127	5	24.00	16.00	63	485
*14	0.5200	0.5804	0.8095	0.5905	1.1326	27.840	5	15.00	16.00	240	500
*23.4	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	5	15.00	16.00	500	500
*39	0.0000	0.0000	0.0506	0.0500	0.0530	2.654	5	15.00	16.00	489	489

Auxiliary Tests	Statistic	Critical	Skew Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)	0.91336	0.919	0.67619 4.17279
Equality of variance cannot be confirmed			


Equality of variance cannot be co	mmea				
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Steel's Many-One Rank Test	8.4	14	10.8444		

Maximum Likelihood-Probit												
Parameter	Value	SE	95% Fiducial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter		
Slope	37.1518	1301233	-3E+06 2550455	0.104	3.02859	11.0705	0.7	1.15261	0.02692	49		
Intercept	-37.821	1491380	-3E+06 2923067									
TSCR	0.12618	0.00742	0.11165 0.14072		1.0 -			-, • •				
Point	Probits	ug/L	95% Fiducial Limits					1				
EC01	2.674	12.3024			0.9			1				
EC05	3.355	12.8331			0.8 -							
EC10	3.718	13.1253			0.7							
EC15	3.964	13.3263			4							
EC20	4.158	13.4881			Sesponse - 0.5 - 4.0 - 4.0			1				
EC25	4.326	13.6286			5 05]							
EC40	4.747	13.989			d o.o.			1				
EC50	5.000	14.2104			2 0.4 -			1				
EC60	5.253	14.4353			0.3			1				
EC75	5.674	14.817			4							
EC80	5.842	14.9713			0.2			1				
EC85	6.036	15.1532			0.1							
EC90	6.282	15.3851			4	•	A •	1				
EC95	6.645	15.7355			0.0 -		- 7	· · · · ·				
EC99	7.326	16.4143			1		10 Dose ւ		100			

Reviewed by aff

Bivalve Larval Survival and Development Test-Proportion Normal Sample ID: **BUENA-City of Buenaventura** Start Date: 03/19/2004 Test ID: 0403-126 OTH-Other sample type Lab ID: AEESD-AMEC Bioassay SD Sample Type: End Date: 03/21/2004 **Test Species:** MG-Mytilis galloprovincialis Sample Date: 03/16/2004 Protocol: ASTM 87 Comments: Polished Seawater Reftox - Cu WER

Dose-Response Plot

Page 2

ToxCalc v5.0

Test: BV-Bivalve Larval Survival and Development Test

Species: MG-Mytilis galloprovincialis

Sample ID: BUENA-City of Buenaventura
Start Date: 03/19/2004 End Date: 03/21/2004

Test ID: 0403-126 Protocol: ASTM 87

Sample Type: OTH-Other sample type

Lab ID: AEESD-AMEC Bioassay SD

	Duto.	00,10	72004	Ind Date, 00/2		LUD ID. ALL	SD-AIVILO BIO	assay OD
		_	_	Initial	Final	Total	Number	
os	ID	Rep	Group	Density	Density	Counted	Normal	Notes
_	1	1	L-Lab Control			100	91	
_	2	2	L-Lab Control			100	90	
	3	3	L-Lab Control			100	86	
_	4	4	L-Lab Control			100	88	
_	5	5	L-Lab Control			100	93	
_	6	1	1.8			100	88	
	7	2	1.8			100	85	
	8	3	1.8			100	92	
_	9	4	1.8			100	93	
	10	5	1.8			74	63	
	11	1	3			107	87	
	12	2	3			102	81	
	13	3	3			100	90	
	14	4	3			100	93	
	15	5	3			102	83	
	16	1	5			100	90	
	17	2	5			100	89	
	18	З	5			100	92	
	19	4	5			100	89	
	20	5	5			109	88	
	21	1	8.4			100	89	
	22	2	8.4			91	75	
	23	З	8.4			94	74	
	24	4	8.4			100	95	
	25	5	8.4			100	89	
	26	1	14			100	31	
	27	2	14			100	51	
	28	3	14			100	82	
	29	4	14			100	63	
	30	5	14			100	33	
	31	1	23			100	0	
	32	2	23			100	0	
	33	3	23			100	0	
	34	4	23			100	0	
	35	5	23			100	0	
	36	1	39			100	0	
	37	2	39			100	0	
	38	3	39			89	0	
	39	4	39			100	0	
\neg	40		39			100	0	

Comments: Polished Seawater Reftox - Cu WER

Reviewed by:

Test: BV-Bivalve Larval Survival and Development Test

Species: MG-Mytilis galloprovincialis

Sample ID: BUENA-City of Buenaventura
Start Date: 03/17/2004 End Date: 03/19/2004

Test ID: 0403-126

Protocol: ASTM 87

Sample Type: OTH-Other sample type

Lab ID: AEESD-AMEC Bioassay SD

Pos 161	ID	Rep	0	Initial	Final	Total	Number	
	ID I	Pani					1 ., .	
1 161 1		IXED	Group	Density	Density	Counted	Normal	Notes
						100	63	MT
162				-		100	89	SH
163						100	0	SH
164						100	0	6H
165						l∞	90	SH
166						100	0	MT
167						89	0	57)
168						100	88	
169							93	
170							92	
171							95	
172							90	
173							91	
174							86	
175							92	
176							92	
177							8	
178						V	23	V
179						100	0	MT
180						1.000	0 89 85	2)
181						100	85	27/
182						100	51	MT
183						100	0	MT
184						100	90 93	55
185						(10)	93	22
186						100	82	MT
187						100	88	MT
188						100	88	20
189						100	93	SS.
190						100		Si)
191						91	15	28
192						102	83	18
193						102	81	23
194						74	63	28
195						100	33	TM
196						100	31	Mt
197						94	74	re
198						109	88	RS
199						100	0	MT
1 100 1						107	27	BS

Comments: Polished Seawater Reftox

PSW

Reviewed by:

AMEC Earth & Environmental Bioassay Laboratory 5550 Morchouse Dr. Suite B San Diego, CA 92121 Physical and Chemical Measurements of Test Solutions Salt Water Bioassays

 Client:
 Trest Start:
 JR

 Contact:
 NA
 Test Start:
 3/19/04

 Test No.:
 0403-1266
 Test End:
 3/21/04

 Date Collected:
 443/14/04-319/04

		DO			рН			Salinity			Temp	
Sample ID. 45/L or Conc.	(mg/L)				(pH units)			(ppt)			°C	
or Conc.	0	24	48	0	24	48	0	24	48	0	24	48
LC	7.8	₹ (A)	(A)	7.88	809	Θ	30	29.8	A	14.8	(A) k:0	
1.8	7.8	જ.&	6,2	7.89	7.99	3.02	30	3 0%	30.7	14.8	150	15.1
3.0	7.8	8.9	82	7.50	8.00	8.02	30	30.9	30.9	14,8	15.0	15.1
U ,0	7.8	٥.٥	8.1	7.91	7.49	8.02	JO	30.9	30.4	14.8	15.0	15.2
8.4	7.8	8,9	8.1	7,52	7,99	803	30	30.8	30.9	14.8	15.0	15.0
14	7.8	9.0	8,1	7.92	7.99	8.04	3 (3U.9	30.9	14.8	150	15.0
ZJ	7.8	9.0	8.2	7.92	7,49	3.04	30	36.7	30.7	14.8	150	15.0
35	7.8	2.0	32	7.93	7.99	8.04	30	30.7	30.7	14.8	75.0	15,0
						1						

Comments:	A surrogate cup for water	guality measurements	spilled	prior to	
	post termination	0	1		
OA Check:	4/10/06				

NATURAL SEAWATER

Start Date:	03/19/2004	_		040319mg		nent Test-Propo Sample ID:	Ref Toxicant
End Date:	03/21/2004		Lab ID:	AEESD-A	MEC Bioassay SD	Sample Type:	Copper chloride
Sample Date:			Protocol:	ASTM 93	•	Test Species:	MG-Mytilis galloprovincialis
Comments:							
Conc-ug/L	1	2	3	4	5		
L-Lab Control	0.9011	0.9011	0.9200	0.8600	0.9400		
2.5	0.9400	0.9200	0.9300	0.9000	0.9300		
5	0.8900	0.9400	0.9200	0.9100	0.8900		
10	0.7100	0.5200	0.6735	0.6100	0.6100		
20	0.0000	0.0000	0.0000	0.0000	0.0000		
40	0.0000	0.0227	0.0000	0.0000	0.0000		

			Tra	ansform:	Arcsin Sc	uare Roo	t	Rank	1-Tailed	Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Resp	Number
L-Lab Control	0.9044	1.0000	1.2593	1.1873	1.3233	3.978	5			46	482
2.5	0.9240	1.0216	1.2925	1.2490	1.3233	2.165	5	32.00	16.00	38	500
5	0.9100	1.0061	1.2678	1.2327	1.3233	3.006	5	28.00	16.00	45	500
*10	0.6247	0.6907	0.9125	0.8054	1.0021	8.225	5	15.00	16.00	187	498
*20	0.0000	0.0000	0.0525	0.0500	0.0574	6.609	5	15.00	16.00	459	459
*40	0.0045	0.0050	0.0795	0.0522	0.1513	51.731	5	15.00	16.00	366	368

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distrib	ution (p >	0.01)		0.95985	0.9	-0.0653	1.11206
Bartlett's Test indicates unequal v	ariances (p = 1.63E	-03)		19.3834	15.0863		
Hypothesis Test (1-tail, 0.05)	LOEC	ChV	TU					
Steel's Many-One Rank Test	5	10	7.07107					

			Ma	ximun	Likeliho	od-Probi	•				
Parameter	Value	SE	95% Fiducial Limits				Critical	P-value	Mu	Sigma	lter
Slope	8.37421	23.4348	-66.206 82.9542				7.81472		1.0518	0.11941	5
Intercept	-3.808	24.7807	-82.671 75.0555								
TSCR	0.08585	0.32371	-0.9443 1.11602								
Point	Probits	ug/L	95% Fiducial Limits	1	1						
EC01	2.674	5.94296		0.9	*	- -	<u> </u>	_			
EC05	3.355	7.16776		0.8							
EC10	3.718	7.92076		Normal 0.0	1				~		
EC15	3.964	8.473		20.7	1				7		
EC20	4.158	8.93924			1				Ν		
EC25	4.326	9.35963		Proportion 0.3	1				_/		
EC40	4.747	10.5087		₩ 0.4	4				\		
EC50	5.000	11.2668		<u>0</u> 0.3	1				\		
EC60	5.253	12.0797		<u>a</u> 0.0	1				\		
EC75	5.674	13.5627		0.2	1					\	
EC80	5.842	14.2005		0.1	4						
EC85	6.036	14.9819		0	1 ——						
EC90	6.282	16.0265			<u>To</u>	2.5	3		9	22	5
EC95	6.645	17.7101			Š				•	•	•
EC99	7.326	21.36			L-Lab Control						
Significant he	eterogeneity	detected	(p = 0.00E + 00)		۲						

Test: BV-Bivalve Larval Survival and Development Test Test ID: 040319mgrt Species: MG-Mytilis galloprovincialis Protocol: ASTM 93 Sample ID: Ref Toxicant

Sample Type: Copper chloride Lab ID: AEESD-AMEC Bioassay SD End Date: 03/21/2004

			Oxicant				s. Copper cinc	
Start	Date:	03/19	/2004 E	nd Date: 03/2	21/2004	Lab ID: AEES	SD-AMEC Bio	assay SD
				Initial	Final	Total	Number	
Pos	ID	Rep	Group	Density	Density	Counted	Normal	Notes
141	21	1	20			100	0	
142	18	3	10			98	66	
143	27	2	40			88	2	
144	5	5	L-Lab Control			100	94	
145	13	3	5			100	92	
146	7	2	2.5			100	92	
147	9	4	2.5			100	90	
148	14	4	5			100	91	
149	11	1	5			100	89	
150	1	1	L-Lab Control			91	82	
151	17	2	10			100	52	
152	22	2	20			83	0	
153	10	5	2.5			100	93	
154	15	5	5			100	89	
155	25	5	20			100	0	
156	28	3	40			81	0	
157	20	5	10			100	61	
158	3	3	L-Lab Control			100	92	
159	23	3	20			76	0	
160	8	3	2.5			100	93	
161	2	2	L-Lab Control			91	82	
162	16	1	10			100	71	
163	6	1	2.5			100	94	
164	30	5	40.0			44	0	
165	4	4	L-Lab Control			100	86	
166	24	4	20			100	0	
167	19	4	10			100	61	
168	29	4	40			92	0	
169	26	1	40			63	0	
170	12	2	5			100	94	
Comi					114			

Comments: day a lity al after

Test.	RV-R	ivalve	Larval Survival	and Develope	nent Test	Test ID: 0403	317mart	
			lis galloprovinci		ient rest	Protocol: AS	TM 82 93	
		•				Camaria Tura	1000	blasida
Samp	ie iu.	KE G	Ref Toxicant	nd Date: 03/3	2(: CUCL-Copp	
Start	Date:	03/37/	2004 E				SD-AMEC Blo	passay SU
]_]				Initial	Final	Total	Number	
Pos	ID	Rep	Group	Density	Density	Counted	Normal	Notes
141						100	٥	NC
142			.*			98	610	MC
143						88	2	N C
144						100	94	L
145						100	92	
146						100	92	
147						100	90	
148						100	91	
149						001	89 82	
150						91	82	
151						100	52	
152						83	Ô	
153						100	93	
154						100	ଟ୍ର	
155						100	0	
156						81	0	
157						100	61	
158						100	92	
159						76	0	
160			Washington of Particular and Particu			100	93	
161						91	82	
162						100	71	
163						100	94	
164						94	6	SD
165						100	86	
166						100	6	
167						160	61	
168						92	0	
169						63	6	
170							94	
Com		L			L	1 100	1 74	

Comments:

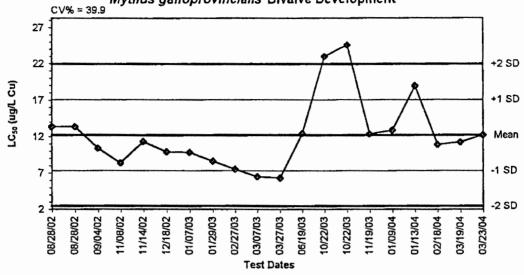
			8111	19		
Test: BV-Bivalve Larval Surviv	al and Developn	nent Test	Test ID: 0403	3 7 mgrt		
Species: MG-Mytilis galloprovii	rcialis		Protocol: AS	TM 87		
Sample ID: REF, Ref Toxicant	B.K.s	21	Sample Type	: CUCL-Copp	er chloride	
Sample ID: REF-Ref Toxicant Start Date: 03/17/2004	End Date: 03/	19/2004	Lab ID: AEES	SD-AMEC Bio	assay SD	
	Initial	Einel	Total	Number		

Start Date: 103/11		03/18	/2004 End Date: 03/19/2004		Lab ID: AEESD-AMEC Bioassay SD			
				Initial	Final	Total	Number	
Pos	ID	Rep	Group	Density	Density	Counted	Normal	Notes
150	1	1	L-Lab Control					
161	2	2	L-Lab Control					
158	3	3	L-Lab Control					
165	4	4	L-Lab Control					
144	5	5	L-Lab Control					
163	6	1	2.5					
146	7		2.5					
160	8	3	2.5					
147	9	4	2.5					
153	10	5	2.5					
149	11	1	5					
170	12	. 2	5					
145	13	3	5					
148	14	4	5					
154	15	5	5					
162	16	1	10					
151	17	2	10					
142	18	3	10 ::					
167	19	4	10					
157	20	5	10					
141	21	1	20					
152	22	2	20					
159	23	3	20					
166	24	4	20					
155	25	5	20					
169	26	1	40					
143	27	2	40					
156	28	3	40					
168	29	4	40					
164	30	5	40					
Comments: QC=AH								
acomi								

Bivalve Development Bioassay Worksheet

Client: Test No.: Test Species:	City of Branavanture (refest) 0403-106-109,172176, M. Sallaprovincialis 040319MEK	Start Date/Time: End Date/Time: T Date Received:	3/19/04 3/21/04 3/19/04	1700
Sample Type:	30ml Shell Vials Watter e			
Test Chamber Typ	pe and Sample Volume: 10 ml	volume		
Spawn Initiation Ti	ime: 13:20			
Number of Spawn	Male Female Pers: 12 9			
Spawn Condition:	good			
Fertilization Time:	14:50			
Egg Stock Density	/ Calculation:			
Eggs Counted (x):	26 21 27 31 31 28 29 25	in: <u>268</u>		
М	ean: <u>768</u> x 42 = <u>1176</u> eggs/ml		· .	
Initial Sto	$\frac{1126 \text{ eggs/ml}}{\text{pock} - 400 \text{ eggs/ml}} = \frac{\text{Stock Dilution}}{2.8}$			
Percent Division U	pon Inoculation: 96			
Time of Inoculation				
Comments:		AMEC Bioassay La		
Reviewed/ Date: _	aff 5/1/04	5550 Morehouse Dr San Diego, CA 921: (858) 458-9044		

AMEC Earth & Environmental Bioassay Laboratory 5550 Morchouse Dr. Suite B San Diego, CA 92121


Physical and Chemical Measurements of Test Solutions Salt Water Bioassays

Client:	Internal CuClz	A	nalyst:	JIZ
Contact:		To	est Start:	7/19/04
Test No.:	D40319MERT	. To	est End:	3/21/04
	•	. D	ate Collected:	3/19/04

Sample ID or Conc. 15/L		DO (mg/L)			pH (pH units))		Salinity (ppt)		Temp °C				
or Conc. 1912	0	24	48	0		· · · · · · · · · · · · · · · · · · ·	0		48	0		48		
¿C	8.7	9.1	7.9	8.09	8-09	802	34	33.7	34.3	14.8	14-6	14.9		
7.7	8.6	9.1	7.9	8.07	30.8	803	34	93.9	4344	14.8	14,6	14.9		
5.0	8.5	92	7.8	8.07	8-05	304	34	34.0	34.4	14.8	14,5	15.0		
10	85	9.2	7.9	8.07	8.05	8.02	34	342	34.5	14.8	34,4	13-1		
70	8.5	9.2	8.0	8.08	8.05	8.02	34	34.2	31.6	14.8	14,4	15:1		
40	8,5	9.2	8.0	8.08	8.05	9.04	34	34,1	34.4	14,8	144	151		
							•••					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
							•							

Comments:			

QA Check:	MC 4/21/04	·	

Copper (II) Chloride Reference Toxicant Control Chart Mytilus galloprovincialis Bivalve Development

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
08/28/02	13.3760	12.2174	7.3379	2.4584	17.0969	21.9764
08/28/02	13.3760	12.2174	7.3379	2.4584	17.0969	21.9764
09/04/02	10.4338	12.2174	7.3379	2.4584	17.0969	21.9764
11/08/02	8.3754	12.2174	7.3379	2.4584	17.0969	21.9764
11/14/02	11.3155	12.2174	7.3379	2.4584	17.0969	21.9764
12/18/02	9.9361	12.2174	7.3379	2.4584	17.0969	21.9764
01/07/03	9.8373	12.2174	7.3379	2.4584	17.0969	21.9764
01/29/03	8.6253	12.2174	7.3379	2.4584	17.0969	21.9764
02/27/03	7.5397	12.2174	7.3379	2.4584	17.0969	21.9764
03/07/03	6.5174	12.2174	7.3379	2.4584	17.0969	21.9764
03/27/03	6.3338	12.2174	7.3379	2.4584	17.0969	21.9764
06/19/03	12.4539	12.2174	7.3379	2.4584	17.0969	21.9764
10/22/03	23.0103	12.2174	7.3379	2.4584	17.0969	21.9764
10/22/03	24.5820	12.2174	7.3379	2.4584	17.0969	21.9764
11/19/03	12.3871	12.2174	7.3379	2.4584	17.0969	21.9764
01/09/04	12.8695	12.2174	7.3379	2.4584	17.0969	21.9764
01/13/04	18.9772	12.2174	7.3379	2.4584	17.0969	21.9764
02/18/04	10.9125	12.2174	7.3379	2.4584	17.0969	21.9764
03/19/04	11.2668	12.2174	7.3379	2.4584	17.0969	21.9764
03/23/04	12.2223	12.2174	7.3379	2.4584	17.0969	21.9764

APPENDIX D

ANALYTICAL CHEMISTRY DATA

CRG Marine Laboratories, Inc Client: AMEC Earth & Environmental

Project: Santa Clara River Estuary Water-Effect Ratio Samples

Mar-04

Sample ID	Project ID	Client Sample ID	Sample Description	Time Collected	Replicate Number	Parameter	Qualifier	Result	Units	MDL	RL
16864	2471	QAQC	Procedural Blank		B1	Copper (Cu)	ND		μg/L	0.005	0.01
16954	2471	QAQC	LCM-CRG Seawater		LCM1	Copper (Cu)		0.3	µg/L	0.005	0.01
16954	2471	QAQC	LCM-CRG Seawater		LCM2	Copper (Cu)			µg/L	0.005	0.01
16980	2471	PSW-8.4	City of Buena Ventura/SCRE	10:00	R1-Dissolved	Copper (Cu)			µg/L	0.005	0.01
16980	2471	PSW-8.4	City of Buena Ventura/SCRE	10:00	R1-Total	Copper (Cu)			μg/L	0.005	0.01
16980	2471	PSW-8.4	City of Buena Ventura/SCRE	10:00	R2-Dissolved	Copper (Cu)			µg/L	0.005	0.01
16980	2471	PSW-8.4	City of Buena Ventura/SCRE	10:00	R2-Total	Copper (Cu)			μg/L	0.005	0.01
16981	2471	PSW-14	City of Buena Ventura/SCRE	10:00	R1-Dissolved	Copper (Cu)			μg/L	0.005	0.01
16981	2471	PSW-14	City of Buena Ventura/SCRE	10:00	R1-Total	Copper (Cu)			μg/L	0.005	0.01
16982	2471	PSW-23	City of Buena Ventura/SCRE	10:00	R1-Dissolved	Copper (Cu)			µg/L	0.005	0.01
16982	2471	PSW-23	City of Buena Ventura/SCRE	10:00	R1-Total	Copper (Cu)		22.5		0.005	0.01
16989	2471	A2-55	City of Buena Ventura/SCRE	09:45	R1-Dissolved	Copper (Cu)		41.4		0.005	0.01
16989	2471	A2-55	City of Buena Ventura/SCRE	09:45	R1-Total	Copper (Cu)		53.4		0.005	0.01
16994	2471	B1-33	City of Buena Ventura/SCRE	10:45	R1-Dissolved	Copper (Cu)		29.5		0.005	0.01
16994	2471	B1-33	City of Buena Ventura/SCRE	10:45	R1-Total	Copper (Cu)		33.3		0.005	0.01
16995	2471	B1-55	City of Buena Ventura/SCRE	10:45	R1-Dissolved	Copper (Cu)		44.3		0.005	0.01
16995	2471	B1-55	City of Buena Ventura/SCRE	10:45	R1-Total	Copper (Cu)		50.2		0.005	0.01
16999	2471	B1-20	City of Buena Ventura/SCRE	10:45	R1-Dissolved	Copper (Cu)		16.4		0.005	0.01
16999	2471	B1-20	City of Buena Ventura/SCRE	10:45	R1-Total	Copper (Cu)		20.2		0.005	0.01
17000	2471	B3-33	City of Buena Ventura/SCRE	10:30	R1-Dissolved	Copper (Cu)			µg/L	0.005	0.01
17000	2471	B3-33	City of Buena Ventura/SCRE	10:30	R1-Total	Copper (Cu)			µg/L	0.005	0.01
17002	2471	B3-55	City of Buena Ventura/SCRE	10:30	R1-Dissolved	Copper (Cu)		42.4		0.005	0.01
17002	2471	B3-55	City of Buena Ventura/SCRE	10:30		Copper (Cu)		51.2		0.005	0.01
17006	2471	C3-20	City of Buena Ventura/SCRE	10:15		Copper (Cu)		16.8		0.005	0.01
17006	2471	C3-20	City of Buena Ventura/SCRE	10:15		Copper (Cu)		20.1		0.005	0.01
17007	2471	C3-33	City of Buena Ventura/SCRE	10:15	R1-Dissolved	Copper (Cu)		27.2		0.005	0.01
17007	2471	C3-33	City of Buena Ventura/SCRE	10:15	R1-Total	Copper (Cu)		31.6	$\neg \neg$	0.01	0.01

APPENDIX E
FIELD COLLECTION DATA

Appendix Table E-1. Field Sample Collection Summary City of Buenaventura

Santa Clara River Estuary Wet Weather Sampling Event Sample Collection Date: March 16, 2004

Site	Collection Time ^a	Latitude 34°…	Longitude 119°…	Mean Water Sample Depth (m)
A-2	1227	13.885	15.840	0.3
B-1	1124	14.091	15.782	0.3
B-3	1317	13.917	15.655	0.1
C-3	0830	14.031	15.394	0.3

^a Start of collection time at each site location

Appendix Table E-2. Field Water Quality Measurements City of Buenaventura

Santa Clara River Estuary Wet Weather Sampling Event Sample Collection Date: March 16, 2004

Sample	Water Depth (m)	Temperature (°C)	Salinity (ppt)	pH (units)	DO (mg/L)
A-2	0.3	20.5	3.1	7.79	10.5
B-1	0.3	19.8	1.4	7.46	8.7
B-3	0.1	20.2	14.4	8.64	12
C-3	0.3	15.2	1.7	7.62	10.9

APPENDIX F
CHAIN-OF-CUSTODY FORMS

CHAIN-OF-CUSTODY RECORD

Client Name and Address:									REC	QUES.	TED A	NAL	YSIS		
						.									
Sampled By:	CI	rs 54:	/			ી									
Phone:	- VA	58 458	galll			┤ →									l
FAX:					·	J.550\w									l
Project Manager:		8 58		/ 	1 1	1	1								1
Project/PO Number:	1000	uid Bai	(e)/(hc:3	etransh/	<u>قى</u> ا									
						یا ا	: .								
Client Sample ID	Sample Date	Sample Time હ	Sample Matrix	Co #	ntainer Type	1									
A2-4.3	3/17/04	७१५५	AQ	1	250 M plank	d X									
A2 - 7.1		1													
AZ-11.9															
AZ - ZO															
Az- 33						Ш									
A2-55		K				$\bot \bot$									
Bi - 4.3		1045				11									
BI - 7.1						11		<u> </u>							
B1-119						11									
31-70	1	<u> </u>	1	<u> </u>	<u> </u>	14				<u> </u>					
Correct Containers:	Yes	No						R	erigi	Яигн	ED B	Y			
Sample Temperature:	Ambient	Cold	Warm		Signature:		ØT	11	[]	7					
Sample Preservative:	Yes	No				10/	8/m	110	W						
Turnaround Time: Comments: Time of co	Specify:		tandard TA		Print:	/	John	n R	Ido	lph					
initiated	1940	· ,	0		Company:		4me	C	,						
(b) Pleage F:	Her sam	ice For	ligoolued	and	DATE:	3	/18/	104			TIME	l	1915	_	***************************************
total copp	er analj	1545 -	Hold su	ufles					REC	EIVED	BY				
unt: 1 Ame	ec provi	des a f	inal list		Signature	W	me	xeQ	600	$\sqrt{\lambda}$,				
which on		•			Print:	M	. Bu	·\~		J					
* Soughts are	e salin	و . 'ځ	PPT		Company:	C	RG	J							
					DATE:	3	18/0	4			TIME	: 0	715	,	

CHAIN-OF-CUSTODY RECORD

Client Name and Address:							REC	QUES	TED A	NAL	YSIS				
						(e)									
Sampled By:	Pi	. <	ranshi			3									
Phone:	8		-9044			~ું									
FAX:	85					3									
Project Manager:		nd Bail	-3961	$\overline{a_i}$	1 1	7.									
Project/PO Number:	Foun	ra Da.	ey/	Chris S	transmy	Por Distolated									
					,	بگر	٠.								
Client Sample ID	Sample Date	Sample Time ©	Sample Matrix	#	ntainer Type	14									
1 B1-33	3/17/04	1045	AQ	l	350ml Plasto	i									
² B1-55	ļi	*													
3 B3-43		1030				Ш									
4 B3 - 7.1						\sqcup									
5 33-11.9						\perp									
6 B3-20						\sqcup									
7 B3-33															
8 63-55	14	4				-									
9	-	1015				Ц.									
0 23-7.1	1		4	1	1 7	4						L			
Correct Containers:	Yes	No					1	R	ELIQ	HEIGH	ED B	Y			
Sample Temperature:	Ambient	Cold	Warm		Signature:	3	11	dh	K	/	_				
Sample Preservative:	Yes	No			g			14	NO	\leq					
Comments: @- Transf co	Specify:		tandard TA	\I	Print:		Ohn	Rud	SOL	/					
Initiated	1940		•		Company:	A	med		,						
(b) E-14	1 20			41.	DATE:	3/	18/0	4			TIME	0	95		
O THEF and	a pieseu	re samp	us tor	Total			,		REC	EIVED	BY				
Place In	(B) Filter and preserve samples for total and dissolud copper analyses. Please hold samples until Amer)ese	061	4/e~					-
provide 5					Print:	М	. Bu	W-		J					
of All Somple	. ac-	مرزاه>	c 3 m · Z U		Company: CRG J							 			
J. J. Simple	G	341176	7 - 30-79	ppr	DATE:	3/1	8/0	14			TIME	: 00	115		

CHAIN-OF-CUSTODY RECORD

	Client Name and Address:						REC	QUEST	ΓED A	NALY	/SIS						
			nore hous													T	
		Son I);350	CA 9	2121	A - Maria - January - 1	(G)										
L	Sampled By:		Stransh				ر	ĺ								1	
L	Phone:	858	458-96	344			1										
L	FAX:	858	587-3	3961			8										
	Project Manager:	Hou	ard T	3aile/			ŞQ. DŞ										
	Project/PO Number:			aventsia	/5c	RE	هَي										
P	Client Sample ID	Sample	Sample	Sample		ntainer	F. 17c.										
Ì	Onent Gample 15	Date	Time @		#	Type	止										
1	C3-11.9	31,7/04	1015	AQ	i	250ml Plastic	¥										
2	C3-20			1			1										
3	(3-33																
4	c3-55	4	4	4	1	1											
5							•										
6																	
7																	
8																	
り					ļ							ļ					
ᅆ											<u> </u>	<u> </u>					
L	Correct Containers:	Yes	No					1	R	ELIQI	JINSH	ED B	Y				
L	Sample Temperature:	Ambient	Cold	Warm		Signature:	1		K	1. 18			_				
-	Sample Preservative:	Yes	No	tandard TA	i.		1			vyo _f							
1	Turnaround Time: Comments: @- Somple time =	Specify:				Print:	1	John Rudolph									
١	Tritialed 19	Jamyre 5	pives,	102.03	~~5/~5	Company:	1	mec						····			
	(Milana ((0				DATE:	7	118/	nu			TIME	0	15	•		
	B F: Iter and	preserv	e souples	. For d	issolud		1 3/	14/1		REC	EIVE			114			
l	and total	and total copper analyses. Please							• ^	0	-						***********
l	hold somp	les unti	. I AmF	C Prair	dos	Signature:	117	YND	<u>sll</u>	120/	12						
	a Fral a			(1.00		Print:	M	.6	W/a	()						
۱	X All Samples .	- Col	īa :	30 1. 7v	_	Company:	CF	26	\bigcup								
	- July Soundings	Jul	DATE:	3	18	04			TIME	:	091	S.					

CHAIN-OF-CUSTODY RECORD

Γ	Client Name and Address:	AMEC			_			REC	UES	TED A	NAL	/SIS					
		_	Mol ello is				છે(
L		Son I) jago (CA 921	Ч		3		l								
	Sampled By:		Stran				છ										
	Phone:	858	458-0	1044			3	١									
	FAX:	858	587-3	3961			L \$										
	Project Manager:	Hou	ard B	oiler			For 0.350										
	Project/PO Number:		Brenow		15cRE		4.4										
F	Client Sample ID	Sample	Sample	Sample	Cor	ntainer	7 - 1 2	l									
	Oliciti Gampie 15	Date	Time ©	Matrix	Type	1 1 1 2 is											
1	Lab (gatro)	3/17/04	1000	AG	11	ZSOMI plasta	X										
2	P5W-0					1,								<u> </u>			
3	PSW - 1.8											ļ					
4	<u>PSW-3</u>													ļ			
5	P5W-5											<u> </u>	ļ				
6	P5W-84					 						<u> </u>	ļ	<u> </u>			
7	Psw-14												<u> </u>				
8	PSW-23						\Box					ļ		<u> </u>	 	ļ	
9	P5W-39	1		<u> </u>	1	1	1 -6					<u> </u>	ļ		<u> </u>		
이												<u></u>	<u> </u>	<u> </u>	<u></u>		
	Correct Containers:	Yes	No					1	R	ENIQ	HHSH	IED B	Υ				
	Sample Temperature:	Ambient	Cold	Warm		Signature:			1/2	rul	/_						
١	Sample Preservative:	Yes	No	4	T		1	<u> </u>									
	Turnaround Time:	Specify:	L.,	tandard TA		Print:	JE	h	, 12	do	/DL						
	Comments: @ samp		, 100	Jiy Test	5	Company:	7	100			<i>F</i>				***************************************		······································
	initiated 19					DATE:	3/1	8/0	4			TIME		2915			
	(b) Filler 50	ambs Fo	ir dissoli	ed and			1 3/ 1-	7-	1	REC	EIVEI			114			
	total cop		01	la C)								·				
	suples u	ntil AMI	EC prov	rides a		Signature:	ILDYN	2008	e P	2101	<u>~-</u>						
	final list	of whi	ch ones	to and	yre	Print: M. Porr											
	* All Soules	are sali	آمر - ع	1034 ont		Company: (RG)											
	7, 7,111 354-55			DATE:	3/1	S	04			TIME	: 0°	715					