City of Buenaventura Toxicity and Chemical Evaluation October 2003 Dry Weather Sampling Event Santa Clara River Estuary

Prepared by AMEC Earth & Environmental Bioassay Laboratory 5550 Morehouse Drive, Suite B San Diego, California 92121 (858) 458-9044

INTRODUCTION

Toxicity tests and chemical analyses were conducted on estuary sediments collected from the Santa Clara River Estuary in the City of Buenaventura, CA on 17 October 2003. This initial sampling effort for the project was characterized as a "dry weather" event as there was little to no rainfall prior to the sample collection date, the beach berm was intact, and the estuary was inundated with water. Dr. Howard Bailey, Mr. Chris Stransky, and Mr. John Rudolph of AMEC Earth & Environmental (AMEC) coordinated the sediment collection effort, toxicity testing, and chemical testing programs. Sediment toxicity testing was performed using the amphipod *Eohaustorius estuarius* and the bivalve *Mytilus galloprovincialis* (formerly *Mytilus edulis*). Bioassay testing was conducted between 22 October and 14 November 2003 at the AMEC Bioassay Laboratory in San Diego, CA. Chemical analyses were performed by Calscience Environmental Laboratories (CEL) located in Garden Grove, CA.

METHODS AND MATERIALS

SAMPLE COLLECTION AND TRANSPORT

Sediment samples were collected from eleven locations identified as Sites A-1, A-2, A-3, B-1, B-2, B-3, B-4, C-1, C-2, C-3, and D-1. Sample collection time, water depth, sediment grab penetration depth, GPS coordinates, tidal information, and detailed physical descriptions of each sample were recorded in a field logbook (Appendix G).

All equipment used for sediment collection was cleaned thoroughly with Alconox soap and rinsed with site water. Collections were performed using a 10 cm² stainless steel Van Veen grab. Several grab samples were collected at each field location to in order to obtain sufficient sediment for testing. Sample materials were placed in polypropylene bags, labeled, and tightly sealed. All samples were packed in ice chests containing wet ice and transported to AMEC.

Upon arrival at AMEC, coolers were opened and their contents verified. Sediment grabs from each site were then placed in a clean stainless steel bucket, homogenized, and sub-sampled for chemical, grain size, and toxicity analyses. Subsamples for chemical analysis were placed in labeled, certified-clean glass jars. Toxicity testing sample materials were placed in polypropylene bags, labeled, and tightly sealed. Subsamples

1

for grain size analysis were placed in labeled zip-lock bags. Samples for toxicity and chemical analyses were then placed in a 4°C cold room until toxicity test initiation or transport to CEL the following day. Samples for grain size analysis were stored at room temperature.

ORGANISM PROCUREMENT AND HANDLING

AMPHIPOD

Eohaustorius estuarius were obtained from Mr. Gary Buhler of Northwest Aquatic Laboratories in Newport, OR. The organisms were transported to AMEC in coolers containing sieved site sediment and oxygenated seawater. Upon arrival at AMEC, water quality parameters of temperature, dissolved oxygen (DO), and salinity were measured and recorded in a logbook. Amphipod condition was also noted. The amphipods were then acclimated to test temperature and salinity prior to test initiation. During the acclimation period, the animals were observed for any indications of stress (e.g. abnormal swimming or burrowing behavior) or significant mortality of greater than ten percent.

BIVALVES

Carlsbad Aquafarms in Carlsbad, CA supplied the bay mussel *Mytilus galloprovincialis*. The mussels were transported to AMEC in ice chests via same-day courier service. In the laboratory, the date of organism receipt and arrival condition were recorded in a logbook. The mussels were then acclimated to test temperature and salinity prior to test initiation.

BIOASSAY PROTOCOL

AMPHIPOD BIOASSAY

Marine amphipod bioassays using *Eohaustorius estuarius* were conducted in accordance with "Standard Guide for Conducting 10-day Static Toxicity Tests with Marine and Estuarine Amphipods," ASTM Designation: E 1367-92 (1993). Animals were exposed to test sediments for ten days to determine the effects of site sediment on amphipod survival. Prior to testing, sediments were sieved through a 500- μ m Nitex screen to remove native organisms and shell debris. Test chambers consisted of 1-L glass jars with a 2-cm layer of sieved sediment and 900 ml of overlying 20 μ m lab-filtered seawater

at a salinity of 30 ppt. The tests were performed at a temperature of $15 \pm 1^{\circ}$ C under continuous light. Aeration was provided continuously to each test chamber through a glass pipette at a rate of approximately two bubbles per second. The experimental design consisted of five laboratory replicate test chambers per site. In addition, a sixth replicate was initiated for each site as a surrogate to perform daily water quality measurements. Twenty amphipods were carefully placed in each test chamber at test initiation. Two negative controls consisting of 1) a water-only exposure with no sediment added, and 2) sediment from the amphipod collection location were tested concurrently.

Temperature, DO, pH, and salinity were monitored daily in the surrogate test chamber for each sediment sample. Subsamples of overlying water were collected from surrogate test chambers for initial and final total ammonia analysis. Additionally, subsamples of sediment porewater were collected prior to test initiation and analyzed for total ammonia. Porewater was collected by centrifuging the whole sediment at 3500 rpm for a period of fifteen minutes.

A concurrent reference toxicant test (positive control) using cadmium (II) chloride (CdCl₂) was conducted in conjunction with the sediment test. Reference toxicant testing is a QA/QC procedure used to evaluate the quality and sensitivity of the test organisms.

BIVALVE EMBRYO DEVELOPMENT BIOASSAYS

Bivalve embryo development assays were conducted in accordance with the document "Recommended Guidelines for Conducting Laboratory Bioassays on Puget Sound Sediments," Puget Sound Estuary Program (PSEP), July (1995) and "Standard Guide for Conducting Static Acute Toxicity Tests Starting with Embryos of Four Species of Saltwater Bivalve Molluscs," ASTM Designation: E 724-89 (1993). Embryos of the bivalve *M. galloprovincialis* were exposed to whole test sediments for 48 hours to determine the effect of site sediment exposure on survival and development. Tests were conducted in 1-L glass jars with 18 g of sediment and 900 ml of overlying 20- μ m lab-filtered seawater at a salinity of 30 ppt. The tests were performed at a temperature of 15 ± 1°C under a 16:8 hour light:dark regime. Two concurrently tested negative controls consisted of 1) clean rinsed beach sand with filtered seawater, and 2) a water-only exposure with no sediment added. The experimental design consisted of five laboratory replicate test chambers per site. In addition, a sixth replicate was initiated for each site as a surrogate to perform daily water quality measurements. Fertilized eggs were added

to each test chamber at a density of 20,000 eggs/ml. At test termination, overlying water was carefully poured into a clean beaker. The solution was thoroughly and gently homogenized and a 10-ml subsample was collected and preserved with 1 ml of seawater-buffered Formalin prior to scoring.

Temperature, DO, pH, and salinity were monitored daily in the surrogate test chamber for each site. Subsamples of overlying water from each site were collected for total ammonia analysis both at test initiation and termination. Additionally, subsamples of sediment porewater were collected prior to test initiation and analyzed for total ammonia. Porewater was collected by centrifuging the whole sediment at 3500 rpm for a period of fifteen minutes.

A concurrent reference toxicant test (positive control) using copper (II) chloride ($CuCl_2$) was conducted in conjunction with the sediment test.

STATISTICAL ANALYSIS OF TOXICITY DATA

Eohaustorius responses were analyzed using a one-way analysis of variance (ANOVA) or non-parametric Kruskal-Wallis. Homogeneity of variance was checked using the F-test for equal variance and normality of data was checked using the Kolmogorov-Smirnov test. To evaluate differences between the control sediment and each sample location, one-tail Student's t-tests were performed. Proportion values were not transformed prior to analysis due to a normal distribution of the data.

Analysis of bivalve response data among test sediments was conducted using one-way non-parametric ANOVA (Kruskal-Wallis). To evaluate differences between the control sediment and each sample location, one-way Student's t-tests were performed on untransformed proportion data. Welch's Correction was applied when a significant difference in variance was observed. Relationships between grain size and sediment trace metals (Cu, Ni, Se, and Zn) to amphipod and bivalve responses were evaluated using Pearson correlations.

Analyses were performed using GraphPad Prism Version 4.00 statistical software. Analysis of reference toxicant data was conducted using ToxCalc[®] Comprehensive Toxicity Data Analysis and Database Software, Version 5.0. Median Lethal Concentration (LC₅₀) or Median Effect Concentration (EC₅₀) values were determined using Maximum Likelihood Probit, Trimmed Spearman-Karber, or Linear Interpolation Analysis. The choice of statistical method used was dependent upon specific assumptions met by the data.

CHEMICAL ANALYSES

Analysis of total organic carbon (TOC), copper, nickel, zinc, and selenium in the sediments was performed by CEL (Appendix F).

RESULTS AND DISCUSSION

Amphipod and bivalve result summaries are shown in Figures 1 and 2. Detailed summaries are contained in Appendix A. Bioassay water quality and ammonia data are located in Appendix B. Reference toxicant data are located in Appendix C and statistical analyses are found in Appendix D. Grain size, analytical chemistry data reports, field collection data logs, and chain-of-custody information can be found in Appendices E, F, G and H, respectively.

SUMMARY OF TOXICITY TEST RESULTS

In summary, no toxicity to *Eohaustorius estuarius* in whole sediments was observed. Toxicity to bivalve larvae was observed in several samples with greatest responses occurring in Sites B-1 and B-3.

AMPHIPOD BIOASSAYS

All water quality measurements recorded during the 10-day amphipod exposure with *Eohaustorius estuarius* were within the range defined as acceptable by the test protocol (Appendix B-1). Mean survival among the water only controls and the sediment controls was 90 and 89 percent respectively (Appendix A-1). Recommended EPA acceptability criterion for this test is a mean of 90 percent survival in the controls. The test was deemed acceptable for reporting purposes as the two control results bracket this value by one percent with a combined mean of 89.5 percent. Mean survival among the individual field replicates ranged from 82 to 91 percent. One-way ANOVA found no significant differences among the sites. Pair-wise comparisons using one-tailed Student's t-tests also indicated that no sites exhibited a statistically significant reduction in survival when compared to the control (Appendix D-1).

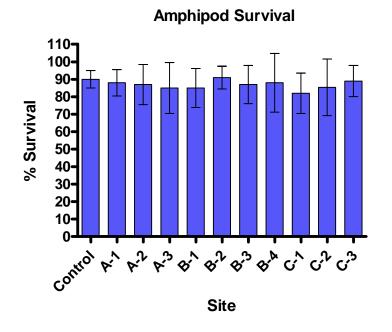


Figure 1. Amphipod survival results (mean ± 1 SD, n=5). Santa Clara River Estuary dry weather monitoring event, 17 October 2003. No statistically significant decreases relative to the control were observed (p < 0.05, one-tailed t-test).

Correlations to Sediment Characteristics

No statistically significant relationships between amphipod survival and sediment trace metals were observed (Appendix D-3). A negative relationship, however, was observed with percent sand and gravel.

Reference Toxicant Test

A concurrent reference toxicant test using $CdCl_2$ was conducted in order to assess the health and sensitivity of the test organisms. Mean control survival in the reference toxicant was 85 percent (Appendix C). The LC_{50} was determined to be 5.86 mg/L $CdCl_2$ (as cadmium) using the Maximum Likelihood-Probit method. This value falls within of \pm two standard deviations of laboratory control chart limits (Appendix C).

<u>Ammonia</u>

Total ammonia levels in interstitial porewater ranged from 0.1 to 15.4 mg/L among all test sediments. Ammonia in overlying water ranged from 0.5 to 3.1 mg/L and 0.4 to 5.7 mg/L for day zero and day ten, respectively (Appendix B-1). Levels of total ammonia were well below those (30-60 mg/L) reported to be toxic to this species (Kohn et al. 1994).


BIVALVE WHOLE SEDIMENT EMBRYO DEVELOPMENT BIOASSAYS

All water quality measurements during the 48-hour bivalve bioassays were within acceptable ranges outlined in the test protocol (Appendix B-2). Normal development (normality) was calculated for all replicates by dividing the number of normal larvae counted in a given replicate by the total number of surviving larvae in that replicate. Normality in the water only and laboratory sediment control was 92 and 89 percent, respectively, indicating that the test organisms were healthy and test conditions were adequate. The water only value exceeds the recommended acceptability criterion of 90 percent (ASTM 1991). Mean normal development in the test samples ranged from 55 to 96 percent among all field replicates. Student t-tests identified statistically significant reductions in normal development of bivalve larvae in Sites A-2, B-1, and B-3 when compared to the control at an alpha level of 0.05 (Appendix D-3).

Survival was derived from the total number of larvae (normal and abnormal) recovered in a 10-ml subsample of overlying water from each test chamber. Percent survival was then calculated based on the mean total number of embryos recovered in the test chambers divided by the mean total number of embryos recovered in the sediment control. Mean survival relative to the sediment control following exposure to the test sediment ranged from 39 to 110 percent. Student t-tests detected several sites which showed a statistically significant reduction in survival when compared with the control. Sites A-1, B-1, B-3, and B-4.

A combined normality/survival endpoint (effective survival) was also calculated for all replicates. This measurement was derived by dividing the number of normal embryos counted by the mean total number of embryos recovered in the sediment control. This endpoint is useful in that it considers abnormal, yet surviving larvae, as unviable and therefore only takes into account normal larvae, which can be expected to develop into

7

City of San Buenaventura Dry Weather Toxicity and Chemistry Report Santa Clara River Estuary Project, October 2003

Effective Survival

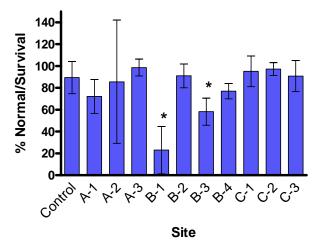


Figure 2. Summary of bivalve embryo development test results (means \pm 1SD, n=5). Santa Clara River Estuary dry weather monitoring event, 17 October 2003. * Indicates statistically significant decreases relative to the sediment control (p < 0.05, one-tailed t-test).

viable adults. The effective survival for the laboratory sediment control was 89 percent. This value exceeds the recommended acceptability criterion of 70 percent (ASTM 1991, PSEP 1995). The effective survival ranged from 23 to 99 percent among all sediment samples. Student t-tests identified statistically significant reductions in the effective survival when compared to the control in Sites A-1, A-2, B-1, and B-3.

It should be noted that effective survival is calculated in the ASTM and PSEP test protocols by dividing the total number of normal recovered embryos in each test chamber

by time zero counts, determined through counts in surrogate test chambers terminated immediately after initiation. Time zero counts were not properly collected for this test series, therefore, total recovery of embryos in the sediment control was used for this calculation. This comparison may actually be more meaningful because unviable fertilized embryos will be lost in the sediment prior to ending the 48-hour test. This loss of embryos in the sediment matrix usually makes the derivation of survival in test sediment from that in a water-only control conservative. The water-only control also serves as a comparison to ensure that there are no problems with the test and normal development for all embryos, including any unviable ones remaining on the bottom of the jar was 92 percent for this test series.

Correlations to Sediment Characteristics

No statistically significant relationships between bivalve responses and grain size or sediment trace metals were observed (Appendix D-3).

Reference Toxicant Test

A reference toxicant test using CuCl₂ was conducted concurrently in order to assess the health and changes in response of test organisms. Mean normal development in the controls was 89 percent. The EC₅₀ value was determined to be 23.01 μ g/L CuCl₂ (as copper) by the Trimmed Spearman-Karber method. This value falls outside of internal control chart limits of ±2 standard deviations (4 to 19 μ g/L, Appendix C), but was deemed reportable, as there was a clear dose response relationship to the reference toxicant. These reference toxicant results indicate that the organisms used for this study may have been slightly less sensitive than those normally tested in our laboratory.

<u>Ammonia</u>

Overlying water samples were collected for ammonia measurement at the beginning and end of the test period. Total ammonia levels in overlying water ranged from <0.1 to 1.6 mg/L (Day 0) and 0.2 to 1.1 (Day 2) among all test sediments (Appendix B-2). All total ammonia levels were below a concentration (4.0 mg/L) reported to effect bivalve embryos (Tang, 1997).

SEDIMENT QUALITY

Copper concentrations were relatively low at all sites, generally between 2.3 and 4.2 mg/kg, except at sites A-1 and B-4 where they reached 16.9 and 19.3 mg/Kg, respectively (Figure 3). These two sites were also associated with the highest concentrations of organic carbon, with TOCs of 10,920 and 16,950 mg/Kg, respectively. TOC at the other sites ranged from 1590 to 7070 mg/Kg. These data are shown in Appendix Table F-1, which also includes selenium, nickel and zinc concentrations in the different samples. Concentrations of nickel ranged between 0.6 and 20.4 mg/Kg, with no apparent trend across sites. Selenium concentrations were below the detection limit of 0.5 mg/Kg at most sites; the highest concentration was 0.9 mg/Kg. Concentrations of zinc were somewhat more variable, and ranged from below detection to 63.1 mg/Kg across the sites; however, there was no apparent relationship between zinc concentrations and the location of the site sampled.

Figure 3. Relationship between sediment copper levels, copper effects-range low (ERL) values, and bivalve embryo development. Santa Clara River Estuary dry weather monitoring event, 17 October 2003.

To determine if these metals concentrations are likely to cause adverse effect on the benthic community, these concentrations were compared with the "effects range-low" (ERL) values proposed for marine and brackish waters by Long *et al.* (1995). These values correspond to the 10th percentile concentration at which biological effects were reported in a large dataset compiled by these investigators. All measured concentrations were below their respective ERL values (no value is available for selenium). However, the two highest concentrations of nickel were slightly over 20 mg/Kg; the ERL for nickel is 20.9 mg/Kg. The relationship between sediment copper levels, copper effects-range low (ERL) values, and bivalve embryo development is graphically shown in Figure 3.

SEDIMENT GRAIN SIZE

The distribution of sediment grain sizes is summarized in Appendix Table E-1. Virtually all of the sites contained relatively coarse-grained sediments, predominantly composed of sand. Percent fines ranged between 1.3 and 5.6 percent, except for sites A-1 and B-4, which exhibited 47.9 and 60.8 percent fines, respectively. These two sites were also associated with the highest concentrations of TOC and copper.

AMBIENT WATER QUALITY AND FIELD CONDITIONS

Water depths ranged between 3.0 and 7.0 feet, depending upon location. The deepest points were associated with the lower portion of the main river channel (sites A-2 and B-3). There was little indication of temperature stratification; temperatures across all sites and depths ranged between 20.7 and 22.2°C. pH was highest above the bridge (9.2) and lowest at the effluent discharge point (7.1). Otherwise, pH at all sites ranged between 8.6 and 8.9. Salinity and conductivity exhibited similar patterns, with most sites averaging between 2.0 and 2.4 ppt, regardless of depth. Exceptions included sites A-2 and B-3, which exhibited noticeably higher salinities (11 - 12 ppt) at the bottom depth compared with the surface and mid-water sampling points. Site A-1 exhibited a modest increase in salinity at the bottom, compared with mid-water and surface measurements; this site was located in the discharge channel. The lowest salinity (1.5 ppt) was observed at the surface at the effluent discharge point, and increased with increasing depth to a maximum of 2.9 ppt at this site. Dissolved oxygen was supersaturated at all sites, except at the discharge point which was 7.5 mg/L. These data are presented in Appendix Table G-2.

REFERENCES

- American Society for Testing and Materials (ASTM), 1993. Conducting 10-day static sediment toxicity tests with marine and estuarine amphipods. ASTM Designation E 1367-92.
- American Society for Testing and Materials (ASTM), 1993. Standard guide for conducting static acute toxicity tests starting with embryos of four species of saltwater bivalve molluscs, ASTM Designation: E 724-89.
- GraphPad Software Inc. 1994-2000. GraphPad Prism, Version 4.00
- Kohn, N.P., J.Q. Word, D.K. Niyogi, L.T. Ross, T. Dillon, and D.W. Moore. 1994. Acute toxicity of ammonia to four species of marine amphipod. Marine Env. Res. 38: 1-15.
- Puget Sound Estuary Program (PSEP). 1995. Recommended Guidelines for Conducting Laboratory Bioassays on Puget Sound Sediments. Interim Final. U.S. Environmental Protection Agency Region 10, Office of Puget Sound, Seattle, WA, July 1995.
- U.S. Environmental Protection Agency (EPA) 1994. Methods for Assessing the Toxicity of Sediment-associated Contaminants to Estuarine and Marine Amphipods. U.S EPA Office of Research and Development, Washington DC. EPA 600/R-94/025, June 1994.
- Tang, A., J.G. Kalocai, S. Santos, B. Jamil, J. Stewart. 1997. Sensitivity of blue mussel and purple sea urchin larvae to ammonia. Poster, Society of Environmental Toxicology and Chemistry, 18th Annual Meeting, San Francisco, CA.
- Tidepool Scientific Software, 1992-1994. ToxCalc Comprehensive Toxicity Data Analysis and Database Software, Version 5.0.

APPENDIX A TOXICITY TEST SUMMARIES

E. ESTUARIUS

.

Appendix Table A-1. 10-Day Amphipod Toxicity Test Summary of Means (Whole Sediment)

City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event

Test Initiation Date: 14 November 2003

Test Species: Eohaustorius estuarius

Site	Mean Percent Survival ± 1 SD
Sediment Control	89 ± 4.2
A-1	88 ± 7.6
A-2	87 ± 12
A-3	85 ± 15
B-1	85 ± 11
B-2	91 ± 6.5
В-3	87 ± 11
B-4	88 ± 17
C-1	82 ± 12
C-2	86 ± 15
C-3	89 ± 8.9

·..

• • • •

Appendix Table A-2. 10-Day Amphipod Toxicity Test Results (Whole Sediment)

City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event

Test Initiation Date: 14 November 2003

Site	Replicate	Randon No.	No. Alive	Percent Survival	Mean Percent Survival	Site	Replicate	Randon No.	No. Alive	Percent Survival	Mean Percent Survival
	A	25	17	85			A	14	18	90	-
	в	38	19	95			В	49	20	100	
CONTROL -	С	53	18	90	90	B-2	С	8	17	85	91
Water Only	D	18	19	95			D	36	19	95	
	Е	59	17	85			E	16	17	85	
	A	. 19	19	95			Ä	47	14	70	
	В	40	18	90			В	32	18	90	
CONTROL -	С	48	18	90	89	B-3	С	58	17	85	87
Sediment	D	34	17	85			D	2	20	100	
	Е	45	17	85			E	17	18	90	
····	A	54	17	85			A	6	20	100	
	в	37	18	90			В	52	19	95	
A-1	С	23	17	85	88	B-4	С	56	12	60	88
	D	22	20	100			D	42	17	85	
	Е	29	16	80			E	7	20	100	
	A	9	20	100			A	24	20	100	
	В	15	18	90			В	30	15	75	
A-2	С	55	15	75	87	C-1	С	35	17	85	82
	D	28	15	75			D	21	16	80	
	E	43	19	95			Ε	31	14	70	
<u> </u>	Α	1	20	100			A	44	13	65	
	В	51	19	95			В	10	19	95	
A-3	ċ	57	13	65	85	C-2	С	13	19	95	86
	D	33	18	90			D	3	15	75	
	E	41	15	75			E	5	20	100	
	Ā	26	17	85			A	39	16	80	
	В	4	20	100			В	46	16	80	
B-1	С	50	16	80	85	C-3	С	11	20	100	89
	D	60	14	70			D	27	18	90	
	E	20	18	90			Е	12	19	95	· -

M. GALLOPROVINCIALIS

.

.

Appendix Table A-3. 48-Hour Bivalve Embryo Development Test Summary of Means (Whole Sediment)

City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event

Test Initiation Date: 22 October 2003

Test Species: Mytilus galloprovincialis

	Mea	in Percent Survival ± *	I SD
Site	Survival	Normality	Effective Survival
Sediment Control	99 ± 11	90 ± 5.7	89 ± 15
A-1	79 ± 16	92 ± 4.6	72 ± 16
A-2	109 ± 56	75 ± 9.4	86 ± 56
A-3	110 ± 13	90 ± 4.7	99 ± 7.7
B-1	39 ± 23	55 ± 20	23 ± 22
B-2	94 ± 12	96 ± 2.7	91 ± 11
B-3	79 ± 12	74 ± 6.1	58 ± 12
B-4	83 ± 9.5	93 ± 2.5	77 ± 7.0
C-1	102 ± 15	93 ± 1.5	95 ± 14
C-2	105 ± 4.5	921 ± 4.5	97 ± 5.9
C-3	104 ± 6.8	87 ± 11	91 ± 14

BOLD - Indicates a statistically significant decrease compared to the sediment control ($p \le 0.05$)

Appendix Table A-4. 48-Hour Bivalve Embryo Development Test Results (Whole Sediment) City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event Test Initiation Date: 22 October 2003 Test Species: *Mytilus galloprovincialis*

Site	Rep.	Random No.	Initial No.	Total No.	No. Normai	Percent Normal	Mean Percent Normal	Percent Normal Std Dev	Percent Survival	Mean Percent Survival	Percent Survival Std Dev	Percent Effective Survival®	Mean Percent Effective Survival	Percent Effective Survival Std Dev
	Ä	57	93	108	95	88			116			102		
	в	58	93	91	79	87		98			85			
CONTROL - Water Only	С	62	93	108	100	93	92	5	116	111	8	108	102	10
water Only	D	25	93	102	101	99			110			109		
	Е	45	93	107	100	93			115			108		
-	A	60	93	85	71	84			91			76		
CONTROL	в	7	93	78	66	85			84			71		
CONTROL - Sediment	С	43	93	103	92	89	89	6	111	100	11	99	89	15
Seument	D	33	93	98	96	98			105			103		
	Е	30	93	99	91	92			106			98		
	A	3	93	69	63	91			74			68		
	в	48	93	94	89	95			101			96		-
A-1	С	59	93	53	52	98	92	5	57	79	_, 16	56	72	15
	D	38	93	69	59	86			74			63		
	Е	18	93	81	73	90			87			78		
	A	12	93	190	169	89			204			182		
	в	41	93	78	54	69			84			58		
A-2	С	22	93	103	81	79	75	9	111	109	56	87	86	56
	D	21	93	57	37	65			61			40		
	E	34	93	78	57	73			84			61		
	A	63	93	104	95	91			112			102		
	в	8	93	105	94	90			113			101		
A-3	С	19	93	82	79	96	90	5	88	110	13	85	99	8
	D	6	93	106	97	92			114			104		
	Е	1	93	113	94	83	_		122			101		

a - Effective Survival is defined as the number of normal larvae divided by the total number recovered in the sediment control.

Appendix Table A-4 (Cont.). 48-Hour Bivalve Embryo Development Test Results (Whole Sediment) City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event Test Initiation Date: 22 October 2003

Test Species: Mytilus galloprovincialis

Site	Rep.	Random No.	Initial No.	Total No.	No. Normal	Percent Normal	Mean Percent Normal	Percent Normal Std Dev	Percent Survival	Mean Percent Survival	Percent Survival Std Dev	Percent Effective Survival®	Mean Percent Effective Survival	Percent Effective Survival Std Dev
	A	28	93	36	18	50			39			19		
	в	47	93	35	9	26			38			10		
B-1	С	4	93	70	57	81	55	20	75	39	23	61	23	22
	D	27	93	26	16	62			28			17		
	Е	53	93	13	7	54			14			8		
	Α	20	93	85	79	93			91			85		
	в	49	93	88	87	99			95			94		
B-2	С	10	93	106	101	95	96	3	114	94	12	109	91	11
	D	42	93	81	77	95			87			83		
	Ε	61	93	79	78	99	<u> </u>		85			84		
	A	65	93	88	67	76			95			72		
	в	37	93	65	42	65			70			45		
B-3	С	56	93	66	52	79	74	6	71	78	12	56	58	12
	D	46	93	64	45	70			69			48		
	E	16	93	82	65	79			88			70	_	
	A	29	93	84	76	90			90			82		
	В	44	93	78	74	95		_	84			80		-
B-4	С	23	93	71	66	93	93	3	76	83	9	71	77	7
	D	9	93	87	78	90			94			84		
	E	32	93	66	63	95			71			68		
	A	24	93	97	89	92			104			96		
	в	52	93	82	76	93			88			82		
C-1	С	11	93	115	109	95	93	1	124	103	14	117	95	14
	D	36	93	99	90	91			106			97		
	E	13	93	84	78	93			90			84		<u> </u>
	A	31	93	99	96	97			106			103		
	В	5	93	96	86	90			103			92	..	2
C-2	С	17	93	101	97	96	92	4	109	105	4	104	97	6
	D	2	93	92	86	93			99			92		
	E	64	93	102	88	86			110			95		
	Α	35	93	94	85	90			101			91		
	В	55	93	96	89	93			103		_	96		
C-3	С	39	93	99	66	67	87	12	106	105	7	71	91	14
	D	26	93	107	102	95			115			110		
	Е	15	93	90	80 /ae divided by 1	89			97	<u> </u>		86		<u> </u>

a - Effective Survival is defined as the number of normal larvae divided by the total number recovered in the sediment control.

APPENDIX B TOXICITY TEST WATER QUALITY DATA

E. ESTUARIUS

City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event

Test Initiation Date: 14 November 2003

Test Species: Eohaustorius estuarius

	Control 1										
Day	Dissolved Oxygen	3 2 4 2 6 6 6 6 7 2 9 4 6 7 1 6 7 6 6 6 6 6 6 6 7 6 7 6 6 7 6 7		Temperature	TotalNHa						
	(mg/L)	((mts)	(ppt)	69,14	Overlying Water	Porewater					
0	8.3	7.73	30	15.5	0.1	NA					
1	8.2	7.73	30	15.7							
2	8.0	7.94	30	15.8	·						
3	8.0	7.78	30	15.2							
4	8.1	7.84	30	15.2							
5	9.3	7.79	30	15.2							
6	8.8	7.90	30	15.2							
7	8.4	7.82	30	15.3							
8	8.1	7.89	30	15.3							
9	8.1	7.87	30	15.2							
10	8.5	7.89	30	15.2	0.5						

NA: Not available for analysis, no porewater present.

City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event

Test Initiation Date: 14 November 2003

Test Species: Eohaustorius estuarius

	Control 2										
Day	Dissolved Oxygen (mg/L)	pH (units)	Salinity (ppt)	Temperature (°C)	Total NH; Overlying Water						
	8.2	7.76	30	15.6	0.1	NA					
1	8.1	7.77	30	15.6							
2	7.9	7.98	30	15.4							
3	8.0	7.73	30	15.1							
4	7.9	7.85	30	15.1							
5	9.3	7.85	30	15.1							
6	8.8	7.93	30	15.2							
7	8.4	7.87	30	15.2							
8	8.0	7.97	30	15.1							
9	7.9	8.00	30	15.2							
10	8.6	7.98	30	15.2	0.5						

NA: Not available for analysis, no porewater present.

City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event

Test Initiation Date: 14 November 2003

			A-1			
Day	Dissolved Oxygen	ińpH: (units)	Salinity (ppt)	Temperature . (°C)	Total NH; Overlying Water	
0	(mg/_) 8.1	7.73	30	15.5	1.2	2.6
1	7.8	7.78	29	15.7		
2	7.9	7.94	29	15.5		
3	7.7	7.85	29	15.3		
4	7.9	7.94	29	15.4		
5	9.1	7.83	29	15.3		
6	8.4	7.90	29	15.4		
7	8.2	7.90	29	15.3		
8	7.8	7.93	29	15.3		
9	7.5	7.99	29	15.2		
10	8.2	8.03	29	15.3	1.3	

City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event

Test Initiation Date: 14 November 2003

			A-2	· · · · · · · · · · · · · · · · · · ·		
Day	Dissolved Oxygen (mg/L)	ph (units)		Temperature (°C)	Total NH3 Overlying Water	
0	8.2	7.78	30	15.5	1.7	12.6
1	8.1	7.79	29	15.6		
2	8.0	7.97	29	15.4		
3	7.9	7.81	29	15.2		
4	8.0	7.95	29	15.3		
5	9.2	7.92	29	15.2		
6	8.7	7.98	29	15.3		
7	8.3	7.96	29	15.3		
8	7.9	8.02	29	15.3		
9	7.9	8.11	29	15.2		
10	8.6	8.05	29	15.2	2.9	

City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event

Test Initiation Date: 14 November 2003

			A-3			· · · · · · · · · · · · · · · · · · ·
Day	Dissolved Oxygen (mg/L)			Temperature (°C)	Total NH ₃ Overlying Water	
0	8.3	7.86	29	15.5	0.5	0.7
1	8.1	7.85	29	15.6		
2	7.9	8.05	29	15.4		
3	7.9	7.89	29	15.2		
4	8.0	7.98	29	15.2		
5	9.3	7.93	29	15.2		
6	8.7	8.01	29	15.2		
7	8.5	7.97	29	15.3		
8	8.0	8.10	29	15.3		
9	8.0	8.17	29	15.1		
10	8.7	8.13	29	15.2	0.7	

City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event

Test Initiation Date: 14 November 2003

			B-1			
Day	Dissolved Oxygen (mg/L)	pH (units)	2,21,134,142,144,229,200,671012,67261.	- Temperature (°C)	Total NH3 Overlying:Water	
0	8.1	7.72	30	15.6	3.1	10.4
1	7.7	7.74	29	15.7		
2	7.8	7.94	29	15.5		
3	7.5	7.85	29	15.3		
4	7.8	7.98	29	15.4		
5	9.2	7.93	29	15.3		
6	8.6	7.99	29	15.4		
7	8.3	7.98	29	15.4		
8	7.8	8.00	29	15.4		
9	7.8	8.13	29	15.3		
10	8.4	8.06	29	15.3	4.0	

City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event

Test Initiation Date: 14 November 2003

			B-2			
Day	Dissolved Oxygen	рН	121212011111200220132013200.73311023.131	Temperature	1035460145415541641652164164541541545554554553	
	(mg/L)	(Unites)	(ppt)		Overlying Water	Porewater
0	8.0	7.79	30	15.6	0.6	2.1
1	7.9	7.82	29	15.8		
2	7.8	7.99	29	⁻ 15.5		
3	7.8	7.84	29	15.4		
4	8.0	7.97	29	15.5		
5	9.4	7.94	29	15.3		
6	8.8	8.03	29	15.4		
7	8.4	8.04	29	15.4		
8	8.0	8.12	29	15.4		
9	7.9	8.30	29	15.3		
10	8.6	8.24	29	15.3	0.7	

City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event

Test Initiation Date: 14 November 2003

B-3							
Day	Dissolved Oxygen (mg/L)	HALERICE BRIESER COLORIDRISHED DRUST	Salinity (ppt)	Temperature (°C)-	Total NH; Overlying Water.		
0	8.0	7.81	30	15.6	1.5	14.2	
1	7.6	7.81	29	15.8			
2	7.8	8.00	29	15.6			
3	7.8	7.87	29	15.4			
4	8.1	8.00	29	15.5			
5	9.3	8.00	29	15.3			
6	8.8	8.07	29	15.4			
7	8.4	8.07	29	15.5			
. 8	7.9	8.12	29	15.5			
9	7.9	8.28	29	15.4			
10	8.7	8.19	29	15.4	1.0		

City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event

Test Initiation Date: 14 November 2003

B-4							
Day	Dissolved Oxygen (mg/L)	iṕH −(units)	Salinity (ppt)	Temperature (fC)	Total NH; Overlying Water		
0	7.9	7.74	30	15.7	2.6	15.4	
1	7.5	7.74	29	15.8			
2	7.5	7.87	29	15.5			
3	7.6	7.82	29	15.5			
4	8.0	7.92	29	15.5			
5	9.1	7.89	29	15.4			
6	8.6	7.96	29	15.5			
7	8.2	7.97	29	15.5			
8	7.9	8.01	29	15.5			
9	7.9	8.12	29	15.4			
10	8.2	8.09	29	15.4	5.7		

City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event

Test Initiation Date: 14 November 2003

C-1							
Day	Dissolved Oxygen (mg/L)	pH (units)	Salinity (ppt)	Temperature (°C)	Total NH Overlying Water		
0	7.9	7.89	29	15.8	0.7	1.7	
1	7.7	7.86	29	15.8			
2	7.9	8.08	29	15.5			
3	7.7	7.99	29	15.5			
4	8.0	7.90	29	15.4			
5	9.5	8.01	29	15.5			
6	8.9	8.09	29	15.5			
7	8.5	8.10	29	15.6			
8	8.0	8.11	29	15.4			
9	7.9	8.28	29	15.3			
10	8.7	8.20	29	15.4	0.4		

City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event

Test Initiation Date: 14 November 2003

C-2							
Day	Dissolved Oxygen (mg/L)	pH (units)	Salinity (ppt)*	111111111111111111111111111111111111111	Total NH; Overlying Water		
0	8.1	7.88	29	15.7	0.5	1.0	
1	7.6	7.85	29	15.8			
2	7.8	8.07	29	15.6			
3	7.7	7.92	29	15.5			
4	7.8	7.96	29	15.5			
5	9.2	7.98	29	15.5			
6	8.9	8.05	29	15.5			
7	8.5	8.06	29	15.5			
8	7.9	8.10	29	15.5			
9	8.0	8.26	29	15.4			
10	8.6	8.16	29	15.4	1.5		

City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event

Test Initiation Date: 14 November 2003

C-3						
Day	Dissolved Oxygen (mg/L)	pH (units)	Salinity (ppt)	Temperature (°C):	Total NH Overlying Water	
0	8.0	7.82	30	15.7	0.2	1.3
1	7.6	7.79	30	15.8		
2	7.6	7.98	30	15.5		
3	7.6	7.86	29	15.5		
4	7.8	7.98	29	15.5		
5	9.3	7.96	29	15.4		
6	8.8	8.03	29	15.5		
7	8.2	8.07	30	15.6		
8	7.9	8.10	29	15.5		
9	7.6	8.25	29	15.4		
10	8.5	8.14	29	15.4	0.6	

M. GALLOPROVINCIALIS

•

Appendix Table B-2. 48-Hour Bivalve Embryo Development Test Water Quality Results (Whole Sediment)

City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event

Test Initiation Date: 22 October 2003

Test Species: Mytilus galloprovincialis

Site	Dissolv 0	ed Oxygen 24	i (mg/l=) 5 	Q	pH(Units) :24	48	0 0	alinity (po 24	t) 	Ter 0	nperature (24	°C) 48		ng/L) 48
Control - Water Only	9.5	8.0	8.0	7.95	7.92	7.83	30	30	30	15.5	15.6	15.6	0.2	0.1
Control - Sediment	9.5	8.1	7.8	7.94	7.90	7.80	30	30	30	15.4	15.5	15.3	0.2	0.1
A-1	7.0	6.5	7.1	7.95	7.86	7.79	30	30	30	15.4	15.5	15.4	0.7	1.0
A-2	7.4	7.1	7.5	7.92	7.86	7.79	30	30	30	15.4	15.5	15.4	0.6	0.4
A-3	9.7	8.1	7.8	8.00	7.94	7.85	30	30	30	15.4	15.5	15.4	< 0.1	1.0
B-1	8.3	7.2	7.2	7.91	7.85	7.78	30	30	30	15.6	15.5	15.5	0.2	0.5
B-2	9.4	8.0	7.5	7.95	7.90	7.85	30	30	30	15.5	15.5	15.4	0.5	0.4
B-3	7.5	6.7	7.1	7.94	7.88	7.83	30	30	30	15.5	15.5	15.4	0.4	0.5
B-4	7.1	7.0	7.2	7.91	7.84	7.79	30	30	30	15.6	15.5	15.4	1.6	1 .1
C-1	10.1	8.1	7.6	8.00	7.9	7.87	30	30	30	15.5	15.5	15.3	0.1	0.6
C-2	9.9	8.0	7.5	7.97	7.90	7.85	30	30	30	15.5	15.5	15.4	< 0.1	0.2
С-3	9.3	7.7	7.4	7.95	7.87	7.82	30	30	30	15.6	15.5	15.5	0.5	0.7

APPENDIX C REFERENCE TOXICANT DATA

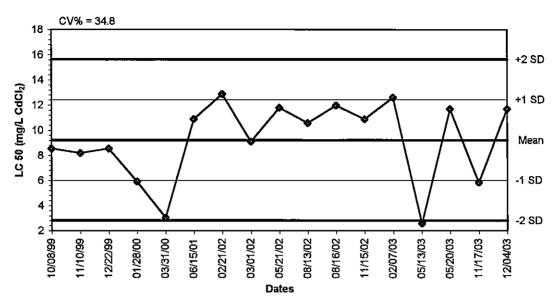
E. ESTUARIUS

				Amphipod 96-Hr Survival	Bioassay-Surviv	al
Start Date:	11/17/2003		Test ID:	031117eera	Sample ID:	REF-Ref Toxicant
End Date:	11/21/2003		Lab ID:	AEESD-AMEC Bioassay SD	Sample Type:	CDCL-Cadmium chloride
Sample Date:			Protocol:	ASTM 93	Test Species:	EE-Eohaustorius estuarius
Comments:						
Conc-mg/L	1	2	3	4		
L-Lab Control	0.9000	1.0000	0.7000	0.8000		
1.25	0.9000	0.5000	0.9000	1,0000		
2.5	0.4000	0.7000	0.6000	0.8000		
5	0.4000	0.6000	0.4000	0.5000		
10	0.4000	0.3000	0.4000	0.3000		
20	0.1000	0.0000	0.0000	0.0000		

		_	Transform: Arcsin Square Root 1-Tailed					Number	Total			
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
L-Lab Control	0.8500	1.0000	1.1898	0.9912	1.4120	15.281	4				6	40
1.25	0.8250	0.9706	1.1739	0.7854	1.4120	23.013	4	0,139	2.410	0.2764	7	40
2.5	0.6250	0.7353	0.9173	0.6847	1.1071	19.559	4	2.377	2.410	0.2764	15	40
*5	0.4750	0.5588	0.7602	0.6847	0.8861	12.679	4	3.746	2.410	0.2764	21	40
*10	0.3500	0.4118	0.6322	0.5796	0.6847	9.597	4	4.862	2.410	0.2764	26	40
*20	0.0250	0.0294	0.1995	0.1588	0.3218	40.840	4	8,635	2.410	0.2764	39	40

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distrib	ution (p >	0.01)		0.94708		0.884		-0.708	1.22015
Bartlett's Test indicates equal var	iances (p =	= 0.17)			7.79052		15.0863			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	2.5	5	3,53553		0.23511	0.27282	0.55596	0.02631	5.9E-07	5, 18

				Ma	ximum Likeliho	od-Probi	t				
Parameter	Value	SE	95% Fiduc	cial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	2.44835	0.47049	1.52619	3.37051	0.15	5.2399	7.81472	0,16	0.76778	0.40844	4
Intercept	3.12022	0.4268	2.28369	3.95674							
TSCR	0.15442	0.05075	0.05495	0.25389	1					_	
Point	Probits	mg/L	95% Fiduo	cial Limits							
EC01	2.674	0.65706	0.13179	1.39107	0.9						
EC05	3.355	1.24725	0.36377	2.2445	0.8		т				
EC10	3.718	1.75526	0.62268	2.90744	0.7					1-tail,	0.05
EC15	3.964	2.21033	0.8926	3.47098						- lev	
EC20	4.158	2.65476	1.18576	4.00457	8.0 3 0 .4 0 .4 0 .4		\sim	Ť		of signi	
EC25	4.326	3.10662	1,50963	4.5371	2 0.5	T					licance
EC40	4.747	4.61635	2.73374	6.30643			T	\sim	-		
EC50	5,000	5.85835	3.83908	7.82491	4				4		
EC60	5.253	7.4345	5.26752	9.93724	0.3				-^\		
EC75	5.674	11.0475	8.29092	15.8914	0.2						
EC80	5.842	12.9278	9.68561	19.6215	0.1					\downarrow	
EC85	6.036	15.5272	11.4616	25.4131					```	N.	
EC90	6.282	19.5528	13.9743	35.6703	0 7	10	in	10		- 1	
EC95	6.645	27.5167	18.4359	59.9524	L-Lab Control	1.25	2.5	ង្	1 0	• 20	
EC99	7.326	52.2329	30.2227	162.878	- 8						


Sediment Testing Reference Toxicant Results AMEC Bioassay Laboratory

Client: Toxicant:			/na z	L_	53 11	17 ees	ja					,		,	Start	Date/	Time:	 	/17/	63	163	6	
Analysts:	J!	2													End	Date/	Time:	/	z1/	03	142	,5	
Conc.		Sur	vival			D (mg					(pH ui					inity (-		re (°C)	
(mg/L)	Rep	0	96	0		48							96					96_		24			96
LC	A	10	٩	8.6	7.6	8.3	7.0	5.8	7.92	7.69	7.68	765	7.50	30	304	29.9	29.9	29.9	14.9	164	15.7	15.2	15.4
	В	10	10												·								
	с	(0	7																				
_	D	(0	8																				
1.25	Α	10	ยุ	8.7	۲.٦	8.4	7.9	7.4	7.92	1.73	1.71	ากฯ	7.72	30	રવ ૪	299	29.9	29.8	<u>4.8</u>	16.0	15,8	15.3	15.5
	в	(0	5								·												
	С	(0	q																				
	D	{0	10																				
2.5	А	10	ц	8.7	7.9	8.4	6,8	7.4	7.92	7.75	בר.ר	1.75	1.73	30	29.7	29.9	29,9	299	14.8	15.8	15.8	15.3	15.6
	В	10	ר ר																				
	С	10	6																				
	D	10	S																				
5.0	А	10	ц	8.7	7.8	8.4	8,0	7.5	7.94	1.76	7.69	7,74	7.71	30	297	29,8	29,8	29.8	14.8	15.9	15.8	15.4	15.6
	в	(0	6																				
	С	(0	ц																				
	D	lo	5																				
10	A	(0	4	8.7	7.8	8.7	8,0	1.8	7.94	7.78	7.72	7.76	7.75	30	277	29,7	24.7	29.8	14.8	15.8	15,8	15.5	157
	8	10	3																				
	с	(0	4																				
	D	10	3																		4		
70	A	10	Y	8.7	1.9	8,8	8.0	7.6	7.95	7.80	7.73	35.5	7.72	30	29.6	29.6	29,6	24.6	14.8	15-8	15.7	15.7	15.9
	В	ίΟ	0					<u> </u>		<u> </u>								ľ		<u>_</u>			
	С	10	0												1				1				
· · · · · · · · · · · · · · · · · · ·	D	10	0																				

'n

AMEC Bioassay Laboratory - 5550 Morehouse Dr., Suite B. San Diego, CA 92121.

QA Check: <u>Br S</u> Final Review: <u>JP</u>

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
10/08/99	8.5659	9.2266	6.0144	2.8023	12.4388	15.6510
11/10/99	8.2133	9.2266	6.0144	2.8023	12.4388	15.6510
12/22/99	8.5659	9.2266	6.0144	2.8023	12.4388	15.6510
01/28/00	5.9193	9.2266	6.0144	2.8023	12.4388	15.6510
03/31/00	3.0465	9.2266	6.0144	2.8023	12.4388	15.6510
06/15/01	10.8749	9.2266	6.0144	2.8023	12.4388	15.6510
02/21/02	12.8870	9.2266	6.0144	2.8023	12.4388	15.6510
03/01/02	9.1171	9.2266	6.0144	2.8023	12,4388	15.6510
05/21/02	11.7849	9.2266	6.0144	2.8023	12.4388	15.6510
08/13/02	10.5923	9.2266	6.0144	2.8023	12.4388	15.6510
08/16/02	11.9653	9.2266	6.0144	2.8023	12.4388	15.6510
11/15/02	10.8858	9.2266	6.0144	2.8023	12.4388	15.6510
02/07/03	12.6153	9.2266	6.0144	2.8023	12.4388	15.6510
05/13/03	2.5734	9.2266	6.0144	2.8023	12.4388	15.6510
05/20/03	11.7033	9.2266	6.0144	2.8023	12.4388	15.6510
11/17/03	5.8583	9.2266	6.0144	2.8023	12.4388	15.6510
12/04/03	11.6843	9.2266	6.0144	2.8023	12.4388	15.6510

 $^{(i)}$

Reference Toxicant Control Chart - Eohaustorius 96hr Survival

M. GALLOPROVINCIALIS

			Bivalve La	arval Survi	ival and Develop	nent Test-Propo	rtion Normal
Start Date:	10/22/2003		Test ID:	031022me	ert	Sample ID:	REF-Ref Toxicant
End Date:	10/24/2003		Lab ID:	AEESD-A	MEC Bioassay SD	Sample Type:	CUCL-Copper chloride
Sample Date:			Protocol:	ASTM 87	•	Test Species:	ME-Mytilis edulis
Comments:							
Conc-ug/L	1	2	3	4	5		
Lab Control	0.9348	0.9175	0.8750	0.8144	0.9213		<u> </u>
2.5	0.8065	0.8557	0.8316	0.8800	0.8400		
5	0.8250	0.8144	0.7528	0.8916	0.8082		
10	0.8095	0.8700	0.8991	0.9310	0.8370		
20	0.7381	0.7000	0.8900	0.4878	0.6739		
40	0.0000	0.0000	0.0000	0.0000	0.0000		

			Tra	ansform:	Arcsin So	uare Roo	t	Rank	1-Tailed	Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Resp	Number
Lab Control	0.8926	1.0000	1.2427	1.1254	1.3126	6.104	5			50	463
2.5	0.8427	0.9441	1.1641	1.1153	1.2171	3.261	5	20.00	16.00	76	485
5	0.8184	0.9169	1.1336	1.0504	1.2352	5.852	5	18.50	16.00	77	422
10	0.8693	0.9739	1.2058	1.1192	1.3051	6.106	5	23.00	16.00	61	472
20	0.6980	0.7819	0.9987	0.7732	1.2327	16.465	5	17.00	16.00	135	458
* 40	0.0000	0.0000	0.0581	0.0500	0.0763	17.978	5	15.00	16.00	394	394

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distrib	ution (p >	• 0.01)		0.92392	0.9	0.07351	3.68073
Bartlett's Test indicates unequal	variances (p = 1.03E	E-03)		20.4439	15.0863		-
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤÜ				
Steel's Many-One Rank Test	20	40	28.2843					

				Ma	ximum Likeliho	od-Probit	t				
Parameter	Value	SE	95% Fidu	cial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	
Slope	15.2358	2.64773	10.0462	20.4253	0.10799	6.73547	7.81472	0.08	1.36192	0.06564	
Intercept	-15,75	3.45776	-22,527	-8.9727							
TSCR	0.14332	0.00816	0.12732	0.15932							
Point	Probits	ug/L		<u>cial Limi</u> ts	1 1 1						٦
EC01	2.674	16.1894	14.3527	17.2261	0.9		-	Т	•	-	
EC05	3.355	17.9458	16.71	18.6786							
EC10	3.718	18.9586		19.567	_ 0.8		I				
EC15	3.964	19.6741		20.2642	0.7 0. 7 0.6					*	
EC20	4.158	20.262			0.6					Ν	ł
EC25	4.326	20.7803		21.5577						$ \rangle$	
EC40	4.747	22.1459	21.3813	23.4922	0.5 0.4 0.3					τ /	
EC50 .	5.000	23.0103	22.0655	24.8237	50.4						
EC60	5.253	23.9084	22.7466	26.2594	ā]						
EC75	5.674	25.4796		28.8667	2 0.3						
EC80	5.842	26.1313	24.3638	29.9788	0.2					\	
EC85	6.036	26.9121	24,9168	31.3326	0,1						
EC90	6,282	27.9278	25.6274	33.1272	···]						V
EC95	6.645	29.5041	26.7136	35.9838	0 <u>1</u>						4
EC99	7,326	32.7048	28,8672	42.0374	itro	2.5	Ω.	ţ	2	2	9 7
					Lab Control						
					Lab						

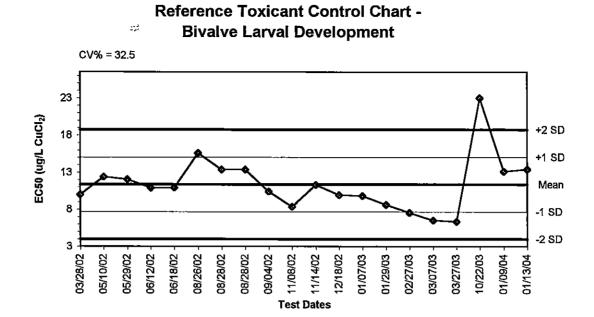
Protoco: ASTM 87 Sample Type: CUCL-Copper chloride Sample Type: Cucle Copper chloride Sample Type:	Test:	BV-B	valve	Larval Surviva	and Develop	nent Test	Test ID: 031	022mert		<u> </u>	
Sample ID: REF-Ref ToxicantSample Type: CUCL-Copper chlorideLab ID: AEESD-AMEC Bioassay SDPos ID Rep GroupInitial DensityCounted Normal Number1Notes1Initial DensityCounted Normal Normal1Initial DensityCounted Normal1Initial DensityCounted NormalNotes2Initial Counted NormalNotes3Initial Counted NormalNotes4Initial Counted NormalNotes4Initial Counted NormalNotes5Initial Counted NormalNotes6Initial Counted NormalNotes7Initial Counted NormalNotes6Initial Counted NormalNotes7Initial Counted NormalNotes7 <th co<="" td=""><td></td><td></td><td></td><td></td><td>F</td><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td></td> <td></td> <td></td> <td>F</td> <td></td> <td></td> <td></td> <td></td> <td></td>					F					
Start Date: 10/22/2003Lab ID: AEESD-AMEC Bioassay SDPosIDRepGroupInitial DensityFinal DensityTotal CountedNumber NormalNotes11100 358 $5H$ 100 0 SH 2100 358 $5H$ 100 358 SH 3100 358 SH 100 358 SH 4100 358 77 SH 5100 971 83 SH 6100 977 SH 71 633 744 SH 8100 977 SH 9100 70 KT 10977 871 KT 11977 871 KT 12 877 814 13 877 874 KT 14 884 63 KT 15 873 874 KT 16 974 973 KT 17 797 KT 18 794 7375 19 797 797 21 797 777 23 977 797 24 733 57 25 890 166 880 166 880 166 880 166 880 166 880 166 880 166									er chloride		
PosIDRepGroupInitial DensityFinal DensityTotal CountedNumber NormalNotes1NormalNotes2NormalNotes3NormalNotes3NormalNotes4NormalNotes456789101113141416 <td></td> <td></td> <td></td> <td></td> <td>End Date: 10/2</td> <td>24/2003</td> <td></td> <td></td> <td></td> <td></td>					End Date: 10/2	24/2003					
PosIDRepGroupDensityDensityCountedNormalNotes111000SH210094SH310094SH410094SH410094SH510094SH610097936100097SH710010009791000700KT10100097SH11100097SH12100097SH13100087SH14100087SH15100087SH16100087SH17100010001000181000100019100010001110001000111000100011100010001210001000131000100014100010001510001000161000100017100010001810001000191000100019100010001910001000100010001000110010001000110010001100100011001000110010					· ·		· ·		<u> </u>		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pos	ID	Rep	Group						Notes	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					Denoty	Donony		1 +	SU		
3						· <u> </u>					
4 88 77 SH 5 91 82 SH 6 100 87 SH 7 63 74 SH 8 74 SH SH 9 100 70 KT 9 100 70 KT 10 9 100 70 11 97 89 KT 12 87 81 KT 13 97 87 SH 14 87 82 KT 15 87 82 KT 16 87 82 KT 17 87 87 KT 18 89 0 KT 19 93 75 KT 20 95 79 KT 21 97 79 KT 22 160 89 KT 23 97 79 KT 24 73 59 KT 25 <t< td=""><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td></t<>					<u> </u>						
5 91 93 53 6 $K00$ 87 54 7 $K1$ $K1$ $K1$ 8 $H3$ $K1$ $K1$ 9 $H3$ $K1$ $K1$ 9 $H3$ $K1$ $K1$ 10 $H3$ $K1$ $K1$ 11 $H3$ $K1$ $K1$ 12 $K1$ $K1$ $K1$ 13 $S1$ $K1$ $K1$ 14 $S1$ $K1$ $K1$ 15 $S1$ $K1$ $K1$ 16 $S1$ $K1$ $K1$ 17 $S3$ $K1$ $K1$ 18 $S3$ $S1$ $K1$ 19 $S1$ $S1$ $K1$ 20 73 75 $K1$ 21 73 71 $K1$ 22 100 89 $K1$ 23 71 71 $K1$ 24 73 51 $K1$			·								
6 100 $g7$ SH 7 63 74 SH 8 4/3 0 KT 9 10 10 70 KT 10 9 100 70 KT 11 97 $S9$ KT 11 97 $S9$ KT 11 97 $S9$ KT 12 $S7$ $S1$ KT 13 $S7$ $S1$ KT 14 $S7$ $S1$ KT 15 $S7$ $S1$ KT 16 $S7$ $S2$ KT 17 $S3$ O KT 18 $S9$ O KT 19 97 77 KT 21 73 77 KT 22 160 89 KT 23 77 77 KT 24 73 51 374 KT 25 84 68 <											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			_		+						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			_			· · · ·	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				· · ·			67				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_		-	-				89			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_		. –								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			· · ·				84	85			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							84				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							81				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	·				15-4-27 /27			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							22-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			· · · ·				\$ 6			······································	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.					<u> </u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								*****		<u> </u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										<u></u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					<u>-</u>					·······	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
25 84 68 MC 26 \$60 \$60 \$60 \$60 7.7 97 79 1 .8 92 86 1				- -	†						
26 %80 lele mc 7.7 97 79					1				MC		
7.7 91 8 92 86					+					·	
					1				1	<u> </u>	
	_	· · -			+		÷			·	
	29			······································	1		92	77			
30 109 98					<u>†</u>		1		—	<u> </u>	
Comments:		nents	·		I	L <u></u>	1 104	170		· <u></u> -	

. ; ; ;

- - -

.

Species: ME-Mytilis edulis Protocol: ASTM 87 Sample TD:: REF-Ref Toxicant Sample Type: CUCL-Copper chloride Start Date: 10/22/2003 End Date: 10/24/2003 Lab ID: AEESD-AMEC Bioassay SD 28 1 1 L-Lab Control Itilial Total Number 28 1 1 L-Lab Control Itilial Density Counted Normai Notes 28 1 1 L-Lab Control Itilial Final Total Number 12 2 L-Lab Control Itilial Final Total Normai Notes 3 5 5 L-Lab Control Itilial Final Normai Notes 27 4 4 L-Lab Control Itilial Final Notes 3 5 L-Lab Control Itilial Final Notes Notes 28 1 1 5 S Itilial Notes Notes 29 4 2.5 Itilial	Test:	Test: BV-Bivalve Larval Survival and Development Test Test ID: 031022mert							
Sample ID: REF-Ref Toxicant Sample Type: CUCL-Copper chloride Start Date: 10/22/2003 End Date: 10/24/2003 Lab ID: AEESD-AMEC Bioassay SD Pos ID Rep Group Density Density Counted Normal Notes 28 1 1 L-lab Control III Counted Normal Notes 28 1 1 L-lab Control IIII Counted Normal Notes 28 1 1 L-lab Control IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII									
Start Date: 10/22/2003 End Date: 10/24/2003 Lab ID: AEESD-AMEC Bioassay SD Pos ID Rep Group Initial Density Final Density Total Counted Number Normal 28 1 1 L-Lab Control 117 117 111 2 2 L-Lab Control 117 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>per chloride</td>									per chloride
Pos ID Rep Group Initial Density Total Density Number Counted Number Normal Notes 28 1 1 L-Lab Control U_1^{-5} Imital Normal Normal Notes 28 2 L-Lab Control U_1^{-5} Imital Imital Normal Notes 21 2 L-Lab Control Imital Imital Imital Imital Imital Imital Imital Imital Imital Normal Notes 27 4 4 L-Lab Control Imital					nd Date: 10/2	4/2003			
Pos ID Rep Group Density Counted Normal Notes 28 1 1 L-Lab Control 17^{-} 11 2 2 L-Lab Control 11^{-} 4 3 3 L-Lab Control 5^{-} 27 4 4 L-Lab Control 7^{-} 13 5 5 L-Lab Control 11^{-} 19 6 1 2.5 20 8 3 2.5 21 9 4 2.5 22 8 3 2.5 23 12 2 5					- · ·				
28 1 1 L-Lab Control $11''$ 11 2 2 L-Lab Control $11''$ 4 3 3 L-Lab Control $8''$ 74 4 L-Lab Control $8''$ 13 5 5 L-Lab Control $6''$ 13 5 5 L-Lab Control $11''$ 19 6 1 2.5 $11''$ 20 8 3 2.5 $11''$ 20 8 3 2.5 $11''$ 21 10 5 2.5 $11''$ 23 12 2 5 $11''$ 23 12 2 5 $11''$ 23 12 2 5 $11''$ 24 15 5 $11''$ $10'''$ 25 16 1 $10'''''''' 11'''''''''''''''''''''''''''''''''''$	Pos	ID	Rep	Group					Notes
11 2 2 L-Lab Control 3 4 3 3 L-Lab Control 3 13 5 6 L-Lab Control 3 13 5 6 L-Lab Control 3 14 4 L-Lab Control 117 117 19 6 1 2.5 117 5 7 2 2.5 117 20 8 3 2.5 117 20 8 3 2.5 117 20 8 3 2.5 117 21 9 4 2.5 117 31 10 5 100 100 23 12 2 5 100 100 23 12 2 5 100 100 24 15 5 100 100 100 100 29 20 5 100 100 100 1000 1000 1000 1000 1000					,				
4 3 3 L-Lab Control 8° 27 4 4 L-Lab Control 11° 13 5 5 L-Lab Control 11° 19 6 1 2.5	11	2	2					· -·	
27 4 4 L-lab Control $III7$ 13 5 5 L-Lab Control $III7$ 19 6 1 2.5 $III7$ 20 8 3 2.5 $III7$ 2 9 4 2.5 $III7$ 3 10 5 2.5 $III7$ 23 12 2 5 $III7$ 16 13 3 5 $III7$ $III7$ 23 12 2 5 $III7$ $III7$ 16 13 3 5 $III7$ $III7$ $III7$ 24 15 5 $III7$ $III7$ $III7$ $III71$ 25 16 1 $II0$ $III71$ $III71$ $III71$ 24 15 5 $III71$ $III71$ $III71$ $III71$ 29 20 5 $III71$ $III71$ $III71$ $III71$ $III71$ 29 22 23 3 $III1111$ $III11111111111111111$	4		З				89		
13 5 5 L-Lab Control 117 19 6 1 2.5 117 20 8 3 2.5 117 20 8 3 2.5 117 3 10 5 2.5 117 3 10 5 2.5 111 23 12 2 5 117 23 12 2 5 111 14 4 5 117 117 15 5 111 10 117 24 15 5 117 110 12 19 4 10 117 110 12 19 4 10 117 117 14 21 1 200 110 117 117 14 21 1 20 117 117 117 117 117 14 21 1 20 117 117 117 117 117 117 117 117	27	4	4						
19 6 1 2.5	13	5	5	L-Lab Control					
20 8 3 2.5 10 2 9 4 2.5 11 3 10 5 2.5 11 26 11 1 5 11 23 12 2 5 11 23 12 2 5 11 13 3 5 11 11 13 3 5 11 11 7 14 4 5 11 24 15 5 5 11 24 15 5 5 11 24 15 5 5 11 25 16 1 10 10 11 20 5 10 11 120 111 120 22 22 20 111 20 111 111 111 212 23 320 1111 1111 1111 <td< td=""><td>19</td><td>6</td><td>1</td><td>2.5</td><td></td><td>·</td><td>//<i>_/_</i></td><td></td><td></td></td<>	19	6	1	2.5		·	// <i>_/_</i>		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	7	2	2.5		1			· · · ·
3 10 5 2.5	20	8	3	2.5					
26 11 1 5	2	9	4	2.5					
23 12 2 5	3	10	5	2.5					
16 13 3 5 $\begin{subarray}{cccccccccccccccccccccccccccccccccccc$	26	11	1	5					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	12	2	5					
24 15 5 5 1 25 16 1 10 10 10 6 17 2 10 10 10 30 18 3 10 10 10 12 19 4 10 10 10 29 20 5 10 10 10 14 21 1 20 10 10 10 9 22 2 20 10 10 10 10 15 24 4 20 10 10 10 10 10 10 25 5 20 10 10 10 10 10 18 26 1 40 10 10 10 10 10 18 27 2 40 10 </td <td>16</td> <td>13</td> <td>3</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td>	16	13	3	5					
25 16 1 10	7	14							
	_24	15	5	5		·			
30 18 3 10 Image: state	25	16	1	10					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	17	2	10					
29 20 5 10	30	18	3	10					
14 21 1 20	12	19	4	10					
9 22 2 20	29	20	5	10				i	
22 23 3 20	14	21	1	20					
15 24 4 20	9	22	2	20			 		
10 25 5 20	22	23	3	20				İ	
18 26 1 40	15	24	4	20				1	
8 27 2 40 21 28 3 40 17 29 4 40	10	25	5	20				l	
21 28 3 40 17 29 4 40	18	26	1	40			1	1	
17 29 4 40	8	27	2	40			i		
	21	28	3	40			1	1	
1 30 5 40	17	29	4	40					
	1	30	5	40					


.

Comments:

-

Bivalve Development Bioassay Worksheet

Client:	Buenciuen tura	Start Date/Time: End Date/Time:	10/22/03 1600
Test No.: Test Species:	M. edulij	Date Received:	10/21/03
Sample Type:	11 Jar Whole	Sediment	
Test Chamber Typ	e and Sample Volume:		
Spawn Initiation 7	Time: 10N		
Number of Spawr		_	
Spawn Condition:	Good		
Fertilization Time			
Egg Stock Densit	y Calculation: TR TR		
Eggs Counted (x) lox dilution Me	285-118 38 97 285-118 47 107 270118 47 107 280130 47 107 28 152 47 107 28 152 47 103	10 x dilv+io~ Overall Mean: <u>347-3</u> 120,9	
	Mean: $\frac{1209}{3000} \times 42 = \frac{5077}{3000}$	8 eggs/ml	
Initia Inoculum	Stock - $\frac{50778 \text{ eggs/ml}}{25000 \text{ eggs/ml}} =$	2.03 (ess	1,03 voter
Percent Division	Upon Inoculation: 80	· · · · ·	
Time of Inoculat	ion: <u>1600</u>	, · ·	
Comments:		AMEC Bioassay La 5550 Morehouse Di San Diego, CA 921	rive, Suite B
QA Check:		(858) 458-9044	£1

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
03/28/02	10.0096	11.3570	7.6711	3.9853	15.0428	18,7286
05/10/02	12.3924	11.3570	7.6711	3.9853	15.0428	18.7286
05/29/02	12.0485	11.3570	7.6711	3.9853	15.0428	18.7286
06/12/02	10.8878	11.3570	7.6711	3.9853	15.0428	18.7286
06/18/02	10.9317	11.3570	7.6711	3.9853	15.0428	18.7286
08/26/02	15.6155	11.3570	7.6711	3.9853	15.0428	18.7286
08/28/02	13.3760	11.3570	7.6711	3.9853	15.0428	18.7286
08/28/02	13.3760	11.3570	7.6711	3.9853	15.0428	18.7286
09/04/02	10.4338	11.3570	7.6711	3.9853	15.0428	18.7286
11/08/02	8.3754	11.3570	7.6711	3,9853	15.0428	18.7286
11/14/02	11.3155	11.3570	7.6711	3.9853	15.0428	18.7286
12/18/02	9.9361	11.3570	7.6711	3.9853	15.0428	18.7286
01/07/03	9.8373	11.3570	7.6711	3.9853	15.0428	18.7286
01/29/03	8.6253	11.3570	7.6711	3.9853	15.0428	18.7286
02/27/03	7.5397	11.3570	7.6711	3.9853	15.0428	18.7286
03/07/03	6.5174	11.3570	7.6711	3.9853	15.0428	18.7286
03/27/03	6.3338	11.3570	7.6711	3.9853	15.0428	18.7286
10/22/03	23.0103	11.3570	7.6711	3.9853	15.0428	18.7286
01/09/04	13.1416	11.3570	7.6711	3.9853	15.0428	18.7286
01/13/04	13.4358	11.3570	7.6711	3.9853	15.0428	18.7286

ъ

APPENDIX D TOXICITY STATISTICAL ANALYSIS SUMMARIES & RAW DATA

Appendix Table D-1. ANOVA Summary Results City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event

Test Initiation Date: 14 November 2003 Test Species: *Eohaustorius estuarius*

Whole Sediment

Parameter	Value		
Table Analyzed			
Amphipod Survival			
One-way analysis of variance			
P value	0.9888		
P value summary	ns		
Are means signif. different? (P < 0.05)	No		
Number of groups	11		
F	0.2484		
R squared	0.05344		
Bartlett's test for equal variances			
Bartlett's statistic (corrected)	9.181		
P value	0.515		
P value summary	Ins		
Do the variances differ signif. (P < 0.05)	No		
ANOVA Table	SS	df	MS
Treatment (between columns)	0.03327	10	0.003327
Residual (within columns)	0.5893	44	0.01339
Total	0.6226	54	

Test Initiation Date: 22 October 2003 Test Species: *Mytilus galloprovincialis*

Parameter	Value
Table Analyzed	
Bivalve Effective Survival	
Kruskal-Wallis test	
P value	0.0004
Exact or approximate P value?	Gaussian Approximation
P value summary	***
Do the medians vary signif. (P < 0.05)	Yes
Number of groups	11
Kruskal-Wallis statistic	32.12

Test Site	Amphipod Survival	Bivalve Survival	Bivalve Normality	Bivalve Effective Survival
A-1	0.3178	0.0242	0.2426	0.0551
A-2	0.3038	0.3660 ^ª	0.0088	0.4439 ^a
A-3	0.2444	0,1058	0.4074	0.1256
B-1	0.1940	0.0003	0.0098 ^a	0.0002
B-2	0.3962	0.2555	0.0234	0.4253
B-3	0.2964	0.0115	0.0015	0.0034
B-4	0.4026	0.0193	0.1559	0.0642
C-1	0.0959	0.3627	0.1450 [°]	0.2704
C-2	0.2807	0.1523	0.2066	0.1519
C-3	0.4164	0.2114	0.3172	0.4412

Appendix Table D-2. Summary of Whole Sediment t-test p values City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event Test Initiation Dates: 22 October 2003, 14 November 2003

Bold indicates a statistically significant decrease ($P \le 0.05$)

^a - Indicates Welch's correction applied due to unequal variances

E. ESTUARIUS

Appendix Table D-3. Summary of Pearson Correlations between Grain Size, TOC and Amphipod Survival City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event Test Initiation Date: 14 November 2003 Test Species: *Eohaustorius estuarius*

Grain Size (% fine) vs:	Amphipod Survival
p- value	0.154
N	10
<u>r</u> ²	0.237
Significance?	NO

Grain Size (% sand) vs:	Amphipod Survival
p- value	0.665
N	10
r ²	0.025
Significance?	NO

Grain Size (% gravel) vs:	Amphipod Survival
p- value	0.3089
N	10
r ²	0.147
Significance?	NO

TOC (mg/kg) vs. :	Amphipod Survival
p- value	0.4135
N	10
r ²	0.0851
Significance?	NO

Appendix Table D-4. Summary of Pearson Correlations between Trace Metal Concentrations and Amphipod Survival

City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event

Test Initiation Date: 14 November 2003

Test Species: Eohaustorius estuarius

Copper (mg/kg) vs. :	Amphipod Survival
p- value N	0.563
r ² Significance?	0.044 NO

Nickel (mg/kg) vs. :	Amphipod Survival
p- value	0.186
N	10
r ²	0.207
Significance?	NO

Zinc (mg/kg) vs. :	Amphipod Survival
p- value	0.140
N	10
r ²	0.284
Significance?	NO

Ten-Day Amphipod Bioassay - Ogden Bioassay Laboratory Survival/Reburial Data

Buenaventura #2 11 **Test Species:** E. estrarivs

Random Number	Time	Number Alive	Number Reburied	Comments/ Observations
(1100	<u>~~~</u>		JR
	1700	<u> </u>	0	<u></u>
]		15	0	
<u> </u>		ZO	0	······································
	· · · · · · · · · · · · · · · · · · ·	20	0	
6		70	0	
7		20		······································
8		17	<u> </u>	
9		io	0	
10		19	0	
11		20	0	
17		19	0	
7.1		19	0	
14		18	0	
N		18	0	
16		17	0	
[17		18	0	
18		19	0	
[9		19	0	
70		18	0	
<u> </u>		16	0	
22		20	0	
- 23		רו	0	
24		20	0	
<u> </u>		17	0	
26		17	0	
27		18	0	
78		15	0	
24		16		
30		15	0	
<u></u> <u>]</u>	.	14	0	
32		18	0	
33	 -	18	0	
34		17	0	<u></u>
35	I	17	0	

QA Review/Date: Final Review/Date:

Client: Test Date:

, Ogden Bioassay Laboratory - 5550 Morehouse Dr., Suite B. San Diego, CA 92121.

UC 110 12/16/03

Ten-Day Amphipod Bioassay - Ogden Bioassay Laboratory Survival/Reburial Data

Client: Test Date: Buenquentura

Test Species:

പ E. estuarius

Random		Number	************************************	
Number	Time	Alive	Reburied	Comments/ Observations
76	1100	19	0	JR
37		18	0	
38		19	0	1
39		16 18	0	
40		8	0	
41		14	0	
42				
43	<u> </u>	19	0	
44 45			0	· · · · · · · · · · · · · · · · · · ·
			<u> </u>	h
46		16	<u> </u>	······
<u> </u>		14	0 0	
		18		······
45 50		20	0	
		16		
- 51		19	0	
57 57			<u> </u>	
54		18	0	
17			0	no bodies
<u> </u>			<u> </u>	
		12	0	· · · · · · · · · · · · · · · · · · ·
57 57		13		
59		17 17	6	
60		14	<u> </u>	TR
60	· · · · · · · · · · · · · · · · · · ·			
Surr A-3			0	<u>├</u>
-urc A-S				· · · ·
			· · · · ·	łł
			<u> </u>	ļ
				<u> </u>
l		<u> </u>		í
			<u> </u>	
				<u> </u>
······································				<u>↓ ····</u> · ·
			L	

QA Review/Date: Final Review/Date: Ogden Bioassay Laboratory - 5550 Morehouse Dr., Suite B. San Diego, CA 92121.

11e 12.5.03 12.110.13 NO

.

Buenaventura Sediments **RE-TEST DATE**: November 14, 2003 Amphipod - *Eohaustorius estuarius*

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Site	Rep	Rand#		Site	Rep	Rand #
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		А	25	-	B-2	А	14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	#1		38			В	49
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		С	53			С	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		D	18			D	36
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		E	59	_		E	16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CONTROL	А	19	•	B-3	A	47
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	#2		40			В	32
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		С	48			С	58
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		D	34			D	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		E	45			E	17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A-1	Á	1	•	B-4	А	6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			51			В	52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		С	57			С	56
A-2 A 9 C-1 A 39 B 15 B 46 C 11 D 28 D 27 E 12 A-3 A 54 C-2 A 44 B 37 B 10 C 13 D 22 D 3 E 5 B-1 A 26 C-3 A 24 B 4 B 30 C 35 D 60 D 21 21		D	33			D	42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		E	41			Е	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A-2	A	9	•		А	39
D 28 D 27 E 43 E 12 A-3 A 54 C-2 A 44 B 37 B 10 C 13 C 23 C 13 D 3 E 5 B-1 A 26 C-3 A 24 B 30 B 4 B 30 C 35 D 21			15				46
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		С	55			С	11
A-3 A 54 C-2 A 44 B 37 B 10 C 23 C 13 D 22 D 3 E 29 E 5 B-1 A 26 C-3 A 24 B 4 B 30 30 C 50 C 35 35 D 60 D 21 21			28			D	27
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Е	43	_		E	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A-3	A	54	•	C-2	А	44
D 22 D 3 E 29 E 5 B-1 A 26 C-3 A 24 B 4 B 30 C 35 D 60 D 21 D 3		в	37			В	10
E 29 E 5 B-1 A 26 C-3 A 24 B 4 B 30 30 C 50 C 35 D 60 D 21		С	23			С	13
B-1 A 26 C-3 A 24 B 4 B 30 C 50 C 35 D 60 D 21			22			D	3
B 4 B 30 C 50 C 35 D 60 D 21			29	_		E	5
C 50 C 35 D 60 D 21	B-1	A	26	-	C-3	A	24
C 50 C 35 D 60 D 21		В	4				30
		С	50				35
		D	60			D	21
		E	20	_		E	31

M. GALLOPROVINCIALIS

.

Appendix Table D-5. Summary of Pearson Correlations between Grain Size, TOC and Bivalve Results City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event Test Initiation Date: 22 October 2003 Test Species: *Mytilus galloprovincialis*

Grain Size (% fine) vs:	Survival	Normailty	Effective Survival
p- value	0.3830	0.4863	0.6127
N	10	10	10
r ²	<u>0.096</u>	0.062	0.034
Significance?	NO	NO	NO

Grain Size (% sand) vs:	Survival	Normailty	Effective Survival
p- value	0.3983	0.8959	0.4682
N	10	10	10
r ²	0.091	0.002	0.068
Significance?	NO	NO	NO

Grain Size (% gravel) vs:	Survival	Normailty	Effective Survival
p- value	0.8615	0.8881	0.8683
N	10	10	10
r ²	0.005	0.003	0.004
Significance?	NO	NO	NO

TOC (mg/kg) vs. :	Survival	Normailty	Effective Survival
p- value	0.2542	0.7126	0.3027
N	10	10	10
r ²	0.159	0.018	0.132
Significance?	NO	NO	NO

Appendix Table D-6. Summary of Pearson Correlations between Trace Metals and Bivalve Results

City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event Test Initiation Date: 22 October 2003 Test Species: *Mytilus galloprovincialis*

Copper (mg/kg) vs. :	Survival	Normailty	Effective Survival
p- value	0.3867	0.9539	0.4637
N	10	10	10
r ²	0.095	0.000	0.069
Significance?	NO	NO	NO

Nickel (mg/kg) vs. :	Survival	Normailty	Effective Survival
p- value	0.2663	0.5725	0.4782
N	10	10	10
r ²	0.151	0.041	0.065
Significance?	NO	NO	NO

Zinc (mg/kg) vs. :	Survival	Normailty	Effective Survival
p- value	0.8137	0.7700	0.8596
N	10	10	10
r ²	0.008	0.013	0.005
Significance?	NO	NO	NO

Bivalve Embryo Development Score Sheet AMEC Bioassay Laboratory

Client:	City of Buenaventura	a		<u>Al-> C3</u>
Test Species: M. edulis		Project ID: SORE		
Analyst:	RG, SD		Date:	10/25/2003
			-	
	Number	Number	Total	Comments/
Random No.	Normal	Abnormal	Number	Observations
1	94		113	SH
2	86		92	SH
3	63		69	Rla
4	57		69 70	RG
5	86		96	Sh
6	97		D6	
7	66		78	R6
8	94		105	R6 SN
9	78			
10	101		87	
11	109		115	
12		<u> </u>	190	
13	169 78		64	¥
14	83		93	RG
15	80		90	Rb
16	65		82	1
17	97		101	
18	73		81	
19	79		82	
20	79		85	
21	37		57	55
22	81		103	
23	44	-	171	
24	89		147	
25	101		102	RG SD
26	102		107	SD
27	10		26	Ry Alot of debris
28	18		24 36 84 99	Rby ""
29	16		84	Ry
30	91		99	RG
31	96 63 96		99	Rig
32	63		66	RG
33	96		98	RG
34	57		99 66 98 78	Rb
35	RUSHE 85		94	Rb

AMEC Bioassay Laboratory - 5550 Morehouse Dr., Suite B. San Diego, CA 92121.

Bcs 12/3/03 QA Check:

10 p.1603 Final Review:

Bivalve Embryo Development Score Sheet AMEC Bioassay Laboratory

Client:	City of Buenaventura	1	Site ID:	A1->C3
Test Species:	M, edulis	·	Project ID:	SCHE
	RG 80	· · · · · · · · · · · · · · · · · · ·		10/25/2003
	Number	Number	Total	Comments/
Random No.	Normal	Abnormal	Number	Observations
36	R699 90		99	RG
37	42		65	
38	59		69	
39	lele		99	
40	60		73	RG
41	54	·	78	
42	(eu)8777		(4) 77 81	<u>V</u>
43	92		103	RG
44	(nu) 18 74		(RG) 74 78	RG
45	BUS LOT 100		325 124 107	SA RG
46	(ev) or 45		(1)45 64	<u>Ри</u> Rbj
47	(4)35 9		(KG) 9 35	
48	89		94	<u>SA</u>
49	87		88	50
50	104		120	26
51	83		100	R6
52	76		<u> </u>	Ry
53	1		73	Ry
54	69		- Fu	RG
55	39		46	R6
56	100 00 52		(14) 52.66	Ry
57	95		108	RG
58 (1)	815 24 79		\$3 91	RG
59	52		53	Ry
60	ור		85	RG
61	78		79	Ky
62	100		108	RG
63	(m)104 95		Mg 95 104	RG
64	88		102	RG RG RG RG RG
65	67		<u> </u>	Ry
66				
67				
68				
69				
70				

AMEC Bioassay Laboratory - 5550 Morehouse Dr., Suite B. San Diego, CA 92121.

QA Check: Bcs 12/13/03 Final Review: <u>IC A-1603</u>

@ vial scroored by JR. Appealed to be an outlier From the 1st count.

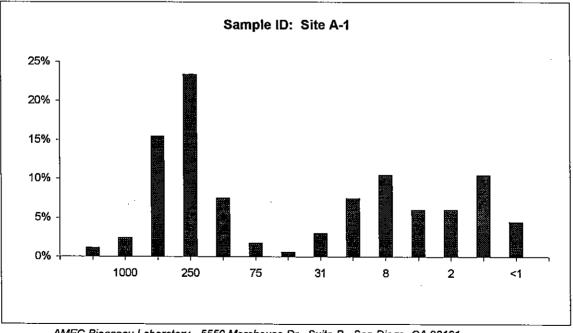
Buenaventura Sediments TEST DATE: October 22, 2003 Bivalve - *Mytilus edulis* (Whole sediment)

Site	Rep	Rand#		Site	Rep	Rand #
Control	A	57		B-2	А	20
Water	В	58			В	49
Only	С	62			С	10
	D	25			D	42
	Е	45			E	61
Control	A	60		B-3	А	65
Sed.	В	7			В	37
	С	43			С	56
	D	33			D	46
	E	30	_		E	16
Control	A	14	-	B-4	А	29
Sed.	В	40			В	44
w/vial	С	51			С	23
	D	50			D	9
	Е	54	_		E	32
A-1	А	63	-	C-1	А	35
	В	8			В	55
	С	19			С	39
	D	6			D	26
	E	. 1	_		E	15
A-2	А	12		C-2	А	31
	В	41			В	5
	С	22			С	17
	D	21			D	2
	Е	34	_		E	64
A-3	А	3	-	C-3	А	24
	В	48			В	52
	С	59			С	11
	D	38			D	36
	E	18	-		E	13
B-1	A	28	-			
	В	47				
	С	4				
	D	27				
	E	53	-			

APPENDIX E GRAIN SIZE ANALYSES

.

1

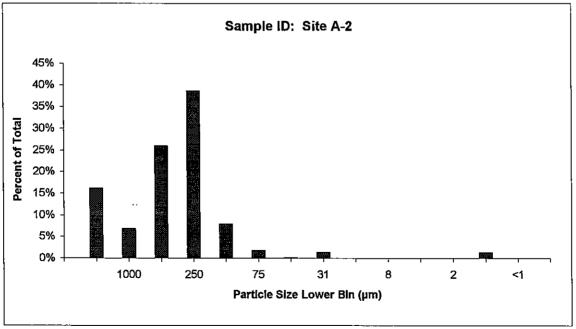

Appendix Table E-1. Grain Size Summary Results City of Buenaventura Santa Clara River Estuary Dry Weather Sampling Event Sample Collection Date: 17 October 2003

Site	Percent	Percent Sand	Percent	Percent	Percent Fine
Site	Gravel	Percent Sand	Silt		(Silt+Clay)
A-1	1.1	51.0	32.9	15.0	47.9
A-2	16.2	81.2	1.3	1.3	2.6
A-3	0.2	98.5	1.3	0.0	1.3
B-1	2.3	95.1	1.3	1.3	2.6
B-2	1.9	92.7	2.7	2.7	5.4
B-3	2.2	95.2	1.3	1.3	2.6
B-4	0.0	39.2	42.4	18.4	60.8
C-1	0.2	98.5	1.3	0.0	1.3
C-2	7.6	91.1	0.0	1.3	1.3
C-3	13.2	84.2	1.3	1.3	2.6
D-1	30.0	68.8	0.0	1.3	1.3

Client ID: City of Buenaventura Project ID: Santa Clara River Estuary Sample I.D: Site A-1 Sample Date: 10/17/2003 Analysis Date: nitiated 12/15/03

Particle Size	Particle Size		Incremental	Cumulative
(µm)	(mm)	phi	Percent	Percent
>2000	>2	-1	1.11%	1.11%
1000	1	0	2.43%	3.54%
500	0.50	1	15.44%	18.97%
250	0.25	2	23.37%	42.34%
125	0.125	3	7.51%	49.85%
75	0.075	3.5	1.72%	51.58%
63	0.063	4	0.57%	52.15%
31	0.031	5	2.99%	55.14%
16	0.016	6	7.48%	62.62%
8	0.008	7	10.47%	73.08%
4	0.004	8	5,98%	79.06%
2	0.002	9	5.98%	85.05%
1	0.001	10	10.47%	95.51%
<1	>0.001	>10	4.49%	100.00%

% Gravel	1.1%	>2000 µm
% Sand	51.0%	>63 µm
% Silt	32,9%	>2 µm
% Clay	15.0%	<2 µm

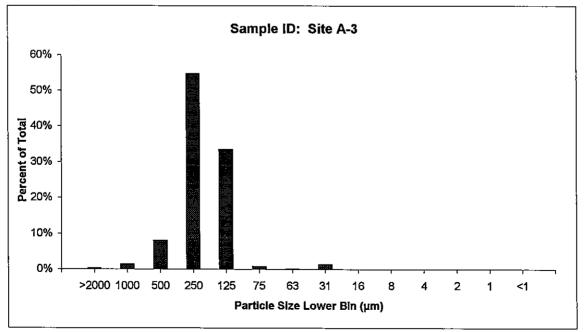


AMEC Bioassay Laboratory - 5550 Morehouse Dr., Suite B. San Diego, CA 92121

Client ID:	City of Buenaventura	Sample I.D:	Site A-2
Project ID:	Santa Clara River Estuary	Sample Date:	10/17/2003
		Analysis Date: r	nitiated 12/15/03

Particle Size	Particle Size		Incremental	Cumulative
(µm)	(mm)	phi	Percent	Percent
>2000	>2	-1	16.17%	16.17%
1000	1	0	6.80%	22.97%
500	0.50	1	25.95%	48.92%
250	0.25	2	38.57%	87.49%
125	0.125	3	7.91%	95.40%
75	0.075	3.5	1.79%	97,19%
63	0.063	4	0.18%	97.37%
31	0.031	5	1.32%	98.68%
16	0.016	6	0.00%	98.68%
8	0.008	7	0.00%	98.68%
4	0.004	8	0.00%	98.68%
2	0.002	9	0.00%	98.68%
1	0.001	10	1.32%	100.00%
<1	>0.001	>10	0.00%	100.00%

% Gravel	16.2%	>2000 µm
% Sand	81.2%	>63 µm
% Sllt	1.3%	>2 µm
% Clay	1.3%	<2 µm

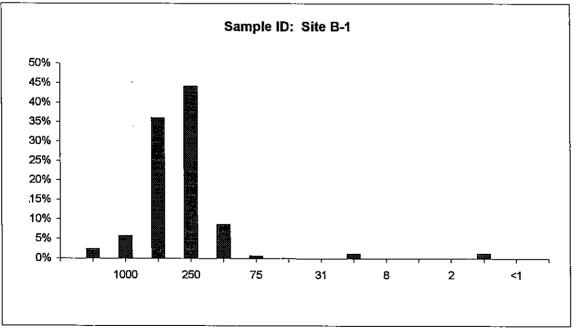


AMEC Bioassay Laboratory - 5550 Morehouse Dr., Suite B. San Diego, CA 92121

Client ID:	City of Buenaventura	Sample I.D:	Site A-3
Project ID:	Santa Clara River Estuary	Sample Date:	10/17/2003
		Analysis Date:	nitiated 12/15/03

Particie Size	Particle Size		Incremental	Cumulative
(µm)	(mm)	phl	Percent	Percent
>2000	>2	-1	0.25%	0.25%
1000	1	0	1.42%	1.67%
500	0.50	1	8.05%	9.72%
250	0.25	2	54.71%	64.42%
125	0.125	3	33.42%	97.85%
75	0.075	3,5	0.78%	98.62%
63	0.063	4	0.07%	98.70%
31	0.031	5	1.30%	100.00%
16	0.016	6	0.00%	100.00%
8	0.008	7	0.00%	100.00%
4	0.004	8	0.00%	100.00%
2	0.002	9	0.00%	100.00%
1	0.001	10	0.00%	100.00%
<1	>0.001	>10	0.00%	100.00%

% Gravel	0.2%	>2000 µm
% Sand	98.5%	>63 µm
% Silt	1.3%	>2 µm
% Clay	0.0%	<2 µm



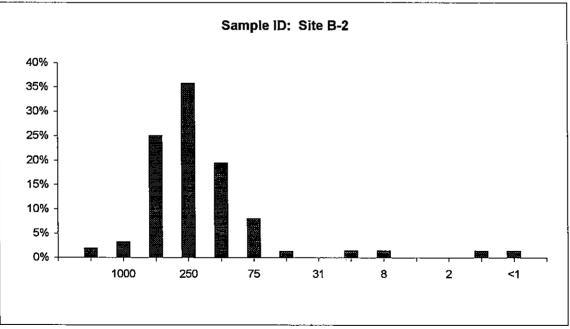
AMEC Bioassay Laboratory - 5550 Morehouse Dr., Suite B. San Diego, CA 92121

Client ID: City of Buenaventura Project ID: Santa Clara River Estuary Sample I.D: Site B-1 Sample Date: 10/17/2003 Analysis Date: nitiated 12/15/03

Particle Size	Particle Size		Incremental	Cumulative
(µm)	(mm)	phi	Percent	Percent
>2000	>2	-1	2.35%	2.35%
1000	·. 1	0	5.69%	8.03%
500	0.50	1	35.92%	43,96%
250	0.25	2	44.13%	88.08%
125	0.125	3	8.59%	96.67%
75	0.075	3.5	0.68%	97.35%
63	0.063	4	0.10%	97.46%
31	0.031	5	0.00%	97.46%
16	0.016	6	1.27%	98.73%
8	0.008	7	0.00%	98.73%
4	0.004	8	0.00%	98.73%
2	0.002	9	0.00%	98.73%
1	0.001	10	1.27%	100.00%
<1	>0.001	>10	0.00%	100.00%

% Gravel	2.3%	>2000 µm
% Sand	95.1%	>63 µm
% Slit	1.3%	>2 µm
% Clay	1.3%	<2 µm

AMEC Bioassay Laboratory - 5550 Morehouse Dr., Suite B. San Diego, CA 92121


 Client ID:
 City of Buenaventura
 Sample I.D:
 Site B-2

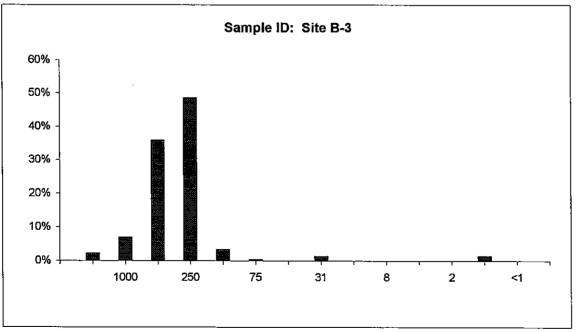
 Project ID:
 Santa Clara River Estuary
 Sample Date:
 10/17/2003

 Analysis Date:
 nitiated 12/15/03

Particle Size	Particle Size		Incremental	Cumulative
<u>(</u> µm)	(mm)	phi	Percent	Percent
>2000	>2	-1	1.85%	1.85%
1000	1	0	3.14%	4.99%
500	0.50	1	25.04%	30.03%
250	0.25	2	35.74%	65.77%
125	0.125	3	19.46%	85.23%
75	0.075	3.5	8.03%	93.26%
63	0.063	4	1.30%	94.56%
31	0.031	5	0.00%	94,56%
16	0.016	6	1.36%	95,92%
8	0.008	7	1.36%	97.28%
4	0.004	8	0.00%	97.28%
2	0.002	9	0.00%	97.28%
1	0.001	10	1.36%	98.64%
<1	>0.001	>10	1.36%	100.00%

% Gravel	1.9%	>2000 µm
% Sand	92.7%	>63 µm
% Silt	> 2.7%	>2 µm
% Clay	2.7%	<2 µm

AMEC Bioassay Laboratory - 5550 Morehouse Dr., Suite B. San Diego, CA 92121

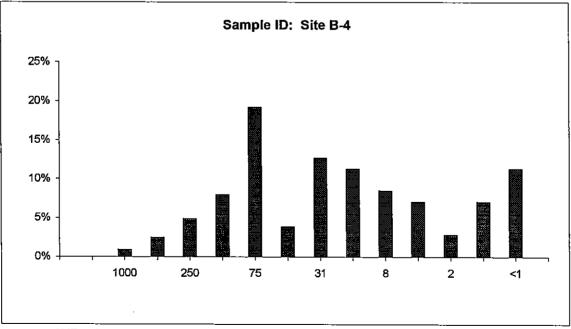

Client ID: City of Buenaventura Project ID: Santa Clara River Estuary

Ċ

Sample I.D: Site B-3 Sample Date: 10/17/2003 Analysis Date: nitiated 12/15/03

Particle Size	Particle Size		Incremental	Cumulative
(µm)	(mm)	phi	Percent	Percent
>2000	>2	-1	2.19%	2.19%
1000	1	0	6.97%	9.16%
500	0.50	1	35.90%	45.06%
250	0.25	2	48.61%	93.67%
125	0.125	3	3.37%	97.03%
75	0.075	3.5	0.29%	97.32%
63	0.063	4	0.05%	97.37%
31	0.031	5	1.32%	98.68%
16	0.016	6	0.00%	98.68%
8	0.008	7	0.00%	98.68%
4	0.004	8	0.00%	98.68%
2	0.002	9	0.00%	98.68%
1	0.001	10	1.32%	100.00%
<1	>0.001	>10	0.00%	100.00%

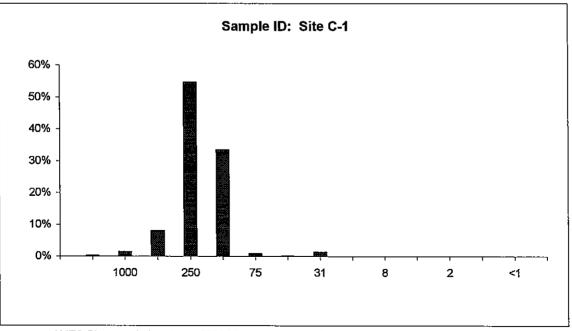
% Gravel	2.2%	>2000 µm
% Sand	95.2%	>63 µm
% Silt	1.3%	>2 µm
% Clay	1.3%	<2 µm



AMEC Bioassay Laboratory - 5550 Morehouse Dr., Suite B. San Diego, CA 92121

Client ID: City of Buenaventura Project ID: Santa Clara River Estuary Sample I.D: Site B-4 Sample Date: 10/17/2003 Analysis Date: nitiated 12/15/03

Particle Size	Particle Size		Incremental	Cumulative
(µm)	(mm)	phi	Percent	Percent
>2000	>2	-1	0.01%	0.01%
1000	1	0	0.91%	0.91%
500	0.50	1	2.45%	3.36%
250	0.25	2	4.87%	8.24%
125	0.125	3	7.96%	16.20%
75	0.075	3.5	19.19%	35.38%
63	0,063	4	3.86%	39.24%
31	0.031	5	12.72%	51.96%
16	0.016	6	11.30%	63.26%
8	0.008	7	8.48%	71.74%
4	0.004	8	7.07%	78.80%
2	0.002	9	2.83%	81.63%
1	0.001	10	7.07%	88.70%
<1	>0.001	>10	11,30%	100.00%

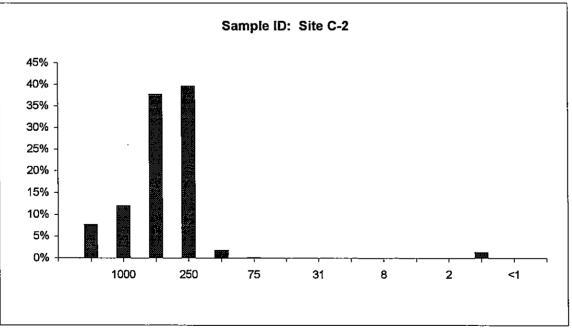

% Gravel	0.0%	>2000 µm
% Sand	39.2%	>63 µm
% Silt	42.4%	>2 µm
% Clay	18.4%	<2 µm

AMEC Bioassay Laboratory - 5550 Morehouse Dr., Suite B. San Diego, CA 92121

	City of Buenave Santa Clara Riv		_ Sample I.D: _ Sample Date: _ Analysis Date: r	10/17/2003	
Particle Size (µm)	Particle Size (mm)	phl	Incremental Percent	Cumulative Percent	
>2000	>2	-1	0.25%	0.25%	
1000	1	0	1.42%	1.67%	
500	0.50	1	8.05%	9.72%	
250	0.25	2	54.71%	64. 42%	
125	0.125	3	33.42%	97.85%	
75	0.075	3.5	0.78%	98.62%	
63	0.063	4	0.07%	98.70%	
31	0.031	5	1.30%	100.00%	
16	0.016	6	0.00%	100.00%	
8	0.008	7	0.00%	100.00%	
4	0.004	8	0.00%	100,00%	
2	0.002	9	0.00%	100,00%	
1	0.001	10	0.00%	100.00%	
<1	>0.001	>10	0.00%	100.00%	

% Gravel	0.2%	>2000 µm
% Sand	98.5%	>63 µm
% Silt	1.3%	>2 µm
% Clay	0.0%	<2 µm

AMEC Bioassay Laboratory - 5550 Morehouse Dr., Suite B. San Diego, CA 92121

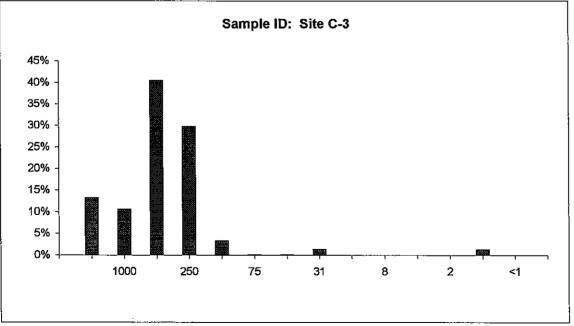

Client ID:City of BuenaventuraSample I.D:Site C-2Project ID:Santa Clara River EstuarySample Date:10/17/2003Analysis Date:nitiated 12/15/03

Particle Size	Particle Size		Incremental	Cumulative
(µm)	(mm)	phi	Percent	Percent
>2000	>2	-1	7.60%	7.60%
1000	1	0	11.93%	19.53%
500	0.50	1	37.70%	57.22%
250	0.25	2	39.59%	96.82%
125	0.125	3	1.78%	98.59%
75	0.075	3.5	0.06%	98.66%
63	N. 0.063	4	0.03%	98.68%
31	0.031	5	0.00%	98.68%
16	0.016	6	0.00%	98.68%
8	0.008	7	0.00%	98.68%
4	0.004	8	0.00%	98.68%
2	0.002	9	0.00%	98.68%
1	0.001	10	1.32%	100.00%
<1	>0.001	>10	0.00%	100.00%

% Gravel	7.6%	>2000 µm
% Sand	91.1%	>63 µm
% Silt	0.0%	>2 µm
% Clay	1.3%	<2 µm

.

ŀ

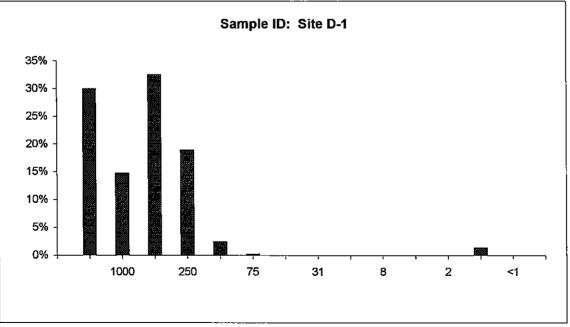


AMEC Bioassay Laboratory - 5550 Morehouse Dr., Suite B. San Diego, CA 92121

Client ID: City of Buenaventura Project ID: Santa Clara River Estuary Sample I.D: Site C-3 Sample Date: 10/17/2003 Analysis Date: nitiated 12/15/03

Particle Size	Particle Size		Incremental	Cumulative
(µm)	(mm)	phi	Percent	Percent
>2000	>2	-1	13.20%	13.20%
1000	1	0	10.53%	23.73%
500	0.50	1	40.47%	64.21%
250	0.25	2	29.72%	93.92%
125	0.125	3	3.28%	97.21%
75	0.075	3.5	0.13%	97,33%
63	0.063	4	0.04%	97.37%
31	0.031	5	1.31%	98.69%
16	0.016	6	0.00%	98.69%
8	0.008	7	0.00%	98.69%
4	0.004	8	0.00%	98.69%
2	0.002	9	0.00%	98,69%
1	0.001	10	1.31%	100.00%
<1	>0.001	>10	0.00%	100.00%

% Gravel 13	.2% >2000 µm
% Sand 84	.2% >63 µm
% Silt 1.	3% >2 µm
% Clay 1.	3% <2 µm



AMEC Bioassay Laboratory - 5550 Morehouse Dr., Suite B. San Diego, CA 92121

Client ID:City of BuenaventuraSample I.D:Site D-1Project ID:Santa Clara River EstuarySample Date:10/17/2003Analysis Date:nitiated 12/15/03

Particle Size	Particle Size		Incremental	Cumulative	
(µm)	(mm)	phi	Percent	Percent	
		_			
>2000	>2	-1	29.95%	29.95%	
1000	1	0	14.69%	44.65%	
500	0.50	1	32.52%	77.17%	
250	0.25	2	18.90%	96.07%	
125	0.125	3	2.39%	98.45%	
75	0.075	3.5	0.22%	98.68%	
63	0.063	4	0.02%	98.70%	
31	0.031	5	0.00%	98.70%	
16	0.016	6	0.00%	98.70%	
8	0.008	7	0.00%	98.70%	
4	0.004	8	0.00%	98.70%	
2	0.002	9	0.00%	98.70%	
1	0.001	10	1.30%	100.00%	
<1	>0.001	>10	0.00%	100.00%	

% Gravel	30.0%	>2000 µm
% Sand	68.8%	>63 µm
% Silt	0.0%	>2 µm
% Clay	1.3%	<2 µm

AMEC Bioassay Laboratory - 5550 Morehouse Dr., Suite B. San Diego, CA 92121

APPENDIX F ANALYTICAL CHEMISTRY DATA

.

Appendix Table F-1. Sediment Trace Metals and TOC Measurements City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event Collection Date: 17 October 2003

Sample ID	Copper (mg/kg)	Nickel (mg/kg)	Selenium (mg/kg)	Zinc (mg/kg)	TOC (mg/kg)
A-1	16.9	0.65	ND	ND	10918
A-2	3.42	3.06	ND	9.13	7072
A-3	2.29	20.2	0.94	63.1	2727
B-1	3.14	4.30	ND	12.1	4897
B-2	4.20	5.99	ND	18.1	4682
B-3	2.98	4.19	ND	9.50	3042
B-4	19.3	20.4	0.85	61.4	16949
C-1	3.84	3.26	ND	8.16	1591
C-2	2.69	3.42	ND	18.4	2750
C-3	2.83	3.77	ND	6.88	3362
D-1	2.94	4.19	ND	7.85	2014

All values reported on a dry weight basis.

November 06, 2003

Chris Stransky AMEC Earth and Environmental 5510 Morehouse Drive, Suite 300 San Diego, CA 92121-3723

Subject: Calscience Work Order No.: 03-10-1236 Client Reference: Santa Clara River Estuary

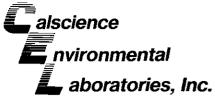
Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 10/21/2003 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Program Manual, applicable standard operating procedures, and other related documentation. The original report of any subcontracted analysis is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,


Calscience Environmental Laboratories, Inc. Robert Stearns Project Manager

Michael J. ¢risostomo Quality Assurance Manager

ANALYTICAL REPORT

MEC Earth and Environmental Date Received: 10/21/0						10/21/03		
5510 Morehouse D	rive, Suite 300			Work Ord	er No:			03-10-1236
San Diego, CA 921	21-3723			Preparatio	on:			EPA 3050B
-				Method:				EPA 6010B
Project: Santa Cla	ra River Estuary	,						Page 1 of 2
Client Sample Number			ample nber	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
SCRE-A-4 A-3		03-16	0-1236-1	10/17/03	Solid	10/22/03	10/23/03	031022L06
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
Copper	1.51	0.50	1		mg/kg	wet wt		
SCRE-A-2		03-1	0-1236-2	10/17/03	Solid	10/22/03	10/23/03	031022L06
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
Соррег	2.76	0.50	1		mg/kg	wor wt		
SCRE-A-3 A-1		03-1	0-1236-3	10/17/03	Solid	10/22/03	10/23/03	031022L06
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
Соррег	13.6	0.5	1		mg/kg	wet wt		
SCRE-B-1		03-1	0-1236-4	10/17/03	Solid	10/22/03	10/23/03	031022L06
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
Copper	2.44	0.50	1		mg/kg	wet wt		
SCRE-B-2		03-1	0-1236-5	10/17/03	Solid	10/22/03	10/23/03	031022L06
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
Copper	3.50	0.50	1		mg/kg	wt wet		
SCRE-B-3		03-1	0-1236-6	10/17/03	Solid	10/22/03	10/23/03	031022L06
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
Copper	2.35	0.50	1		mg/kg	Wet wt		
SCRE-B-4		03-1	0-1236-7	10/17/03	Solid	10/22/03	10/23/03	031022L06
Parameter	Result	RL	DF	Qual	<u>Units</u>			
		0.5			mg/kg	Wet ut		

ANALYTICAL REPORT

				Data Data	- 1			10/04/02
AMEC Earth and Env			· ·	Date Rece				10/21/03 03-10-1236
5510 Morehouse Driv San Diego, CA 9212			Work Order No: Preparation:					
San Diego, CA 92.12	1-5725			Method:	JII.			EPA 3050B EPA 6010B
				methou.				EFA 0010B
Project: Santa Clara	a River Estuar	У						Page 2 of 2
Client Sample Number			ample nber	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
SCRE-6-1 4-3		03-1	0-1236-8	10/17/03	Solid	10/22/03	10/23/03	031022L06
Parameter	Result	RL	DF	Qual	Units			
						wet ut		
Copper	2.27	0.50	1		mg/kg	wer bl		
SCRE-C-2		03-1	0-1236-9	10/17/03	Solid	10/22/03	10/23/03	031022L06
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
Copper	2.15	0.50	1		mg/kg	wat wt		
SCRE-G-2 C-1		03-1	0-1236-10	10/17/03	Solid	10/22/03	10/23/03	031022L06
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
Copper	3.14	0.50	1		mg/kg	wet wt		
SCRE-D-1		93-1	0-1236-11	10/17/03	Solid	10/22/03	10/23/03	031022L06
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>		-	
Copper	2.48	0.50	1		mg/kg	Wot wt	-	
Method Blank		097-	01-002-4,839	N/A	Solid	10/22/03	10/22/03	031022L06
Fararaeter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
Copper	ND	0.500	1		mg/kg	wa wt		

		·	
AMEC Earth and Environmen	Ital	Date Sampled:	10/17/03
5510 Morehouse Drive, Suite	300	Date Received:	10/21/03
San Diego, CA 92121-3723		Date Analyzed:	11/03/03
			1
		Work Order No.:	03-10-1236
Attn: Chris Stransky		Method:	EPA 9060
RE: Santa Clara River Estua	arv	Page 1 of 1	
	•		
All concentrations are reporte	ed in mg/kg (ppm). 👐		
	T . (.)		
	Total		
	Organic Carb		Reporting
Sample Number	<u>Concentratio</u>	<u>n</u>	<u>Limit</u>
SCRE-A-1 A-3	4000		500
	1800		500
SCRE-A-2	5700		500
SCRE-A-3 AII	8800		500
SCRE-B-1	3800		500
SCRE-B-2	3900		500
SCRE-B-3	2400		500
SCRE-B-4	11000		500
SCRE-G-1C-3	2700		500
SCRE-C-2	2200		500
SCRE- C²S C~1	1300		500
SCRE-D-1	1700		500
Method Blank	ND		500

ND denotes not detected at indicated reportable limit.

Each sample was received by CEL chilled, intact, and with chain-of-custody attached.

hhm

Quality Control - Spike/Spike Duplicate

AMEC Earth and Environmental 5510 Morehouse Drive, Suite 300 San Diego, CA 92121-3723						10/21/03 03-10-1236 EPA 3050B EPA 6010B
Project: Santa Clara River Estuary						
Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
03-10-1186-1	Solid	ICP 3300	10/22/03	. •	10/24/03	031022S06
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD C	<u>Qualifiers</u>
Copper	109	109	75-125	0	0-20	

Uhu

Quality Control - Laboratory Control Sample

AMEC Earth and Environ 5510 Morehouse Drive, S San Diego, CA 92121-37 Project: Santa Clara R	Suite 300 23		Date Received: Work Order No: Preparation: Method:			10/21/03 03-10-1236 EPA 3050B EPA 6010B
Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab File ID	L	CS Batch Number
097-01-002-4,839	Solid	ICP 3300	10/22/03	031022-I-06	, <u>, ,</u>	031022L06
Parameler		Conc Added	Conc Recovered	<u>%Rec</u>	<u>%Rec CL</u>	<u>Qualifiers</u>
Copper		50.0	50.6	101	80-120	

Nhm

QUALITY ASSURANCE SUMMARY

Method EPA 9060

AMEC Earth and Environr Page 1 of 1	nental		Order No.: nalyzed:	()3-10 - 1236 <u>11/03/03</u>
Matrix Spike/Matrix Spik Sample Spiked: 03-10-1745-7	e Duplicate		Control		Control
<u>Analyte</u>	MS%REC	MSD%REC	Limits (%)	<u>%RPD</u>	Limits (%)
Total Organic Carbon	101	104	70 - 130	3	0 - 25
Laboratory Control Sam	ple				
<u>Analyte</u>	Conc. <u>Added</u>	Conc. <u>Rec.</u>	<u>%REC</u>		Control <u>Limits (%)</u>
Total Organic Carbon	6000	6400	107		80 - 120

hM

Calscience GLOSSARY OF TERMS AND QUALIFIERS nvironmental aboratories, Inc.

Work Order Number: 03-10-1236

Qualifier Definition

ND Not detected at indicated reporting limit.

WORK ORDER #:

03-20-6236 Cooler _____ of ____

SAMPLE RECEIPT FORM

CLIENT: Range	DATE: 10/2/3
TEMPERATURE - SAMPLES RECEIVED BY:	/
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature.	LABORATORY (Other than Calscience Courier): °C Temperature blank °C IR thermometer Ambient temperature.
C Temperature blank.	Initial:
CUSTODY SEAL INTACT: Sample(s): Cooler: No (Not Intact	:) : Not Applicable (N/A): Initial:
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples Sample container label(s) consistent with custody papers Sample container(s) intact and good condition Correct containers for analyses requested Proper preservation noted on sample label(s) VOA vial(s) free of headspace Tedlar bag(s) free of condensation	
COMMENTS:	

CA	ALSCIENCE ENVI LABORATORI 7440 LINCOLI	I ES, INC. N WAY		(123	÷¢	\sum)						CH . Date				:US 5/0		DY I	REC	ORD)
TE	GARDEN GROVE, C L: (714) 895-5494 • FA														Page	÷ _		1		_ of	Z	, 		-
	AME	C Forth ? Fautron	mentel						PROJ								,	P.C). NO.	:				1
ADDRE	5510	Muchaure Dr					PR	<u>) a//</u> OJEC	<u>nta</u>		<u>172</u> T: <	<u>≺</u> † <u>Kr</u>	ver		<u>9+0</u> /	~~	<u>/</u>					<u>م</u> ا ا	1 7	
CITY	San D	STATE	0 - · · · · · ·						R(S):	-		_			V TLOG	COD	E					115	لطلرا	-
tel: 858	458-4044	858 387-3461	E-MAIL:					hi		th	ſ	_,											°C	
TURNA		48 HR □ 72 HR	5 DAY		0			F	EG	UE	ST	ΈD	A	NAI	LYS	SES	;							
	L REQUIREMENTS (ADDITIO WQCB REPORTING L LINSTRUCTIONS:	NAL COSTS MAY APPLY)			10 DAYS				21B)	(80218)		60B) EnCore				4.1) or (8011)	LS (6010B)		r (T0-15)					
LAB		ł	SAM	PLING	<u>.</u>		TPH (G)	TPH (D) or	BTEX / MTBE (8021B)	HALOCARBONS (8021B)	VOCs (8260B)	VOCs (5035 / 8260B) EnCore	SVOCs (8270C)	PEST (8081A)	PCBs (8082)	EDB / DBCP (504.1) or (8011)	CAC, T22 METALS (6010B)	PNAs (8310)	VOCs (TO-14A) or	S	ي مراجع			
USE ONLY	GEIMS ID	SAMPLE ID	DATE TIME MATRIX CONT.					HdT	BTE	HAL	00A	700	SVD	PES	PCB	BO	CAC	PN/	700 V	H	J			
T		SCRE - A-1	10/17/03	1234	Sed	(_		×	×			
2		A-Z		1313		1.																		
3		A-3		1357																	\prod	\bot		
Ý		B-1		1445				<u> </u>														\perp		
Í		B-2		1519																				
Ç		B-3		1542																				
7		B-4		605																				
8		c-1		1709																				
9		<u>c-Z</u>		(722																				
D		v c-3		1737		1														-10	4			
Relinq	uished by: (Signature)	Ene Carlson			ived by:	2-3	2_	2	·								Dat	21	3	,	Time	140)	
Relinq	uished by: (Signature)			Rece	ived by:	(Signat	ture)			<					-		Dat	e: 7	1		Time			
Relinq	uished by: (Signature)	Join			ived for	Laborat			igna r µL								Dat		13	,	Time	15		
	DISTRIBUTION: White	e with final report, Green to File,	Yellow and F	ink to Clien	t.	/		- /T									•				09/10	0/01 Re	evision	

Please note that pages 1 and 2 of 2 of our T/Cs are printed on the reverse side of the Yellow and Pink copies respectively.

898-970
(714)
Graphic
270

C,	ALSCIENCE ENVI LABORATORI													CH	AIA	10	FC	;US	то	DY I	REC	ORI
	7440 LINCOLI	N WAY		(/	123	ر ک)						Dat	e	10)/z	<u> 0</u>	63	<u>,</u>		
TE	GARDEN GROVE, C L: (714) 895-5494 • FA													Pag	je		z		_ of	_ Z	, 	
LABOR		- Earty & Ewir		4.1			CL	IENT			NAME /		_				P.C	D. NO.	:			
ADDRE	SS:		omen	<u>'व्।</u>				ante				ur	E	stu	·γ					.		
CITY	5510 A	norehouse Dr			· · · · · · · · · · · · · · · · · · ·				t coi		St	N= = 1	<i>.</i> .	,	·		17	<u>ן</u> ון		7115] []	1 [7]
	San D'	iero CA			GZI	<u>Z</u>)	SA								G COE	DE				T -	- 7	
TEL:	8 458-9044	FAX: 858 587-3961	E-MAIL:	strand	, /e a	Mec.		Mi		d	_] 🗌				MP =				°C
	ROUND TIME: Stand	□ 48 HR □ 72 HR	□ 5 DAY		10 DAYS	Com		<u>, </u>	-,	-	R	EQI	UES	TEI		NA	LYS	ES	; ;	·		
	L REQUIREMENTS (ADDITIO			<u> </u>	IU DAIG	•		· · ·													<u> </u>	
		COELT REPORTING										ere			(8011)	6						
SPECIA	L INSTRUCTIONS:									1B)		Ш Ш			or (8	(6010B)		-15)				
									21B)	802		(<u>8</u>)			Ē	S (6		or (T0-15)				
									: (80	NS (82		-	(504.1)	ETAI		A) 01				
								 5	BTEX / MTBE (8021B)	HALOCARBONS (8021B)	VOCs (8260B)	VOCs (5035 / 8260B) EnCore	SVOCs (8270C)	PCBs (8082)	EDB / DBCP	CAC, T22 METALS	PNAs (8310)	VOCs (TO-14A)		be		
LAB			SAMF	PLING		NO. OF	TPH (G)	TPH (D) or	ГX	LOC.	Cs (B	S S		8 (8 8 (8	B/D	C I	As (E	Cs (1	<u>(0</u>	oppe		
USE ONLY	GEIMS ID	SAMPLE ID	DATE	ТІМЕ	MATRIX		Ē	Ē	BTE	HA	٥٨	9	N I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ð	CA	ΡN	02	1-			
11		SCRE - D-1	10/17/03	1749	5.d	١													\mathbf{X}	\mathbf{X}		
																					+	
		· · · · · · · · · · · · · · · · · · ·	+																	-	+	+-
					·										-					—	+	
													_									_
]	·		<u> </u>									_	_	_	-				 		+	
		····													<u> </u>				;			<u> </u>
							[
															Ì	:						
				···· · · · · · · · · · · · · · · · · ·																		
Relind	uished by: (Signature)		1	Rece	ived by:	(Signal	ure)				1	I			<u></u>	Dat		7		Time:		
		the Carlson					4		\sim	7						10	<u> </u>	<u>[]</u>		_/	<u> </u>	2
Relind	quished by: (Signature)			Rece	IVOC by:	(Signat	ure)		L							Dat	.e: /	1		Time:	•	
Relind	uished by: (Signature)	````		Rece	ived for	Labora	or y /b	y: (S	ignati	ure)//	}	<u>j.</u>				Dat		1-		Tipaga		
		12-7						· ·			hal	<u></u>				P	21	12	,	16,	19	
		e with final report, Green to File,					/	1	1							7				09/10	0/01 Re	vision

Q&Q Graphic (714) 898-9702

Please note that pages 1 and 2 of 2 of our TCs are printed on the reverse side of the Yellow and Pink copies respectively.

Client	City of Buenaventura		Client Code	ć
	ony of Bucharonald		Project #	3551000305 Task 0002, * Chris
				to overide labor to PL 611
Shipping Address:	City of Buenaventura		Client Sector Code	
	Public Works Department		Budget	
	1400 Spinaker Dr. PO Box 99		Contract Info	
	Ventura, CA 93002-0099			
Billing Address:	same			
			Project Start Date:	
	Karen Waln (Management Specialist), Florence			
	Jay (Laboratory Supervisor, Wastewater			
	Division), Dan Pfeiffer (Plant Superintendant),			
Contacts	Don Davis		Project End Date:	
phone	(805) 677-4128 (Karen) -4134 (Florence)		Cost Increase Date:	New Project
Fax	(805) 677-4101			
e-mail	kwaln, fjay@ci.ventura.ca.us			
Additional Contacts	AMEC SB: Joanne Lortie, Ricahrd Montijo			
	(805) 962-0992			
	KHE: Rachel Kamman			
	phone, fax ??			
	rachel@khe-inc.com			
Testing				
Unit Code	Test Procedure	Unit Cost	Frequency	Concentrations (tentative)

Boat use ??

Comments:

May 05, 2004

Supplemental Report

Chris Stransky AMEC Earth and Environmental 5510 Morehouse Drive, Suite 300 San Diego, CA 92121-3723

Subject: Calscience Work Order No.: Client Reference:

04-04-0772 City of Buenaventura / SCRE

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 04/14/04 and analyzed in accordance with the attached chain-of-custody. This report has been revised to present data on a dry weight basis.


Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Program Manual, applicable standard operating procedures, and other related documentation. The original report of any subcontracted analysis is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calecience Environmental Laboratories, Inc. Robert Stearns Project Manager

Michael J. ¢risostomo Quality Assurance Manager

Page 1 of 2

AMEC Earth and Environmental 5510 Morehouse Drive, Suite 300 San Diego, CA 92121-3723 Date Received:04/14/04Work Order No:04-04-0772Preparation:N/AMethod:EPA 160.3

Project: City of Buenaventura / SCRE

	aronara i e							
Client Sample Number			Lab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
SCR A-1		<u> </u>	04-04-0772-1	10/17/04	Solid	N/A	05/04/04	40504TSD2
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
Solids, Total	80.6	0.1	1		%			
SCR A-2			04-04-0772-2	10/17/04	Solid	N/A	05/04/04	40504TSD2
Parameter	<u>Result</u>	<u>RL</u>	DE	Qual	<u>Units</u>			
Solids, Total	80.6	0.1	1		%			
SCR A-3	· · · · ·		04-04-0772-3	10/17/04	Solid	N/A	05/04/04	40504TSD2
Parameter	<u>Result</u>	RL	DF	Qual	<u>Units</u>			
Solids, Total	66.0	0.1	1		%			
SCR B-1			04-04-0772-4	10/17/04	Solid	N/A	05/04/04	40504TSD2
Parameter .	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
Solids, Total	77.6	0.1	1		%			
SCR B-2			04-04-0772-5	10/17/04	Solid	N/A	05/04/04	40504TSD2
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
Solids, Total	83.3	0.1	1		%			
SCR B-3			04-04-0772-6	10/17/04	Solid	N/A	05/04/04	40504TSD2
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
Solids, Total	78.9	0.1	1		%			

AMEC Earth and Environmental 5510 Morehouse Drive, Suite 300 San Diego, CA 92121-3723

Date Received: Work Order No: 04-04-0772 Preparation: Method: EPA 160.3

Page 2 of 2

04/14/04

N/A

Project:	City of Buenaventura / SCRE
----------	-----------------------------

Client Sample Number			Lab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
SCR B-4	. •		04-04-0772-7	10/17/04	Solid	N/A	05/04/04	40504TSD2
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
Solids, Total	64.9	0.1	1		%			
SCR C-1	· · ·		04-04-0772-8	10/17/04	Solid	N/A	05/04/04	40504TSD2
Parameter	<u>Result</u>	RL	DF	Qual	<u>Units</u>			
Solids, Total	81.7	0.1	1		%			
SCR C-2			04-04-0772- 9	10/17/04	Solid	N/A	05/04/04	40504TSD2
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Solids, Total	80.0	0.1	1		%			
SCR C-3			04-04-0772-10	10/17/04	Solid	N/A	05/04/04	40504TSD2
Parameter_	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
Solids, Total	80.3	0.1	1		%			
SCR D-1			04-04-0772-11	10/17/04	Solid	N/A	05/04/04	40504TSD2
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
Solids, Total	84.4	0.1	1		%			

nM

Analytical Report

MEC Earth and Envir	onmental				Date Rece				04/14/04
510 Morehouse Drive	, Suite 300				Work Ord	er No:			04-04-0772
an Diego, CA 92121-	3723				Preparatio	n:			EPA 3050B
0					Method:				EPA 6020
					Units:				mg/kg
					ernte.				
Project: City of Buena	ventura / SC	JRE							Page 1 of 2
lient Sample Number				Sample	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
SCR A-1		-	04-04-077	72-1	10/17/04	Solid	04/16/04	04/17/04	040416L02
Comment(s): -Results are rep	orted on a dry w								
arameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	Parameter		Res		<u>DF Qual</u>
ickel	0.653	0.123	12.34		Zinc		ND	1.23	12.34
elenium	ND	0.617	12.34						
SCR A-2			04-04-077	72-2	10/17/04	Solid	04/16/04	04/17/04	040416L02
Comment(s): -Results are rep	•	-		- .			_		
arameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>		Res		<u>DF Qual</u>
ickel	3.06	0.12	12.34		Zinc		9.1	3 1.23	12.34
elenium	ND	0.617	12.34						
SCR A-3			04-04-07	72-3	10/17/04	Solid	04/16/04	04/17/04	040416L02
Comment(s): -Results are rep				. .			_		
arameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter		Res		<u>DF Qual</u>
lickel	20.2	0.1	15.16		Zinc		63.	.1 1.5	15.16
elenium	0.937	0.758	15.16						
SCR B-1			04-04-07	72-4	10/17/04	Solid	04/16/04	04/17/04	040416L02
Comment(s): -Results are rep				Qual	Devemaler		Dec		
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter Zin s		Res		DF Qual
lickel elenium	4.30 ND	0.12 0.641	12.82 12.82		Zinc		12.	1 1.2	12.82
SCR B-2		0.041	04-04-07	72 5	10/17/04	Solid	04/16/04	04/17/04	040416L02
				12-5	10/17/04	Solid	04/10/04	04/17/04	040416L02
Comment(s): -Results are rep ?arameter	orted on a dry w Result	eight bas <u>RL</u>	sis. <u>DF</u>	Qual	Parameter		Re	suit <u>RL</u>	DF Qual
lickel	5.99	0.12	<u>12.04</u>	444	Zinc		18		<u>01</u> 12.04
elenium	ND	0.602	12.04				10	.,	12.04
SCR B-3			04-04-07	72-6	10/17/04	Solid	04/16/04	04/17/04	040416L02
Comment(s): -Results are rep	orted on a dry w	eight bas	sis.						
Parameter	Result		DF	Qual	Parameter,		Re	<u>sult RL</u>	<u>DF Qual</u>
lickel	4.19	0.12	12.66		Zinc		9.5		12.66
elenium	ND	0.633	12.66						
SCR B-4		<u> </u>	04-04-07	72-7	10/17/04	Solid	04/16/04	04/17/04	040416L02
Comment(s): -Results are rep	orted on a dry w	eight ba	sis.						
Parameter	Result	RL	DF	<u>Qual</u>	Parameter		Re	<u>sult RL</u>	<u>DF Qual</u>
lickel	20.4	0.1	15.38		Zinc		61		15.38
selenium	0.853	0.769	15.38						

AMEC Earth and Envir		Date Received:				04	/14/04			
5510 Morehouse Drive	e, Suite 300				Work Ord	er No:			04-04-0772	
San Diego, CA 92121-	-				Preparation:				EPA 3050B	
					Method:					A 6020
					Units:				_ .,	mg/kg
Designet Others of Design		005			onno.				Dea	e 2 of 2
Project: City of Buena	aventura / Sv								Fay	
Client Sample Number				Sample umber	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
SCR C-1	·		04-04-077	2-8	10/17/04	Solid	04/16/04	04/17/04	040416	L02
 Comment(s): -Results are rep	ported on a dry w	eight basis	s.							
Parameter	Result	RL	DF	Qual	Parameter		Res	<u>sult RL</u>	DF	Qual
Nickel	3.26	0.12	12.2		Zinc		8.1		12.2	
Selenium	ND	0.610	12.2							
SCR C-2	•	1	04-04-077	2-9	10/17/04	Solid	04/16/04	04/17/04	040416	L02
Parameter Nickel Selenium	<u>Result</u> 3.42 ND	<u>RL</u> 0.12 0.625	DF 12.5 12.5	Qual	Parameter Zinc	0	<u>Res</u> 18.	4 1.2	<u>DF</u> 12.5	Qual
SCR C-3			04-04-077	/2-10	10/17/04	Solid	04/16/04	04/17/04	040416	L02
Comment(s): -Results are rep		-					_			. .
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	Parameter		Res		DF	<u>Qual</u>
Nickel Selenium	3.77	0.12	12.5		Zinc		6.8	8 1.25	12.5	
SCR D-1	ND	0.625	12.5	10 44	40/47/04	C all al	04/40/04	04147104	040445	1.00
JUK D-1			04-04-077	2-11	10/17/04	Solid	04/16/04	04/17/04	040416	
Comment(s): -Results are rep	• •	•		<u> </u>	_ ,		_			. .
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter		Res		DE	Qual
Nickel	4.19	0.11	11.9		Zinc		7.8	5 1.19	11.9	
Selenium	ND	0.595	11.9							
Method Blank			096-10-00	02-296	N/A	Solid	04/16/04	04/16/04	040416	6L02
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter		Res	<u>sult RL</u>	DF	Qual
<u>Parameter</u> Nickel	<u>Result</u> ND	<u>RL</u> 0.0100	<u>DF</u> 1	<u>Qual</u>	<u>Parameter</u> Zinc		<u>Res</u> ND		<u>DF</u> 1	<u>Qual</u>

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

h.M

	rth and Environmental shouse Drive, Suite 300	Date Received: Work Order No:	04/14/04 04-04-0772		
San Diego), CA 92121-3723	Preparation:	N/A		
_		Method:	EPA 160.3		
Project:	City of Buenaventura / SCRE				

Quality Control Sample ID	Matrix	Matrix Instrument		Date Analyzed:	Duplicate Batch Number
SCR D-1	Solid	N/A	N/A	05/04/04	40504TSD2
Parameter	Sample Conc	DUP Conc	RPD	<u>RPD CL</u>	Qualifiers
Solids, Total	84.4	83.1	2	0-25	

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

AMEC Earth and Environmental 5510 Morehouse Drive, Suite 300 San Diego, CA 92121-3723 Date Received:04/14/04Work Order No:04-04-0772Preparation:EPA 3050BMethod:EPA 6020

Project: City of Buenaventura / SCRE

Quality Control Sample ID		Matrix	Matrix Instrument		А	Date nalyzed	MS/MSD Batch Number	
SCR B-4		Solid	ICP/MS A	04/16/04	.0	4/17/04	040416S02	
Parameter		MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers	
Nickel		99	98	80-120	0	0-20		
Selenium		103	103	80-120	0	0-20		
Zinc		109	107	80-120	1	0-20		

AMEC Earth and Environmental 5510 Morehouse Drive, Suite 300 San Diego, CA 92121-3723

Date Received: Work Order No: Preparation: Method: N/A 04-04-0772 EPA 3050B EPA 6020

Project: City of Buenaventura / SCRE

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyze	ed	LCS/LCSD Batcl Number	1
096-10-002-296	Solid	ICP/MS A	04/16/04	04/17/0	4	040416L02	
Parameter	LCS %	REC LCSD	<u>%REC %</u>	REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Nickel	98	98	3	80-120	0	0-20	
Selenium	102	10	2	80-120	0	0-20	
Zinc	101	99	9	80-120	1	0-20	

Glossary of Terms and Qualifiers

Work Order Number: 04-04-0772

Qualifier Definition

ND Not detected at indicated reporting limit.

Celscience Environmental Leboratories, inc.	WORK ORDER #:	04-04-0772
	· ·	Cooler/_ of $\frac{\gamma}{2}$
CLIENT: Mec	SAMPLE RECEIPT	FORM
TEMPERATURE - SAMPLES	RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with tempera Chilled, cooler without temp Chilled and placed in cooler Ambient and placed in cooler Ambient temperature.	erature blank provided.	PRATORY (Other than Calscience Courier): °C Temperature blank. °C IR thermometer. Ambient temperature.
<u> </u>	· · · · · · · · · · · · · · · · · · ·	Initial:
Sample(s): Cooler: SAMPLE CONDITION: Chain-Of-Custody document(s) receive Sample container label(s) consistent of Sample container(s) intact and good of Correct containers for analyses requese Proper preservation noted on sample VOA vial(s) free of headspace	ved with samples with custody papers condition sted label(s)	Yes No N/A
		Initial:
COMMENTS:		

APPENDIX G FIELD COLLECTION DATA

.

.

.

Appendix Table G-1. Field Sample Collection Summary City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event Collected 17 October 2003

Site	Time of Collection	Time of Collection Latitude 34° Longitude 119°		Mean Water Sample Depth (m)	Mean Sediment Penetration Depth (cm)
A-1	1357	13.985	15.888	1.5	2.0
A-2	1313	13.881	15.842	2.1	3.5
A-3	1234	13.758	15.820	1.4	3.0
B-1	1445	14.092	15.791	1.4	2.5
B-2	1519	13.968	15.705	0.9	3.0
B-3	1542	13.917	15.650	1.9	2.0
B-4	1605	13.891	15.571	1.8	4.0
C-1	1737	14.067	15.395	1.2	4.0
C-2	1722	14.057	15.393	1.2	4.0
C-3	1709	14.029	15.393	1.4	4.0
D-1	. 1749	14.065	15.332	1.2	4.0

^a Start of collection time at each site location

Appendix Table G-2. Field Water Quality Measurements

City of Buenaventura - Santa Clara River Estuary Dry Weather Sampling Event

Sample	Water Depth (m)	Temperature (°C)	Salinity (ppt)	Conductivity (umhos/cm)	pH (units)	DO (mg/L)
· • • • • • •	0.0	21.5	2.3	4360	8.74	16.7
A-1	0.8	21.6	2.4	4440	nr	16.7
	1.5	21.7	4.3	7840	nr	nr
	0.0	21.3	2.3	4400	8.72	16.5
A-2	1.1	21.3	2.3	4400	nr	16.7
	2.1	22.0	11. 9	19930	nr	nr
	0.0	21.0	2.0	4220	8.90	15.2
A-3	0.7	20.8	2.2	4210	nr	15.5
	1.4	20.7	2.2	4210	nr	nr
	0.0	21.9	1.5	2780	7.10	7.5
B-1	0.7	21.4	1.5	3110	nr	7.6
	1.4	21.8	2.9	5400	រាក	nr
	0.0	22.2	2.3	4350	8.83	>20.0
B-2	0.5	22.2	2.3	4350	nr	>20.0
	0.9	22.2	2.3	4350	nr	nr
	0.0	21.7	2.3	4340	8.65	18.9
B-3	1.0	21.7	2.3	4340	nr	19.1
	1.9	22.1	10.6	18650	nr	nr
-	0.0	21.7	2.3	4420	8.55	19.1
B-4	0.8	21.7	2.3	4430	nr	18.2
	1.6	21.7	2.3	4430	nr	nr
	0.0	21.9	2.1	3930	8.77	>20.0
C-1	0.5	21.9	2.1	3910	រារ	>20.0
	0.9	21.9	2.1	4040	nr	nr
	0.0	21.9	2.2	4200	8.92	>20.0
C-2	0.5	21.9	2.2	4200	nr	>20.0
	0.9	21.9	2.2	4220	nr	nr
	0.0	22.0	2.2	4200	8.92	>20.0
C-3	0.7	22.0	2.2	4200	nr	>20.0
	1.4	22.0	2.2	4250	nr	nr
••	0.0	21.8	2.2	4230	9.15	>20.0
D-1	0.5	21.8	2,2	4230	nr	>20.0
	1.0	21.8	2.2	4240	nr	nr

Sample Collection Date: 17 October 2003

nr- not recorded

Santa Clara River Estuary Evaluation **City of Buenaventura**

Oct 2003 - Oct 2004

BENTHIC SAMPLE COLLECTION DATA SHEET

Page _ of

Station: BIS A-1	, <u> </u>	Date: 10-17-03
Vessel Name:	Arrival Time: 1357	Depart Time: 1415
Grab Sampler Type:	Latitude: 32°	Longitude: 117° 119° / 5:888
Weather1:	Wind (kts/dir)2: 5KTS/ ULST	Sampler Initials: BCS, R.G.

Grab Num.	Field Rep (A,B,C)	Sample Depth (ft)	Pen. Depth (cm)	% Intact/ Volume (L)	Sed. Comp 3	Sed. Color	Sed. Odor	Grab Sample Type ⁶	Comments: Sample Description, # of Macroinverts, Photo?
1	NA	5.0	20	NA	fine Sano	Bar and	organic	Vanuee	WORM tubes (Brown) Icm-top Black (cm-Boffom Brown
2									~ SAME
3					-				
4									V
5									
6									~
7					·	-			
8									
9									
10									

¹ Weather List: clear, partly cloudy, continuous cloud layer, fog, haze, drizzle, rain, showers, thunderstorms
 ² Direction in compass headings: N, S, E, W, NE, NW, SE, SW
 ³ Sediment Composition: coarse sand, fine sand, silt/clay, gravel, shell hash

⁴ Sediment Color: brown, tan, black, gray, olive green, red
 ⁵ Sediment Odor: none, petroleum, hydrogen sulfide, other

⁶ Grab Type: infauna (INF), sediment chemistry (Chem), toxicity (Tox)

Santa Clara River Estuary Evaluation City of Buenaventura Oct 2003 - Oct 2004

BENTHIC SAMPLE COLLECTION DATA SHEET

Page ____of_

Statior	<u>.</u>		·····					D;	ate: / 0 / 7 . 0 . 0		
-	<u> </u>	<u>ک</u>			· · ·	-			10-11-03		
	Name:			Arr	ival lime	: 131	3	•	epart Time: /3 39		
Grab Sampler Type: Van ver				Lat	titude: 3	20		Longitude: 147*			
Weath	er':	Hly (4		Wi	nd (kts/d	1° 13. 81 (ir) ² : Ers/		- S	ampler Initials: BCS, RG		
	19	TLY LU	sud 1		9	215/	WC51		VC3, [C0]		
	PP		- -						Comments: Sample		
Grab Num.	Field Rep (A,B,C)	Sample Depth (ft)	Pen. Depth (cm)	% Intact/ Voiume (L)	Sed. Comp	Sed. Color	Sed. Odor 5	Grab Sample Type ⁶	Description, # of Macroinverts, Photo?		
1	Jr N.	7.0	3-4	NA	COURSE SIANO	Black	s-lfde	Vanvee	Fine Brown soft Tayror On top.		
2									Rocks in SAmple		
3						-			~ Rocks Fould Sumple		
4									~ Rocks forled Sample		
5									,		
6	~.		ι.	-1		Drawn Sans	L#	-11	-		
7						Brown			Pock fulled supplier		
8											
9											
10											

¹ Weather List: clear, partly cloudy, continuous cloud layer, fog, haze, drizzle, rain, showers, thunderstorms ² Direction in compass headings: N, S, E, W, NE, NW, SE, SW

³ Sediment Composition: coarse sand, fine sand, silt/clay, gravel, shell hash

Sediment Color: brown, tan, black, gray, olive green, red 4

5 Sediment Odor: none, petroleum, hydrogen sulfide, other

6 Grab Type: infauna (INF), sediment chemistry (Chem), toxicity (Tox)

Santa Clara River Estuary Evaluation City of Buenaventura

Oct 2003 - Oct 2004

SHEET

BENTH	IIC SAMF	PLE COLL	ECTION	DATA SHE	ET				Pageof					
Statior	1: 314 A	T A-3	<u>. </u>	. <u> </u>	 ,·	· · ·			ate: 10/17/03					
Vesse	I Name:			Arr	Arrival Time: 10:30 1234 Depart Time: 1303									
	Sampler	Type: Va	NVEEN	Lat	itude: 3	2° 4 °. 13 <u>.</u> 7	58	Lo	ongitude: 147° 119 /5. 820					
Weath		rtly c	loody		nd (kts/d	:_\2.	TS/We	:S 	ampler Initials:					
		l	. (
Grab Num.	Field Rep (A,B,C)	Sample Depth (ft)	Pen. Depth (cm)	% Intact/ Volume (L)	Sed. Comp	Sed. Color	Sed. Odor 5	Grab Sample Type ⁶	Comments: Sample Description, # of Macroinverts, Photo?					
1	NA	4.6° 4.5°	3cm.	NA	(oarse SAAD	tan	NIN	VANUE	Algae debris fer rocks					
2														
3	•								V					
4									· · · ·					
5									· · · ·					
6				v										
7														
8									7,2					
9	. 													
10	 -													

¹ Weather List: clear, partly cloudy, continuous cloud layer, fog, haze, drizzle, rain, showers, thunderstorms ² Direction in compass headings: N, S, E, W, NE, NW, SE, SW

³ Sediment Composition: coarse sand, fine sand, sit/clay, gravel, shell hash ⁴ Sediment Color: brown, tan, black, gray, olive green, red

5 Sediment Odor: none, petroleum, hydrogen sulfide, other

6 Grab Type: infauna (INF), sediment chemistry (Chem), toxicity (Tox)

Santa Clara River Estuary Evaluation City of Buenaventura Oct 2003 - Oct 2004

BEN

BENTHIC SAMPLE COLLECTION D	Pageor			
Station: B-1		Date: 10-17-03		
Vessel Name:	Arrival Time:	Depart Time:		
Grab Sampler Type: Vanvec	Latitude: 32° 34° 14, 09 2	Longitude: 117° 119° 15.791		
Weather': Clear	Wind (kts/dir) ² : 4 kts/ ves r	Sampler Initials: Bcs, eG		

Grab Num.	Field Rep (A,B,C)	Sample Depth (ft)	Pen. Depth (cm)	% Intact/ Volume (L)	Sed. Comp	Sed. Color 4	Sed. Odor	Grab Sample Type ⁶	Comments: Sample Description, # of Macroinverts, Photo?
1	NA	4'7"	2-3	NA	(ourse Sang	Brown Surtice grave/date	slade	Vanue	Brown surface 1-2 mm
2									~ SAMe
3							,		
4									/
5									
6									
7									
8									
9									
10									

¹ Weather List: clear, partly cloudy, continuous cloud layer, fog, haze, drizzle, rain, showers, thunderstorms
 ² Direction in compass headings: N, S, E, W, NE, NW, SE, SW
 ³ Sediment Composition: coarse sand, fine sand, silt/clay, gravel, shell hash
 ⁴ Sediment Color: brown, tan, black, gray, olive green, red
 ⁵ Sediment Odor: none, petroleum, hydrogen sulfide, other
 ⁶ Creb Turest informa (NE) and insert observints (Chem), toxicity (Tox)

⁶ Grab Type: infauna (INF), sediment chemistry (Chem), toxicity (Tox)

Santa Clara River Estuary Evaluation City of Buenaventura

Oct 2003 - Oct 2004

BENTHIC SAMPLE COLLECTION DATA SHEET

Page	of
------	----

Station: B - 2	·	Date: 10-17-07
Vessel Name:	Arrival Time: 1519	Depart Time:
Grab Sampler Type:	Latitude: 32° 34° (3.968	Longitude: 117° 119° 15. 705
Weather1: Clear	Wind (kts/dir) ² : ちょくレビン	Sampler Initials: BLS RG

Grab Num.	Field Rep (A,B,C)	Sample Depth (ft)	Pen. Depth (cm)	% Intact/ Volume (L)	Sed. Comp 3	Sed. Color 4	Sed. Odor	Grab Sample Type ⁶	Comments: Sample Description, # of Macroinverts, Photo?
1	NA	3.D	3-4	NA	med. SMND	tan	HONE	Vanvee	woody debris (reed)
2									5 stme
3									V SAME
4									\checkmark
5									
6									
7									
8									
9									
10									

¹ Weather List: clear, partly cloudy, continuous cloud layer, fog, haze, drizzle, rain, showers, thunderstorms
 ² Direction in compass headings: N, S, E, W, NE, NW, SE, SW
 ³ Sediment Composition: coarse sand, fine sand, silt/clay, gravel, shell hash

⁴ Sediment Color: brown, tan, black, gray, olive green, red
 ⁵ Sediment Odor: none, petroleum, hydrogen sulfide, other

6 Grab Type: infauna (INF), sediment chemistry (Chem), toxicity (Tox)

Oct 2003 - Oct 2004

BENTHIC SAMPLE COLLECTION DATA SHEET

Page ____ of

Station: B - 3		Date: 10-17-03
Vessel Name:	Arrival Time: 1542	Depart Time:
Grab Sampler Type:	Latitude: 22° 34° 13.917	Longitude: 1170 1190 1.5-650
Weather ¹ :	Wind $(kts/dir)^2$: 5k+5/1r(cr)	Sampler Initials:

Grab Num.	Field Rep (A,B,C)	Sample Depth (ft)	Pen. Depth (cm)	% Intact/ Voiume (L)_	Sed. Comp ³	Sed. Color 4	Sed. Odor 5	Grab Sample Type ⁶	Comments: Sample Description, # of Macroinverts, Photo?
1		Ġ. Š	2		UNIEM COAVEL SANO	Black gray	Subide	VANCE	
2									No. sed. No sample
3						· · ·			\checkmark
4									\checkmark
5.						·			
6									\checkmark
7									
8		· .							
9									
10									

¹ Weather List: clear, partly cloudy, continuous cloud layer, fog, haze, drizzle, rain, showers, thunderstorms
 ² Direction in compass headings: N, S, E, W, NE, NW, SE, SW
 ³ Sediment Composition: coarse sand, fine sand, silt/clay, gravel, shell hash
 ⁴ Sediment Color: brown, tan, black, gray, olive green, red

⁵ Sediment Odor: none, petroleum, hydrogen sulfide, other

⁶ Grab Type: infauna (INF), sediment chemistry (Chem), toxicity (Tox)

Oct 2003 - Oct 2004

BENTHIC SAMPLE COLLECTION DATA SHEET

Cash

Station: Ry		Pageof
Vessel Name:		Date: 10-17-03
	Arrival Time: 1605	Depart Time:
Grab Sampler Type: Weather':	Latitude: -22" 34" [3. 89] Wind (kts/dir) ² :	Longitude: 117°
Clear	Wind (kts/dir)2: 76+3/west	Sampler Initials: BLS RL

Gra Nun		ield Rep ,B,C)	Sample Depth (ft)	Pen. Depth (cm)	% Intact Volum (L)	e ³		Sed. Odoi	Grab Sample Type ⁶	Comments: Sample Description, # of Macroinverts, Photo?
1			5.10"	30		fin day force	Brown tan	Lione	Vanile	
2										
3										· · · · · · · · · · · · · · · · · · ·
4									<u> </u>	
5										
6						· ·				
7	-									
8			,,,,,,	· · ·						
9										
10						<u> </u>				· · · · · · · · · · · · · · · · · · ·

¹ Weather List: clear, partly cloudy, continuous cloud layer, fog, haze, drizzle, rain, showers, thunderstorms

Direction in compass headings: N, S, E, W, NE, NW, SE, SW

³ Sediment Composition: coarse sand, fine sand, silt/clay, gravel, shell hash

⁴ Sediment Color: brown, tan, black, gray, olive green, red 5 Sediment Odor: none, petroleum, hydrogen sulfide, other

⁶ Grab Type: infauna (INF), sediment chemistry (Chem), toxicity (Tox)

Oct 2003 - Oct 2004

BENTHIC SAMPLE COLLECTION DATA SHEET

Page _ of

Station: 343 C-1		Date: (0-17-03
Vessel Name:	Arrival Time: 1737	Depart Time: !フイソ
Grab Sampler Type: VAn VLC	Latitude: 32 ⁵⁷ 34 ⁶ 14.067	Longitude: 147° 119 ° 15. 395
Weather": Clear	Wind (kts/dir) ² : 3 kts	Sampler Initials:

Grab Num.	Field Rep (A,B,C)	Sample Depth (ft)	Pen. Depth (cm)	% Intact/ Volume (L)	Sed. Comp 3	Sed. Color 4	Sed. Odor 5	Grab Sample Type ⁶	Comments: Sample Description, # of Macroinverts, Photo?
1	NA	3 (0"	(le	Ar	Coronge SAND	tan	NON	Vanne	
2									•
3									
4									
5									
6									
7									
8								· ·	
9									
10									

¹ Weather List: clear, partly cloudy, continuous cloud layer, fog, haze, drizzle, rain, showers, thunderstorms
 ² Direction in compass headings: N, S, E, W, NE, NW, SE, SW
 ³ Sediment Composition: coarse sand, fine sand, silt/clay, gravel, shell hash
 ⁴ Sediment Color: brown, tan, black, gray, olive green, red
 ⁵ Direction in compass headings in the sand silt/clay is the sand silt/clay.

⁵ Sediment Odor: none, petroleum, hydrogen sulfide, other
 ⁶ Grab Type: infauna (INF), sediment chemistry (Chem), toxicity (Tox)

Santa Clara River Estuary Evaluation City of Buenaventura Oct 2003 - Oct 2004

BENTHIC SAMPLE COLLECTION DATA SHE

anve .

Station:

Vessel Name:

Weather1:

Grab Sampler Type:

CLEAR

SHEET	Pageof
	Date:
Arrival Time: 1722	Depart Time: 15ª /735
Latitude: 32° 24 34° 14 05 × 7	Longitude: 117° 119015 393
Wind (kts/dir) ² : 5K4s/ West	Sampler Initials: BC9, L4

Grab Num.	Field Rep (A,B,C)	Sample Depth (ft)	Pen. Depth (cm)	% Intact/ Volume (L)	Sed. Comp ³	Sed. Color	Sed. Odor	Grab Sample Type ⁶	Comments: Sample Description, # of Macroinverts, Photo?
1	Na	3. 10"	9	Ne	COAR SHALD	tan	NO	Canvee	Surface layer fine algue
2									5 Am
3					· .				V SAME
4									
5									·
6									
7									
8								· ·	
9									
10									

¹ Weather List: clear, partly cloudy, continuous cloud layer, fog, haze, drizzle, rain, showers, thunderstorms ² Direction in compass headings: N, S, E, W, NE, NW, SE, SW

3 Sediment Composition: coarse sand, fine sand, silt/clay, gravel, shell hash

⁴ Sediment Color: brown, tan, black, gray, olive green, red

⁵ Sediment Odor: none, petroleum, hydrogen sulfide, other

⁶ Grab Type: infauna (INF), sediment chemistry (Chem), toxicity (Tox)

Oct 2003 - Oct 2004

BENTHIC SAMPLE COLLECTION DATA SHEET

Page __ of

Station: C-ZCC C-3		Date: 10-17-03
Vessel Name:	Arrival Time: 1709	Depart Time: 1719
Grab Sampler Type: Vanvee	Latitude: 82° 34° 14. 02 9	Longitude: 147° V
Weather1: Clum	Wind (kts/dir) ² : 4/6+5/ Wes T	Sampler Initials: BC5, RC4

Grab Num.	Field Rep (A,B,C)	Sample Depth (ft)	Pen. Depth (cm)	% Intact/ Volume (L)	Sed. Comp 3	Sed. Color 4	Sed. Odor ⁵	Grab Sample Type ⁶	Comments: Sample Description, # of Macroinverts, Photo?
1		Ч, С	4		warse sans	Black TAn	slight Sulfid	VAnue	
2									SAme
3					· · ·				SAME SAME
4									· · ·
5									
6									
7									
8									
9				· · · ·					· · · · · · · · · · · · · · · · · · ·
10									

¹ Weather List: clear, partly cloudy, continuous cloud layer, fog, haze, drizzle, rain, showers, thunderstorms
 ² Direction in compass headings: N, S, E, W, NE, NW, SE, SW
 ³ Sediment Composition: coarse sand, fine sand, silt/clay, gravel, shell hash
 ⁴ Sediment Color: brown, tan, black, gray, olive green, red
 ⁵ Sediment Odor: none, petroleum, hydrogen sulfide, other
 ⁶ Grab Type: infauna (INF), sediment chemistry (Chem), toxicity (Tox)

Oct 2003 - Oct 2004

Da

BENTHIC SAMPLE COLLECTION DATA SHEET

							•			
Statio	V -							Ľ	Date: 10-17-03	
•	l Name:			Ar	rival Tim	e. /	7.49			
Grab Sampler Type: , / Latitude: 32*								Ľ	ongitude: 117°	
Wind (kts/dir) ² :									Ampler Initials:	
						l L	<u>/ 1~ C <</u>	<u></u>	B(5 p	
Grab Num.	Field Rep (A,B,C)	Sample Depth (ft)	Pen. Depth (cm)	% Intact/ Volume (L)	Sed. Comp	Sed. Color	Sed. Odor	Grab Sample Type ⁶	Comments: Sample Description, # of Macroinverts, Photo?	
1		3'4''								
2										
3										
4										
5									· ·	
6										
7									· · · · · · · · · · · · · · · · · · ·	
8								•		
9									· .	
10										

¹ Weather List: clear, partly cloudy, continuous cloud layer, fog, haze, drizzle, rain, showers, thunderstorms
 ² Direction in compass headings: N, S, E, W, NE, NW, SE, SW
 ³ Sediment Composition: coarse sand, fine sand, silt/clay, gravel, shell hash
 ⁴ Sediment Color: brown, tan, black, gray, olive green, red
 ⁵ Sediment Odor: none, petroleum, hydrogen sulfide, other
 ⁶ Grab Type: infauna (INF), sediment chemistry (Chem), toxicity (Tox)

Field Water Quality Measurement Log

2003 - 2004

Sample Collection Date: _1011103

03

Sampler: 85, RG

Sample ID	Depth	Temp	Salinity	Cond. (umhos-	рН	DO	
	(ft)	°C	(ppt)/	cm)		(mg/L)	Comments/ Observations
1/1 A-3	4.50	21.0	2.0	4220	8.13	15.2	
245	2.25	20.8	2.2	4210		15.5	
(er) 410	4.50	20.7	22	4210			
		21.3	2.3	4400	8.72	16.5	
A-2	3.5	21.3	23	4400	8.55	16.7	· ·
	7.0	22.0	11.9	19930]
		21.5	23	4360	8.74	16.7	
A-3 A-1	2.5	21.6	z. 4	4440		16.7	
BC5	5.0	21,7	4.3	7840			
		21.9	1.5	2780	7.10	7.5	7 in reed forest.
B-1	2.35	21.9	1.5	3110	7.24	Ne. 7.6	out full location
	<u>4.</u> 7"	21.8	2.9	5400	-		
		22.2	2.5	4350	8.83	720.0	+ on else of reeds
B·Z		22.2	2.3	4350	9.07	720.0	
	3.6	22.2	2.3	4350			
- 7		21.7	2.3	4340	8.65	18.9	
· BS	3.15	21.7	2.3	4340		19.1	
	6.3	221	10.6	18650			

AMEC Earth and Environmental, 5510 Morehouse Dr. San Diego, CA 92121

Field Water Quality Measurement Log

2003 – 2004

Sample Collection Date: _____ [0/17/03

Sampler: <u>BCS</u>, RG

Sample ID	Depth (ft)	Temp °C	Salinity (ppt)/	Cond. (umhos- cm)	pH	DO	Comments/
· ·		21.7	Z-3	1/20	8.55	(mg/L) / 9. /	Observations
B.Y		21.7	23	4430	8.87	18.2	
<u> </u>	5'10	ר./ַב	7.3	4430			
		22.0	2.2	4200	8.92	720.0	
C-1 C-3 315	ļ	22.0	2.2	4200		720.0	· ·
315	4'6"	22.0	22	4250			· ·
		21.9	2.2	4200	8.92	720.0	
C-2		21.9	22	4200		723.0	
- N	3'10"	21.9	2.2	4220		-	
		2).9	2.1	3930	8.77	720.0	
C-3C-1		21.9	7-1	3910		720. 2	
Bis	3'104	21.9	7.1	4040			
		21.8	22	4230	9:15	720.0	
D-1		2.18	2.2	4230		720.0	
	3' 4 "	21.8	2-2	4240			
		· · · · · · · · · · · · · · · · · · ·					
							-

APPENDIX H CHAIN-OF-CUSTODY FORMS

.

.

amec® **Earth & Environmental, Inc.** AMEC San Diego Bioassay Laboratory 5550 Morehouse Drive, Suite B San Diego, CA 92121

858-458-9044

Chain of Custody

Date 10/18/03 Page ____ of ____

								_		_	_									
Sample Collection by:	<u>rts Sl</u>	ransk	y, Rob	GARANT	lail Report	o (if different)														
Company <u>AMEC</u> Address <u>5510 M6</u> City <u>SAN Dicco</u> Contact <u></u> Phone No	State _			2.12) C	Address City Contact	StateZip	_ ŀ	1 7		er, 19C										
SAMPLE ID	DATE	TIME	MATRIX	CONTAINER TYPE	NUMBER OF CONTAINERS	COMMENTS	- 1			Loper +										
SCRE A-1	10/10/03	1234	Sed	Plaste	. 1		×	×	. ,											
A-2_		1313_						┼-╉	4											
A->		1357	i					++												
8-1		1445		\square				11						_						
B-2_		1519					[\square						-						
B-3		1542					_													
B-4		1605					_							_						
V 6-1	\forall	Mog	$ \downarrow $	J.	\checkmark	· · · · · · · · · · · · · · · · · · ·		4	1	/										
PROJECT INFORMATIO	ON		SAN	MPLE RECE	IPT				RE	LINQUISH	ED BY									
CLIENT	Luca	TOTAL	NO. OF C		s	(Signature)		(Time) (Si	gnature)						(Time)				
City of Buenaver	<u>103-</u> 2	CHAIN	OF CUST	ODY SEALS	3		ויטן	(Date) (Pr	inled Name)						(Date)				
SHIPPED VIA:		REC'D.	GOOD CO	ONDITION/		(Company)			(Co	ompany)										
AMEC 1	VAN	CONFO	ORMS TO	RECORD		RECEIVED BY			R	CEIVED B	Y (YABOR	ATORY)								
SPECIAL INSTRUCTIONS/CON	IMENTS:						_		11	in It	W _	<u> </u>		<u></u>						
						(Signature)	_	(Time) (si C	gnature)	trandy /	/				(Timė) 				
						(Printed Name)		(Dale) (P	inted Name)	<u>ec '/ </u>			_		(Date)				
						(Company)			AN	IEC Bloass	ay Lab Log	-in No								

DISTRIBUTION: WHITE, CANARY - AMEC Bioassay Lab, PINK - Originator

amec[®] Earth & Environmental, Inc. AMEC San Diego Bioassay Laboratory 5550 Morehouse Drive, Suite B

San Diego, CA 92121 858-458-9044

Chain of Custody

Date 10/18/03 Page 7 of 2

.

Sample Collection by: Chris Stranky, folo Gumber	Mail Report to ((if different)	ANALYSIS REQUIRED												
Company <u>Awec</u> Address <u>5510 Worchown Dr</u> City <u>San Drey State</u> <u>CA</u> Zip <u>9211</u> Contact <u>9212</u> Phone No.	Company Address City Contact	State Zip	Bivalu tox	Angliped Tox	Cooper, Jàc										
SAMPLE ID DATE TIME MATRIX CONTAI	NER NUMBER OF E CONTAINERS	COMMENTS	, M	Ą٨	9	-				_		_			
SCRE C-2 10/17/03 1722 Sed Plass			X	×	×										
1 3			4	Ŀ	×										
V P-1 V 1749 V					X						-				
					_										
											ĺ				
PROJECT INFORMATION SAMPLE R	CEIPT		1												
CLIENT CITY of Burn wenter CAL NO. OF CONTAIN P.O. NO. CHAIN OF CUSTODY SE	ERS	(Signature)		(Time)	(Signature)							(Time)			
		(Printed Name) (Printed Name) (Company)	<u>160</u>	(Dale)	(Printed Nat	nø)						(Date)			
SHIPPED VIA:		(Company) AMEC		<u>''')</u>	(Company)	<u> </u>									
SPECIAL INSTRUCTIONS/COMMENTS:		RECEIVED BY			RECEIVED	\ <i>H</i> J 	BORAT	ORY)			-				
		(Signalure)	(Time) (Signature) (Time) (Signature) (Time)												
		(Printed Name)		(Date)	(Printed Name) (Date) AMEC / AMEC										
		(Company)			AMEC Blos				<u> </u>						

DISTRIBUTION: WHITE, CANARY - AMEC Bloassay Lab, PINK - Originator

CALSCIENCE ENVIRONMENTAL LABORATORIES, INC.

7440 LINCOLN WAY GARDEN GROVE, CA 92841-1432 TEL: (714) 895-5494 • FAX: (714) 894-7501

CHAIN OF CUSTODY RECORD

Date____ 10/20/03______

÷

書の

Page _____ of _____

LABORATORY CLIENT: AMEC Forth : Environmental									CLIENT PROJECT NAME / NUMBER: Santa Clara River Estury PROJECT CONTACT: Chrig Stransh										P.O. NO.:							
ADDRESS		- Tarth & thorrow	intental.					Ja	1-62	<u>C(</u>	<u>110</u>	Ri	ver	E.	<mark>ب ل</mark>	21.	<i>(</i>		- 1100	- 0.01	<u> </u>		<u> </u>		_	
CITY	5510	horehouse Dr STATE			~	IP	PR	OJEC	Ch	NTAC +		5+	sa,	zela												
	San Di USO-GOUL	ingo <u>CA</u>		97	<u>212</u>	1			R(S): (OEL	· · · · · · · · · · · · · · · · · · ·	_						<u>_</u>			-	
TEL: ମ୍ବିର୍ବିତ୍ୟୁ	458-9044	FAX: 858 587-3961 ard	E-MAIL:					1		H.	1	,							ИР =		<u> </u>			_•ċ		
TURNARC	DUND TIME: Stare				<u>- (1</u>)*	(om	-	<u>Un</u>		201	_	REQ	UE	ST	ED	Δ		YS	ES			<u> </u>			1 4	
SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY)																								<u> </u>	-	
		:				. ھ				1)			•													
										6		nCor				(80	108)		15)					· ·		
					1		-		<u>1</u>	0218	-	B) E				1) or	; (60		O.L							
									802	S (8		826C	-			504.	r al s) or		i .					
	- 1								BTEX / MTBE (8021B)	HALOCARBONS (8021B)	VOCs (8260B)	VOCs (5035 / ⁸ 260B) EnCore	SVOCs (8270C)	PEST (8081A)	32)	EDB / DBCP (504.1) or (8011)	CAC, T22 METALS (60108)	10)	VOCs (T0-14A) or (T0-15)						Ģ	
							6	D) or	M	CAR	(82)	(50;	s (8)	(80	PCBs (8082)) DB	T22	PNAs (8310)	(T0	Toç	cone l	1		[
LAB USE	GEIMS ID	SAMPLE ID	SAMPLIN	ſ	MATRIX	NO. OF	TPH (G)	TPH (D)	EX	IALO	'0Cs	/0Cs	20	EST	CBS	08	CAC,	NAS	/0Cs							
ONLY				TIME		CONT.				<u>т</u>	_	_	<u> </u>			ш 				· ·				_	-	
		SCRE - A-1	10/17/03 1Z	234	5-2	l														$\boldsymbol{\times}$	×			ļ		
		A-2	1 17	313	1					_													1.1			
		A-3	1:	357							-															
1.15		B-1	11	445	1																					
		B-2	<	519																			-		1	
		B-3		542												-	_									
		B-4		605			÷.																		-	
		C-1		709																					1	
~		c-Z		722									-						1							
		V C-3		737 .		1						14								~	J					
															·		Dat	9.	1		Tim	19:14			18.8	
	Relinquished by: (Signature)																	\underline{o}		14)8						
Relinqu	ished by: (Signature)			Receive	ed by:	(Signat	ure)			~							Dat	Date: /				Time:				
Relinquished by: (Signature) Received for Labo							oratory by: (Signature) Date: Time:											Q&Q Graphic (714) 898-9702								

DISTRIBUTION: White with final report, Green to File, Yellow and Pink to Client.

Please note that pages 1 and 2 of 2 of our T/Cs are printed on the reverse side of the Yellow and Pink copies respectively.

09/10/01 Revision

1

TE	ALSCIENCE ENV LABORATORI 7440 LINCOLI GARDEN GROVE, C L: (714) 895-5494 • FA	I ES, INC. N WAY A 92841-1432 AX: (714) 894-7501											ž.		CH Date Page		lc	>/2	01	TOI /এব্র _ of	<u> </u>						
LABOR	ATORY CLIENT:	- Earth : Envir		L ,			CLIENT PROJECT NAME / NUMBER: Santa (lara River Estuar											P.O. NO.:									
ADDRE		- Jalin ; Envir	on mon	91			S	ante	<u>n (</u>	4.0	n R	س (<u> </u>	ĒS	4. <u>va</u>	γ											
· .	550	horehouse Dr			_		PR	OJEC	т со	NTAC	गः										¥ ∽ı.r	ר ר	- Г				
CITY	-	FAX:			GZ1	(ip 71	SAMPLER(SE (SIGNATURE) COELT LOG CODE COOLER RECEIPT																				
TEL;																											
	8 458-9044 ROUND TIME: 53 mm												<u>°C</u>														
	ROUND TIME: حمل محمر AME DAY 🛛 24 HR	REQUESTED ANALYSES																									
	L REQUIREMENTS (ADDITIO		5 DAY	· ·	10 DAYS											_											
												ore				(8011)	B		_								
SPECIA	L INSTRUCTIONS:		.ч							18)		VOCs (5035 # 8260B) EnCore	:			ы (8	CAC, T22 METALS (6010B)		(T0-15)			ŀ					
									21B	802		(B)				Ę.	S (6		DL								
									BTEX / MTBE (8021B)	HALOCARBONS (8021		826	1	((504.1) or	TAL		\) or								
	3 6 6								TBE	BOI	VOCs (82608)	35	SVOCs (8270C)	PEST (8081A)	92)		W	10)	VOCs (TO-14A)		0			ľ			
					-		5	TPH (D) or	N.	CAF	(82	(20	s (8;	(80	PCBs (8082)	EDB / DBCP	T22	PNAs (8310)	(T0	J.	duz	.	1	Ì			
LAB. USE	GEIMS ID		SAMP	LING		NO. OF	TPH (G)	H	TEX	ALO	0Cs	0Cs	VOC	EST	CBs	DB/	AC,	NAs	0Cs	100	0						
ONLY.	GEIMS ID	SAMPLE ID	DATE	TIME	MATRIX	CONT.		F	<u>`</u>	н	Ň	_	S	P	ď		5	Р	٨	<u>`</u>	$ \rightarrow$	\square	\square				
		SCRE - D-1	10/17/02	1749	Sed	1														\mathbf{X}	\mathbf{X}						
																	-										
		· · · · · · · · · · · · · · · · · · ·						-														-					
1. 1								-												-+	\rightarrow			<u> </u>			
***		· . ·										-															
							1															-		\neg			
					•		.																				
· · ·																											
					<u> </u>																						
Reline	uished by: (Signature)//	the Carlson	L	Rece	ived by:	(Signat	urje)				i	T	<u>.</u>	<u> </u>			Dạt	e: /	- /	-+	Time	 e:		-			
	, AC	the Corlson						-	2	7						10/21/3					1140						
Relin	quished by: (Signature)	· · · · · · · · · · · · · · · · · · ·		Rece	ivéd by:	(Signat	ure)		7								Dat	(<u> </u>			Time	ə:	<u></u>				
	·								L																		
Relin	Relinquished by: (Signature) Received for Labo									ure)							Dat	e:			Time	э:					

Q&Q Graphic (714) 898-9702

DISTRIBUTION: White with final report, Green to File, Yellow and Pink to Client.

.

Please note that pages 1 and 2 of 2 of our T/Cs are printed on the reverse side of the Yellow and Pink copies respectively.

09/10/01 Revision

CALSCIENCE ENVIRONMENTAL LABORATORIES, INC. 7440 LINCOLN WAY GARDEN GROVE, CA 92841-1432 TEL: (714) 895-5494 • FAX: (714) 894-7501																		[Date.	_			:US /o	1	DY R 	ECC)RD
TEL	.: (714) 8	95-5494	• FAX: (714)	894-7501		_													Page	·		Į		of			
LABOR	ATORY CL		hec E								PROJ						1.	_				P.0	, NO.	:			
ADDRE		•		-	-//0/70/	v-cupal						Kv.	<u>ر محر</u> ۲۰	vent	-1/0	/		<u>cr</u>				QU		NO.:			
CITY	5	510_14	orchourse	STATE		ZI				Chi	<u>73</u>	5 1			1 7	lou	and	Ş	2	١.,	/						
	Sm	\overline{O}	<u>~yo</u>	(A		9717			SA	MPLE	F/(\$):	(SIGN	ATU	RE)					<u></u>	7	<u>, </u>			ONL			
TEL:	- 455-	- 9044	(FAX: (ならな うち	7-3961	E-MAI	-strans	we	ance.a	<u>m</u>		Uñ	X	\mathbb{H}									O	14		2 7		2
							/		REQUESTED ANALYSES																		
TURNAROUND TIME Standard SAME DAY 24 HR 48 HR 72 HR 5 DAYS 10 DAYS SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY)																						-	6)				
RV 🗌	VQCB RE	PORTIN	G 🗌 ARCH	IVE SAMPLE	SUNTIL	/	_/	·			ļ						EDB / DBCP (504.1) or (8011)	<u>ه</u>			_		FIXED GASES (25.1) or (D1946)				
SPECI	AL INSTRU	CTIONS					_			.		218)					or (8	(6010B)	50		VOCs (T0-14A) or (T0-15)		or (I			:	
1											BTEX / MTBE (8021B)	HALOCARBONS (8021B)					4.1	ILS (ICP/MS METALS (6020)		or (T	CH4 / TGNM0 (25.1)	5.1)	2			
											E (8)	ONS	â	(DC)	(Y	_	(2Ó	MET/	TAL	ŝ	4A) (10 (2	ES (2	, Z			
) O	MTE	ABB	VOCs (8260B)	SVOCs (8270C)	PEST (8081A)	PCBs (8082)	BC	T22 METALS	S ME	PNAs (8310)	T0-1	GNN	GASI	I 1			
LAB		·			SAMP	LING		NO. OF	ЭH	(0) (0) Hal	EX /		ICs (10Cs	ST (Bs (CAC, T	MI	IAs ()Cs (I4 / T	Ē	ર્જ			
USE ONLY	SAMP	LE ID	LOCATION/DI	ESCRIPTION	DATE	TIME	MATRIX	Сонт.	_≞_	TP	BI	H	70	S	H			3	Ξ	Ы	VC	는	EI)				
	SCR	A-1	Santa (la	m River Esta	10/17/02	1357	Sel	1																X			
	507	AZ				1313				_																	
	SCR	A-3				1234																		\square			
	Ser	8-1				1445																					
an Charles Startes	SCR	8-2				1519																					
	SCR	8-3				1542																					
	Scr	B-4				1605																					
	Ser					1737																					
e Server Statistic	<u> </u>	٢-٦.				1722																					
	5.7	(-3				1709			_									-									
Relinquished by: (Signature)								eived b	y: (S	ignat	ure		l			l		1			Dat	ø.	7	L¥	Time:		
	-		AN	Jun	5				<u>(114/0</u>)										10.	4	13	207	7				
Relinq	uished by	: (Signatu	re) (/		<i>(</i>		Rec	eived t	y: (S	ignat	पाए)		_	7							Dat	é: 7	7		Time:		
Relina	uished, by	Signatu	re)				Rec	eived f	or La	borat	ad h	y: (S	ignat	ure)							Det	6:	+	\rightarrow	Time:		
	, o o o o o								4	X	//.	AN			- ·						4//	41	4		12	55	
	DISTRIBUTION: White with the life report Gran to File. Yellow and Pink to Clien										<u> </u>	¥ .2.									,	7	7		02/01	/99 Re	vision

DISTRIBUTION: White with final report, Green to File, Yellow and Pink to Client. Please note that pages 1 and 2 of 2 of our T/Cs are printed on the reverse side of the Yellow and Pink copies respectively.

Q&Q Graphic (714) 898-9702

^{02/01/5}